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ON THE BEHAVIOUR OF RATIONAL FIRST ORDER
DIFFERENCE EQUATION WITH
CONSTANT COEFFFICIENTS

In this note we consider difference equations with constant coefficients
of the form

(E1) Tyy = ar, +b

_czn+d’ ne€N

where a,b,c,d € R are such that

K=

a b
. d}#O and ¢ #0.

Here by N, R we denote set of positive integers or real numbers respectively.

We prove that almost each of the trajectories (except countable set of
finite trajectories) tends to one of stationary points.

This work is motivated by the results contained in the monograph Ko-
cic and Ladas [5], where the authors based on the paper [3] have presented
asymptotic properties of solutions of Riccati equations. As it is noticed in [3]
(see also papers quoted therein), Riccati equations appear in mathematical
biology, optics, chemistry, and are applied in other branches of mathematics.
Therefore, we have decided to present correct results on asymptotic proper-
ties of solutions of this equation. Our results are similar (not the same!) to
these contained in [5], furhermore we have to notice that proofs contained
in [5] are not correct because of wrong formulas for general solution of (E1)
(Theorem A.1 (f) and essential applications of it in Theorems A.3, and A .4).
(Also the result for Riccati equation with variable coefficients contained in
Theorem A.3 are not correct because of the same mistake. This will be
shown in separated paper).

The case of (E1) for which k = 0 leads to the equation 2,41 = %, n € N
while for ¢ = 0 to the equation z,4; = Sz, + %, n € N which is well
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described in several monographs devoted to difference equations e.g. [4],
some asymptotic properties can be found in [1], and so we shall not consider

it here.
Notice that if ¢ # 0, then (E1) can be transformed to the form

a, -5
= - e .
Tntl = + - %
Therefore, instead of studying (E1), we can examine
14
(E2) a:n+1=a+ m, n € N. )

Before we present main result related to (E1), we consider its particular

cases. We start with the case
. B

E ntl = , N.
(E3) Tnt1 a+mn+a n €

DEFINITION. (see [2]) Let {w,}32, be a sequence of elements of some
set X and {X, : v € I'} be any family of disjoint subsets of X (that is
X;NX,=0forall 7,0 € T, 7 # o). We say that this sequence oscillates in
relation to the family X, if

Vyerl H{nyk}iz :VEEN w,, , € X,.

We can suppose that U, ¢ p Xy = X.

For periodic (regular) oscillation between family of sets (that is in the
case all {An, x}52,,7 € I are periodic (regular type) sequences) we can say
about the cycles that is the string of m = 3°_ ;. 7, consecutive elements of
the sequence {w,}5%;, where 7, is the fundamental period of the sequence

{Anqy e}z,
X., — semicycle consists of these consecutive terms of the cycle for which
wn € Xy,

The number o such that w,_; € X, (if any), wn, Wnt1,**, Wnto-1 €
Xy, and wpy, € X, we will call the measure of X, — semicycle (in the
point n).

LEMMA 1. Let a, € Ry. Then every solution z = {z,}52, (defined on
the set N) of (E3) tends to /a2 + §.

Proof. Notice at first that the function

Hz) = ot

T+ a
is defined on R\ {—a} and possesses two stationary points

Ty =-val+ B, Ty=+a+p.
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If 2, = 1 or zx = T, for some k € N then z, = Z; respectively z, = 7
for all » > k. Furthermore if z; = —o then zx4; does not exist. That is
this solution consists of finite k terms and vanishes starting from n = k + 1.
Such type of solutions are excluded from our considerations in this lemma.

Let us denote :
= (—007‘51)7 D2 = (El’—a)’ D3 = (_aa_fZ)’ D4 = (ZEZ’OO)’

furthermore

Dy, = (—00,—01—2—%), Dyp = (—a—%,fl),

D31 =(-a,0), D3; = (a,T2).

Examining the function ¢(z) on the sets D; one can observe that
(r1)  ¢(D1) C Dy U D3y,
(12)  #(D2) C Dy,
(1‘3) ¢(D3) C D4,
(1‘4) ¢(D4) C D3,2.

We prove (r4) (proofs of the rest relations are similar).

