

Mihai Cristea

ON THE OPENNESS OF A MULTIVALUED FUNCTION.
OPEN DISCRETE MULTIVALUED FUNCTIONS

We extend to multivalued functions a result of S. Stoilow which says that if $f : X \rightarrow Y$ is a continuous map between two n -manifolds, X with a countable base, then $f(D_f)$ is of the first Baire category in Y , where $D_f = \{x \in X | f \text{ is not open at } x\}$, and using the same ideas, we study the set of lower semicontinuity of a multivalued function. We also extend to multivalued functions a known result which says that if X, Y are locally compact complete metric spaces, X with a countable base and $f : X \rightarrow Y$ is continuous, open and discrete, then $\text{int } B_f = \emptyset$ and $\text{int } f(B_f) = \emptyset$, where $B_f = \{x \in X | f \text{ fails to be a local homeomorphism at } x\}$.

1. Notations and terminology

We remind that if X, Y are Hausdorff spaces, $f : X \rightarrow Y$ is a multivalued function if for every $x \in X$, $f(x)$ is a nonempty subset of Y . For $B \subset Y$, we denote by $f^+(B) = \{x \in X | f(x) \subset B\}$ and by $f^-(B) = \{x \in X | f(x) \cap B \neq \emptyset\}$. We say that a multivalued function $f : X \rightarrow Y$ is upper semicontinuous if $f^+(B)$ is open for every $B \subset Y$ open, we say that f is lower semicontinuous if $f^-(B)$ is open for every $B \subset Y$ open, and we say that f is continuous if it is both lower semicontinuous and upper semicontinuous. Since $f^-(B) = C f^+(C B)$ and $f^+(B) = C f^-(C B)$ for every $B \subset Y$, it results that if $f : X \rightarrow Y$ is a multivalued upper semicontinuous function, then $f^-(B)$ is a closed set in X for every closed $B \subset Y$, and if f is lower semicontinuous, then $f^+(B)$ is closed for every closed $B \subset Y$. We say that a multivalued function $f : X \rightarrow Y$ is lower semicontinuous at a point $x \in X$ if for every open $V \subset Y$ such that $f(x) \cap V \neq \emptyset$, there exists $U \in V(x)$ such that $U \subset f^-(V)$, and we say that f is upper semicontinuous at a point $x \in X$, if for every open $V \subset Y$ such that $f(x) \subset V$, there exists

$U \in V(x)$ such that $f(U) \subset V$. It is obvious that a multivalued function $f : X \rightarrow Y$ is lower semicontinuous (upper semicontinuous) if and only if f is lower semicontinuous (upper semicontinuous) at every point from X . If $f : X \rightarrow Y$ is a multivalued function and $A \subset X$ we say that f is lower semicontinuous (upper semicontinuous) on A if f is lower semicontinuous (upper semicontinuous) at every point from A .

We say that a multivalued function $f : X \rightarrow Y$ is nonsingular if $\text{int } f(U) \neq \emptyset$ for every $U \subset X$ open, $U \neq \emptyset$.

We say that a multivalued function $f : X \rightarrow Y$ is locally closed if for every $x \in X$, there exists $U \in V(x)$ such that for every $A \subset \bar{U}$, the set $f(\bar{A})$ is a closed in Y .

We say that a multivalued function $f : X \rightarrow Y$ is lower proper if for every compact $K \subset Y$, we have that $f^-(K)$ is compact.

We say that a multivalued function $f : X \rightarrow Y$ is discrete if for every $x \in X$, $f^-(f(x))$ is a discrete set.

We say that a multivalued function $f : X \rightarrow Y$ is injective if $f(x) \cap f(y) = \emptyset$ for every $x, y \in X$, $x \neq y$, and we say that $f : X \rightarrow Y$ is injective arround the point $x \in X$ if there exists $U \in V(x)$ such that $f|U : V \rightarrow Y$ is injective. We denote by $B_f = \{x \in X | f \text{ is not injective arround } x\}$ and observe that B_f is closed in X .

We say that a multivalued function $f : X \rightarrow Y$ is open at $x \in X$ if for every $U \in V(x)$, we have $f(x) \cap \text{int } f(U) \neq \emptyset$ and we say that $f : X \rightarrow Y$ is strongly open at $x \in X$ if for every $U \in V(x)$, we have that $f(x) \subset \text{int } f(U)$. If $A \subset X$, we say that f is open (strongly open) on $A \subset X$ if f is open (strongly open) at every point from A and we denote by $D_f = \{x \in X | f \text{ is not open at } x\}$. Our definition of the strong openness coincides with interiority definition given by P. Maritz [2]. Since the notion of interiority was introduced in mathematics by Simion Stoilow for open and light mappings, we choose the present definition.

2. An old and quite elementary result of S. Stoilow [3] says that if X is a separable locally compact metric space, Y is a complete metric space, $f : X \rightarrow Y$ is continuous, then $f(D_f)$ is of the first Baire category in Y , i. e. $f(D_f)$ is a "small" set from the point of view of the category classification, and this theorem may be regarded as a topological version of the well-known Sard's lemma. Another interesting result of S. Stoilow deals with what he called "nonsingular" mappings, i. e. with mappings $f : X \rightarrow Y$ such that for every open $Q \subset X$, $Q \neq \emptyset$, we have that $\text{int } f(Q) \neq \emptyset$ (for instance a continuous light map between two n-manifolds is nonsingular). S. Stoilow proved in [3] that if X is a separable locally compact metric space, Y a complete metric space, $f : X \rightarrow Y$ is continuous and nonsingular and $f(X)$

is of the second Baire category in Y , then there exists $A \subset X, A \neq \emptyset$ such that f is open at every point from A and such that CA is of the first Baire category in X , and $B \subset Y$ such that CB is of the first Baire category in Y and $f|A : A \rightarrow B$ is an open map.

In [1] I generalized this results to quite general topological spaces. The purpose of my paper is to show that some result remains true if we work with a multivalued function $f : X \rightarrow Y$.

We shall now use the following result from [5] (Theorem 1.2.28 and Theorem 1.2.33):

LEMMA 1. *Let X be a Hausdorff space, Y a regular space, $f : X \rightarrow Y$ a multivalued upper semicontinuous function such that $f(x)$ is closed for every $x \in X$ and let $K \subset X$ be compact. Then $f(K)$ is closed.*

THEOREM 1. *Let X be a regular space with a countable base $(S_i)_{i \in \mathbb{N}}$, Y a Hausdorff space, $f : X \rightarrow Y$ a multivalued locally closed function. Then $f(D_f)$ is of the first Baire category in Y . If f is lower semicontinuous and nonsingular, there exists $A \subset X$ such that f is open on A and CA is of the first Baire category in X . If f is upper semicontinuous and for every open $U \subset X$, $U \neq \emptyset$ and $B \subset Y$ such that $B \cap f(x) \neq \emptyset$ for every $x \in U$, implies that B is of the second Baire category in Y , then there exists $D \subset X$ such that f is strongly open on D and CD is of the first Baire category in X .*