Let z € Dy, then

1 N 1
To+a z4+a’

0<Ty+a<z+a yilds

and consequently

_ B -
d(z)=a+ +a<a+fg+a—m2'
Suppose that ¢(z) < a. This can be written as a + _i— < a. Therefore

f < 0, however it is impossible because z + a > 0 and B > 0. Conse-
quently ¢(z) > a. The relation (r4) is proved.
The next function we have to consider is

Pa) = o) = ot iy =k
r+o

The domain of the function ¢ is the set R \ {~a}. Therefore ¥ does not

exist for £ = —a. As the composition ¢ o ¢ of two functions ¢, the function
¥ does not exist also when ¢(z) = —a. Solving the equation
(1) w=a+z+ia, forw # a

with respect to z, we obtain

(2) zzw

w—-u



408 E. Magnucka-Blandzi, J. Popenda

and this solution is unique. Solving (1) for w = —a we obtain from (2)
z=—a— 3.
In the considered case o, 8 € R4, there is
—a— 2 <7.
« 2% 1

Following above, the domain of the function ¥ is R\ { — a — 5%, —a}. The
function ¥ can be transformed to the form

B(z + a)
202 +2az + 8’
It can be checked that the function ¥ possesses the only 71,7, as stationary
points. Furthermore
(ml) =z < ¥(z)forze DyUD3U Dy,
(m2) =z >¥(z)forze€ DiyU Dy
We show condition (m1) for z € Dy U D3. For z € Dy U D3 we have z? <
a® + . From there (because @ > 0 ) we obtain

20z? < 203 + 2a8,

2az? 4 20’z + Pz < 203 4 208 + 202z + Bz,

U(z)=a+

that is

(3) z(20z + 20¢? + B) < a(2az + 20% + B) + B(z + ).

On the other hand for £ € Dy U D3 thereis z > —a — -2'%, from there we get
4) 2az + 20 + >0

Combining (3) with (4) we have

202 + 20z + 0
that is (m1), in the case £ € Dy U Ds.

In the rest of the proof we will examine solutions with initial point z; in
each of the sets D;.

(pl) Let 2y € Dy.

Then by (r4) and (r3) we have 23 € D3 9,23 € D4. Consequently by (m2)
z3 < z1. Following this way, we get zox4+1 < k-1 for all £ € N. Moreover,
Dy > 295-1 > T3. Therefore, the sequence {z2x-1}%>, is decreasing and
bounded from below by Z3, hence convergent to some g > Z,. Let us observe
that since z3x41 = ¥(z2k—1), the limit g has to be stationary point of the
function ¥. The only such a point in [Eg,oo) is Ty, 50 g = Ty. Since zgx-1 €
Dy then 25, € D3 for all k € N, by (r4). Furthermore, by (m1) there is
Tokya > ok for all k € N. This yields the sequence {z3x}%2, is increasing

r<a+t
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and bounded from above by Z, hence convergent to some g € (o, T;]. Again
from equality Zzx42 = P(Z2x), continuity of ¥ on the set (o, Z2] we deduce
that ¢ = T3. The lemma for the case z; € D4 has been proved.

(p2) Let z, € D3.
Then by (13) we have z3 € Dy and we come back to the case (pl) with

Dy > z3x > T2k42 — T2y, D32 D Tapy1 < Tagys = T2, kEN.

(p3) Let zy, € D;.

Then by (rl) z3 € Dy, 22 € D3 or 3 = —a.

Ty = —a leads to the finite trajectory (this holds if z; = —a — -2%),

z2 € D31 leads to the just considered case (p2),

zy € D, leads by (r2) to z3 € D; and we come back to the starting
position with z3 instead of z;.

Following this, by (r1) and (r2) three possible cases should be considered:

(p3,1) z2x = —o for some k € N which gives finite trajectory, out of our
considerations,

(p3,2) =zax € D3, for some k € N which in turns leads to the case (p2)
and hence gives a solution convergent to stationary point Z,

(p3,3) the solution {z,}5%, oscillates between the sets D; and D, and
measures of Dj-semicycle and D;-semicycle are equal 1.

Because of properties we have observed above, we need to study the case
(p3,3).

Since z3 € D, then z9; € D, for all k¥ € N. Furthermore, by (m1),
Tor < Tok+2 What means that the sequence {z24}%2, is increasing and
bounded from above by —o and hence convergent to some g € (7, —al.
Suppose that 22, —» —a as n — oo Then from the equality

B
a+(a+—z—2-’i_{_La)

Tont2 = ¥(22n) =+

we obtain lim, o To,4+2 = —a, while
. B ) : ( B >
lim (a + = lim (a+ —F———— ) =a.
e\ T e ) T T e )
This contradiction shows that the relation ¢ = —a is impossible. If g # —«

then the continuity of the function ¥ yields that g has to be stationary point
of ¥. However, in the interval we consider such a point does not exist.