Proof. Since X is a regular space and $f : X \rightarrow Y$ is locally closed, we can choose a base $(S_i)_{i \in \mathbb{N}}$ such that $f|\bar{S}_i : \bar{S}_i \rightarrow Y$ is a closed map for every $i \in \mathbb{N}$. Denote by $H_i = \partial f(\bar{S}_i)$ for $i \in \mathbb{N}$ and observe that $CH_i = Y \setminus \partial f(\bar{S}_i) = Y \setminus (f(\bar{S}_i) \setminus \text{int } f(\bar{S}_i)) = Cf(\bar{S}_i) \cup \text{int } f(\bar{S}_i)$. Hence H_i is a closed set and obviously $\text{int } H_i = \emptyset$ for $i \in \mathbb{N}$. Let $A = X \setminus \bigcup_{i=1}^{\infty} f^+(H_i)$. If $A = \emptyset$, then $X = \bigcup_{i=1}^{\infty} f^+(H_i)$, and therefore $f(X) \subset \bigcup_{i=1}^{\infty} H_i$, hence $f(D_f) \subset \bigcup_{i=1}^{\infty} H_i$. If $A \neq \emptyset$, then we show that $A \subset CD_f$. Indeed, fix $x \in A$ and let $i, j \in \mathbb{N}$ be such that $x \in \bar{S}_i \subset S_j$. Then $f(x) \subset f(\bar{S}_i)$ and since $x \in A$, we have $f(x) \cap CH_i \neq \emptyset$. Observe that if $y \in f(x) \cap CH_i$, then $y \in f(\bar{S}_i) \cap CH_i = f(\bar{S}_i) \cap (Cf(\bar{S}_i) \cup \text{int } f(\bar{S}_i)) = \text{int } f(\bar{S}_i) \subset \text{int } f(S_j)$. Therefore if $x \in A$, then $f(x) \cap \text{int } f(S_j) \neq \emptyset$ for every $j \in \mathbb{N}$ such that $x \in S_j$. Since $(S_j)_{j \in \mathbb{N}}$ is a countable base in X , that f is open in x , hence $x \in CD_f$. We have just proved that $A \subset CD_f$, or, equivalently $D_f \subset CA$. Hence $f(D_f) \subset f(CA) = f(\bigcup_{i=1}^{\infty} f^+(H_i)) = \bigcup_{i=1}^{\infty} f(f^+(H_i)) \subset \bigcup_{i=1}^{\infty} H_i$. So, in both cases $f(D_f)$ is of the first Baire category in Y .

Now, if we suppose that f is lower semicontinuous and nonsingular, then we show that $\text{int } f^+(H_i) = \emptyset$ for every $i \in \mathbb{N}$. Indeed, if there exists $i \in \mathbb{N}$ and open $Q \subset X$, $Q \neq \emptyset$ such that $Q \subset f^+(H_i)$, then $f(Q) \subset H_i$. Since f is nonsingular, then there exists open $V \subset f(Q)$, $V \neq \emptyset$, which represents a contradiction, since $\text{int } H_i = \emptyset$. Using the fact that f is lower semicontinuous,

we conclude that $f^+(H_i)$ is a closed set with empty interior for every $i \in \mathbb{N}$. Since $CA \subset \bigcup_{i=1}^{\infty} f^+(H_i)$, we obtain that CA is of the first Baire category in X , (we proved before that f is open on A).

Suppose now that f is upper semicontinuous and for every open $U \subset X$, $U \neq \phi$ and $B \subset Y$ such that $B \cap f(x) \neq \phi$ for every $x \in U$, B is of the second Baire category in Y . Let $D = X \setminus \bigcup_{i=1}^{\infty} f^-(H_i)$. Using the fact that f is upper semicontinuous, we see that the sets $f^-(H_i)$ are closed for every $i \in \mathbb{N}$. Suppose that there exists $i \in \mathbb{N}$ and open $U \subset X$, $U \neq \phi$ such that $U \subset f^-(H_i)$. Then $f(x) \cap H_i \neq \phi$ for every $x \in U$, and from the hypothesis, we see that H_i is of the second Baire category in Y , which represents a contradiction. This shows that $\text{int } f^-(H_i) = \phi$ and $f^-(H_i)$ is closed for every $i \in \mathbb{N}$, hence $CD = \bigcup_{i=1}^{\infty} f^-(H_i)$ is of the first Baire category in X . We shall now prove that f is strongly open on D . Indeed, fix $x \in D$ and let $i, j \in \mathbb{N}$ be such that $x \in \bar{S}_i \subset S_j$. Then $f(x) \subset f(\bar{S}_i) \cap f(D) \subset f(\bar{S}_i) \cap CH_i = \text{int } f(\bar{S}_i) \subset \text{int } f(S_j)$ and since $(S_j)_{j \in \mathbb{N}}$ is a base in X , then f is strongly open in x . This shows f is strongly open on D and completes the proof.

Using Lemma 1 and Theorem 1, we obtain:

THEOREM 2. *Let X be a locally compact space with a countable base, Y a regular space, $f : X \rightarrow Y$ a multivalued upper semicontinuous function such that $f(x)$ is closed for every $x \in X$. Then $f(D_f)$ is of the first Baire category in Y . If f is continuous and nonsingular, there exists $A \subset X$ such that CA is of the first Baire category in X and such that f is open on A . If for every $U \subset X$, $U \neq \phi$ and $B \subset Y$ such that $B \cap f(x) \neq \phi$ for every $x \in U$, we have that B is of the second Baire category in Y , then there exists $D \subset X$ such that CD is of the first Baire category in X and f is strongly open on D .*

3. As in [1], we can use the preceding ideas to study the set of lower semicontinuity of a multivalued function.

THEOREM 3. *Let X be a Hausdorff space, Y a regular space with a countable base $(S_i)_{i \in \mathbb{N}}$ and $f : X \rightarrow Y$ a multivalued function such that $f^-(\bar{S}_i)$ is closed for every $i \in \mathbb{N}$. Then f is lower semicontinuous on X with the possible exception of a set of the first Baire category in X .*

Proof. Let $H_i = \partial f^-(\bar{S}_i)$ for $i \in \mathbb{N}$ and $A = X \setminus \bigcup_{i=1}^{\infty} H_i$. Then H_i is closed and $\text{int } H_i = \phi$ for every $i \in \mathbb{N}$. We shall show that f is lower semicontinuous at every point from A . Indeed, let $x \in A$ and $V \subset Y$ open, $V \neq \phi$ such that $f(x) \cap V \neq \phi$ and let $y \in f(x) \cap V$ and $i \in \mathbb{N}$ such that $S_i \in V(y)$ and $\bar{S}_i \subset V$. Then $x \in f^-(\bar{S}_i) \cap A \subset f^-(\bar{S}_i) \setminus \partial f^-(\bar{S}_i) = \text{int } f^-(\bar{S}_i) \subset \text{int } f^-(V)$, hence we can find $U \in V(x)$ such that

$U \subset f^-(V)$, and this shows that f is lower semicontinuous at x . We proved that f is lower semicontinuous on A , and since $CA = \bigcup_{i=1}^{\infty} H_i$ is of the first Baire category in X , the proof is complete.

We obtain now immediately the following:

COROLLARY 1. *Let X be a Hausdorff space, Y a regular space with a countable base and let $f : X \rightarrow Y$ be a multivalued upper semicontinuous function. Then f is continuous on X with the possible exception of a set of the first Baire category in X .*

COROLLARY 2. *Let X be a Hausdorff space, Y a locally compact space with a countable base and let $f : X \rightarrow Y$ be a multivalued lower proper function. Then f is lower semicontinuous on X with the possible exception of a set of the first Baire category in X .*

4. We shall generalize now some classical facts from the theory of continuous, open and discrete mappings between two n -manifolds (see for instance [4]).

PROPOSITION 1. *Let X, Y be Hausdorff spaces and $f : X \rightarrow Y$ a lower semicontinuous and strongly open multivalued function, $i \in \mathbb{N}$ and $K_i(f) = \{x \in X \mid \text{Card } f^-(f(x)) \leq i\}$. Then $K_i(f)$ is a closed set.*

Proof. Let $x \in \overline{K_i(f)}$ and suppose that we can find $a_1, \dots, a_i \in K_i(f)$ such that $x \neq a_k, a_p \neq a_k$ for $p \neq k, p, k \in \{1, \dots, i\}$ and $f(a_p) \cap f(x) \neq \emptyset$ for $p = 1, \dots, i$. Let $y_p \in f(x) \cap f(a_p)$ for $p = 1, \dots, i$ and $Q_p \in V(a_p)$, $p = 1, \dots, i$, $Q \in V(x)$ disjoint. Since f is strongly open at a_p , then $f(a_p) \subset \text{int } f(Q_p)$, and hence there exist $V_p \in V(y_p)$ such that $V_p \subset f(Q_p)$ for $p = 1, \dots, i$. Using the fact that f is lower semicontinuous, we see that the sets $f^-(V_p)$ are open, $p = 1, \dots, i$, and since $y_p \in f(x) \cap V_p$, we obtain that $x \in f^-(V_p)$ for $p = 1, \dots, i$. Let $W = \bigcap_{p=1}^i f^-(V_p) \cap Q$. Since $x \in \overline{K_i(f)}$, there exist $z \in K_i(f)$ such that $z \in W$, hence $f(z) \cap V_p \neq \emptyset$ and let $z_p \in f(z) \cap V_p$ for $p = 1, \dots, i$. We have $z_p \in V_p \subset f(Q_p)$, hence there exists $b_p \in Q_p$ such that $z_p \in f(b_p)$, hence $z_p \in f(b_p) \cap f(z)$ for $p = 1, \dots, i$. Since $b_p \in Q_p$ for $p = 1, \dots, i$, $z \in Q$ and Q_1, \dots, Q_p, Q are disjoint, then $b_p \neq b_k, b_p \neq z$ for $p \neq k, p, k \in \{1, \dots, i\}$ and $f(b_p) \cap f(z) \neq \emptyset$ for $p = 1, \dots, i$. We obtained that $\{b_1, \dots, b_i, z\} \subset f^-(f(z))$, therefore $\text{Card } f^-(f(z)) \geq i + 1$, what represents a contradiction, since $z \in \overline{K_i(f)}$. It shows that $x \in \overline{K_i(f)}$ and since x was arbitrarily chosen from $\overline{K_i(f)}$, we conclude that $\overline{K_i(f)} \subset K_i(f)$, i. e. $K_i(f)$ is a closed set.

THEOREM 4. *Let X be locally compact, Y a Hausdorff space and $f : X \rightarrow Y$ a multivalued continuous, discrete and strongly open function such that $f(x)$ is closed for every $x \in X$. Then $\text{int } B_f = \emptyset$.*

Proof. Suppose that $B_f \neq \phi$ and $\text{int}B_f \neq \phi$. Then we can find $Q \neq \phi$, Q open such that \bar{Q} is compact and $Q \subset B_f$. If $x \in X$, $f(x)$ is closed, and since f is upper semicontinuous, then $f^-(f(x))$ is closed and discrete. So $f^-(f(x)) \cap \bar{Q}$ is compact and discrete, hence a finite set. We therefore have $\bar{Q} = \partial Q \cup \bigcup_{i=1}^{\infty} (K_i(f|Q))$ and since \bar{Q} with the induced topology is a Baire space then using Proposition 1, we can find $i \in \mathbb{N}$ such that $\text{int}K_i(f|Q) \neq \phi$. Hence we can find open $B \subset Q$, $B \neq \phi$ such that $\text{Card}f^-(f(x)) \cap Q \leq i$ for every $x \in B$, and let $j \leq i$ be maximal such that $\text{Card}f^-(f(x)) \cap Q \leq j$ for every $x \in B$. Then there exist $x_1, \dots, x_j \in Q$ such that $x_1 \in B$, the points x_1, \dots, x_j are distinct and $f(x_1) \cap f(x_p) \neq \phi$ for $p = 2, \dots, j$. Pick $y_p \in f(x_1) \cap f(x_p)$, $p = 2, \dots, j$ and $Q_p \in V(x_p)$, $p = 1, \dots, j$ disjoint such that $Q_1 \subset B$, $Q_p \subset Q$, $p = 2, \dots, j$. Since f is strongly open at x_p , then $f(x_p) \subset \text{int}f(Q_p)$ for $p = 2, \dots, j$ and hence there exist $V_p \in V(y_p)$ such that $V_p \subset f(Q_p)$ for $p = 2, \dots, j$. Because f is lower semicontinuous, so that the sets $f^-(V_p)$ are open for $p = 2, \dots, j$ and since $y_p \in f(x_1) \cap f(x_p)$, we obtain that $x_1 \in f^-(V_p)$ for $p = 2, \dots, j$. Let $W = \bigcap_{p=2}^j f^-(V_p) \cap Q_1$. We shall show that f is injective on W . Indeed, if it is not true, there exists $a_1, a_2 \in W$, $a_1 \neq a_2$ such that $f(a_1) \cap f(a_2) \neq \phi$. Take any $z \in f(a_1) \cap f(a_2)$. Since $a_1 \in W$, we have $f(a_1) \cap V_p \neq \phi$, and hence there exist $z_p \in f(a_1) \cap V_p$ for $p = 2, \dots, j$ and $z_p \in V_p \subset f(Q_p)$. There exist $b_p \in Q_p$ such that $z_p \in f(b_p)$ for $p = 2, \dots, j$. Then $z_p \in f(a_1) \cap f(b_p)$ for $p = 2, \dots, j$, hence the points $a_1, a_2, b_2, b_3, \dots, b_j$ are distinct and $\{a_1, a_2, b_2, \dots, b_j\} \subset f^-(f(a_1))$, what represents a contradiction, since $a_1, a_2, b_2, \dots, b_j$ are points from Q and $a_1 \in B$. It shows that f is injective on W , and $W \subset Q_1 \subset B \subset Q \subset B_f$, $W \neq \phi$, what contradicts with the definition of B_f . We obtained this contradiction since we presumed that $\text{int}B_f \neq \phi$, hence $\text{int}B_f = \phi$, q. e. d.

THEOREM 5. *Let X be a regular space with a countable base $(S_i)_{i \in \mathbb{N}}$, Y a locally compact or a complete metric space, $f : X \rightarrow Y$ a multivalued function which is locally closed, strongly open, lower semicontinuous and such that there exists $H \subset Y$ of the first Baire category in Y such that for every $y \in Y \setminus H$, either $f^-(y)$ is empty or for every $\alpha \in f^-(y)$ there exists $U_\alpha \in V(\alpha)$ such that $f^-(f(\alpha)) \cap U_\alpha = \{\alpha\}$. Then $\text{int}f(B_f) = \phi$.*

Proof. Since f is a locally closed function, we can suppose that the base $(S_i)_{i \in \mathbb{N}}$ is chosen such that $f|\bar{S}_i : \bar{S}_i \rightarrow Y$ is a closed map for every $i \in \mathbb{N}$. Let $F_i = \{x \in S_i \cap B_f | f^-(f(x)) \cap S_i = \{x\}\}$. We show that for $i \in \mathbb{N}$ fixed, $f(F_i)$ is closed in $f(S_i)$. Indeed, let $y \in f(S_i)$ and $y_n \in f(x_n)$ be such that $y_n \rightarrow y$, with $x_n \in F_i$, for $n \in \mathbb{N}$. Suppose that there exists $a, b \in S_i$, $a \neq b$ such that $y \in f(a) \cap f(b)$. Choose $U_a \in V(a)$, $U_b \in V(b)$ be such that $U_a \cup U_b \subset S_i$ and $U_a \cap U_b = \phi$. Since f is strongly open, we have $f(a) \subset \text{int}f(U_a)$, $f(b) \subset \text{int}f(U_b)$. Thus $y \in f(a) \cap f(b) \subset \text{int}f(U_a) \cap \text{int}f(U_b)$,

hence there exists $V \in V(y)$ such that $V \subset f(U_a) \cap f(U_b)$. Using the fact that $y_n \rightarrow y$, we can find $n_0 \in \mathbb{N}$ such that $y_n \in V$ for $n \geq n_0$. Hence we can find $a_n \in U_a, b_n \in U_b$ such that $y_n \in f(a_n) \cap f(b_n)$ for $n \geq n_0$. Since $y_n \in f(a_n) \cap f(b_n) \cap f(x_n), a_n \neq b_n, a_n, b_n \in S_i, x_n \in F_i$ for $n \geq n_0$, we obtain a contradiction. We proved that there exists a single point $x \in S_i$ such that $y \in f(x)$. Let us denote by $A = \overline{\{x_n\}_{n \in \mathbb{N}}}$. Since $A \subset \bar{S}_i$ and $f|_{\bar{S}_i} : \bar{S}_i \rightarrow Y$ is a closed map, then $f(A)$ is closed in Y , hence $y \in f(A) = f(A)$. This implies that we can find $\alpha \in A$ such that $y \in f(\alpha)$. If $\alpha \in S_i$, from what we have proved before, we see that $x = \alpha$. If $\alpha \in \partial S_i$, then $x \neq \alpha$, and let $U_x \in V(x), U_\alpha \in V(\alpha)$ be such that $U_x \subset S_i$ and $U_x \cap U_\alpha = \emptyset$. As before, using the strong openness of the multivalued function f , we can find $W \in V(y)$ such that $W \subset f(U_x) \cap f(U_\alpha)$. Since f is lower semicontinuous at α , we can find $Q_\alpha \in V(\alpha)$ such that $Q_\alpha \subset U_\alpha \cap f^-(W)$. Using the fact that $\alpha \in \overline{\{x_n\}_{n \in \mathbb{N}}}$, we can find $x_n \in Q_\alpha$, and since $Q_\alpha \subset f^-(W)$, we can find $w_n \in W$ such that $w_n \in f(x_n)$. Now $w_n \in W \subset f(U_x)$, hence we can find $c_n \in U_x$ such that $w_n \in f(c_n)$. We have obtained that $w_n \in f(c_n) \cap f(x_n)$, hence $f(c_n) \cap f(x_n) \neq \emptyset, c_n \neq x_n, c_n \in S_i$ and $x_n \in F_i$, what represents a contradiction. It means that we can not have $\alpha \in \partial S_i$, hence $x = \alpha$. Since $\alpha \in A \subset \bar{B}_f = B_f$, we obtained that $x \in F_i$, hence $y \in f(F_i)$. We therefore proved that $f(F_i)$ is closed in $f(S_i)$ for every $i \in \mathbb{N}$.

Let $J_i = \{j \in \mathbb{N} | \bar{S}_j \subset S_i \text{ for } i \in \mathbb{N}\}$. We have $f(F_i) = f(F_i) \cap f(S_i) = f(F_i) \cap (\bigcup_{j \in J_i} f(\bar{S}_j)) = \bigcup_{j \in J_i} f(F_i) \cap f(\bar{S}_j)$ for $i \in \mathbb{N}$.

If $i \in \mathbb{N}$ and $j \in J_i$ are fixed, we shall show that the set $f(F_i) \cap f(\bar{S}_j)$ is closed in Y . Indeed, let $y_n \in f(F_i) \cap f(\bar{S}_j)$ be such that $y_n \rightarrow y$. Since $f(\bar{S}_j)$ is closed in Y , then $y \in f(\bar{S}_j) \subset f(S_i)$, and using the fact that $f(F_i)$ is closed in $f(S_i)$, we obtain that $y \in f(F_i)$, hence $y \in f(F_i) \cap f(\bar{S}_j)$ and this proves that the sets $f(F_i) \cap f(\bar{S}_j)$ are closed sets in Y for $j \in J_i, i \in \mathbb{N}$. Suppose now that $f(B_f)$ contains an open, nonempty set S . We have $S \setminus H \subset \bigcup_{i=1}^{\infty} f(F_i) = \bigcup_{i=1}^{\infty} \bigcup_{j \in J_i} (f(F_i) \cap f(\bar{S}_j))$, hence $\bar{S} = \partial S \cup (H \cap S) \cup \bigcup_{i=1}^{\infty} \bigcup_{j \in J_i} (f(F_i) \cap f(\bar{S}_j) \cap S)$, and using the fact that \bar{S} with the induced topology is a Baire space and ∂S and H are of the first Baire category in Y and in \bar{S} , we can find $i \in \mathbb{N}$ and $j \in J_i$ such that there exists $Q \subset Y$ open, $Q \neq \emptyset$ and $Q \subset f(F_i) \cap f(\bar{S}_j) \cap S$. Let $C = S_i \cap f^-(Q)$ and observe that C is open and nonempty. For any $c \in C$ we have $Q \cap f(c) \neq \emptyset$, hence there exists $z \in Q \cap f(c)$. Since $Q \subset f(F_i)$, we can find $b \in F_i$ such that $z \in f(b)$. We use now the fact that $f(b) \cap f(c) \neq \emptyset, c \in S_i, b \in F_i$, to see that $b = c$, and this implies that $c = b \in F_i$.

Since we used an arbitrary point $c \in C$, we proved that $C \subset F_i \subset B_f \cap S_i$. From the definition of F_i , we conclude that f is injective on F_i , hence f is injective on C , and since C is open, $C \neq \emptyset$, then $C \cap B_f = \emptyset$, what represents

a contradiction, since $C \subset B_f \cap S_i$. It results that $f(B_f)$ cannot contain an open, nonempty set, hence $\text{int } f(B_f) \neq \emptyset$, q. e. d.

COROLLARY 3. *Let X be a locally compact space with a countable base, Y a locally compact or a complete metric space, $f : X \rightarrow Y$ a multivalued function such that f is continuous, strongly open, $f(x)$ is closed for every $x \in X$ and there exists $H \subset Y$ of the first Baire category in Y such that for every $y \in Y \setminus H$, either $f^-(y)$ is empty, or for every $\alpha \in f^-(y)$ there exists $U_\alpha \in V(\alpha)$ such that $f^-(f(\alpha)) \cap U_\alpha = \{\alpha\}$. Then $\text{int } f(B_f) = \emptyset$.*

COROLLARY 4. *Let X be a locally compact space with a countable base, Y a locally compact or a complete metric space, $f : X \rightarrow Y$ a multivalued function such that f is continuous, discrete, strongly open and $f(x)$ is closed for every $x \in X$. Then $\text{int } B_f = \emptyset$ and $\text{int } f(B_f) = \emptyset$.*

Acknowledgements. I wish to thank the referee for his remarks.

References

- [1] M. Cristea, *Some conditions of local injectivity*, Rev. Roumaine Math. Pures Appl. 33, 1-2, (1988), 27-30.
- [2] P. Maritz, *The interiority of a multifunction*, Questiones Math., 15, (1992), 73-104.
- [3] S. Stoilow, *Des sous-ensembles sur lesquel une transformation continue d'un espace est transformation intérieure ou topologiques*, Disquisitiones Math. Phys. 1, (1940), 23-28.
- [4] J. Väisälä, *Discrete open mappings on n -manifolds*, Ann. Acad. Sci. Fenn., Ser A1, Math. 392, (1966), 1-10.
- [5] J. G. Borisowic, B. G. Gelman, A. D. Myškis, V. V. Obukhovskij, *Introduction in the Theory of Multivalued Mappings*, (in Russian).

UNIVERSITY OF BUCHAREST
 FACULTY OF MATHEMATICS
 Str. Academiei 14, R-70109
 BUCHAREST, ROMANIA

Received May 26, 1997.