The case (p3,3) can not hold. So the only possible for the solution defined
on the whole N is (p3,2).

(p4) Let zy € D,.
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Then by (12) z; € D; and we come to the case (p3) with z; instead of z;.
This completes the proof.

REMARK 1. In Lemma 1 we do not consider finite trajectories. However
considering the initjal value problem (related to (2)):

2
a - aw
wn+1 — ._L’ n e N
Wy — Q@
w = —«
by (rl1),(r2),(m1),(m2) we obtain {D; 2, D;}-oscillating infinite sequence
with the property
Iim w, =T
n—oo
and such that the trajectory of the equation (E3) starting from the point
wy, is finite and consists of & terms.

LEMMA 2. Let a € Ry, B € R_, o® + 3 > 0. Then every solution = =
{zn}2, (defined on the set N) of (E3) tends monotonically to \/a? + 3.

Proof. In this case let us denote by
Dy = (-00,~a), D; =(~a,71), D3 =(%1,%2), Dy = (T2,00).
As in Lemma 1 the stationary points of the function ¢(z) = o + Ef_a are
Zi= -Vl +8, Tp=+a?+4.
We can check that now
(6)  #(D1) C Dy, ¢(D2) C D1U Dy, ¢(D3)C D3, ¢(D4)C Dy.

Furthermore,

(6) x> ¢(z) for z € Dy and = € Dy,
(7) z < ¢(z) for z € Dj.

Let z = {z,}52, be a solution of (E3) such that

(pl) =z € Dy.

Then by (5) and (6) this solution is strictly decreasing and bounded from
below by Z;. Hence convergent. As in the proof of Lemma 1 we can show
that lim,_coTrn = To. Now let

(p2) z1 € Dyq.

Then by (5) z; € D4 and we return to the case (pl) with z; instead of z;.
Therefore in this case lim,_,o Z, = T2. Let

(p3) z1 € Ds.
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Now, by (5) and (7) the sequence {z,}32, is increasing and bounded from
above by T,. Hence also convergent. It can be shown that lim, .o, 2 = 7.
Finally let

(p4) 1€ Ds.
For infinite solution {z,}3%, by (5) we have two possibilities:

(p4,1) zp,€DyforallnéeN,
(p4,2) there exists k € N such that z; € D;.

In the case (p4,1), by (6), the sequence {z,}32, is decreasing, bounded from
below by —a and hence convergent to some g € [~a,Z1). The limit can not
be —a because we would have

—a= lim 2,41 = lim ¢(z,)= lim ¢(z)=—-o0
n—oo n—oo T —0y

what is a contradiction. The limit can not be any other number from [~a, Z;)
because this would lead to the fact that ¢(z) possesses stationary point in
(—a, %), what is not true. So (p4,2) holds but this gives the case (p2) with
z), instead of z;.

LEMMA 3. Let o € R_, B € Ry. Then every solution {z,}32, (defined
on the set N) of (E3) in the oscillating mode tends to —\/a? + (3.

LEMMA 4. Let a,3 € R_, o + 8 > 0. Then every solution z = {z,}2,
(defined on the set N') of (E3) monotonically tends to —v/a? + §.

However, this is not the case we consider in this paper, we give one
example of the asymptotic properties of the solutions of (E3) in the case
a’ 4+ 8 < 0, to show different type of the behaviour.

LEMMA 5. Leta € Ry, S € R_, o® + 3 < 0. Then every trajectory of
(E3) is finite or non-convergent, infinite { D1, D }-oscillatory, where Dy =
(—00,—a), D2 = (—a,). The measure of eacheD;-semicycle is equal 1,
and moreover supy >.l|zk| — |zi]| > 2a for all n € N.

Proof. In this case the inequality 22 — a? — 8 > 0, which holds for all
z € R, gives
(8) z>¢(z) ifz>-—a,

< P(z) ife<-o.
Furthermore, ¢ ((—00, —a)) C (e, ).

Therefore, if for some term ) of the solution {z,}52, there is z; <
—a, then zx4; > . Suppose that z, € (—a,00) for all n > k. Then, by
the condition (8), the sequence {2}, , is decreasing and bounded from
below. Hence convergent to some g € [ - a, oo). However this leads to the
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contradiction
~a = Jim onsn = fim ¢(an) = lim ¢(e) = —o0

or states that the function ¢ possesses stationary point what is not true.
Hence, for some [ > k + 1 there is 2; < —a and so on.
REMARK 2. Generalizing the observations from Remark 1 we can say
that solving the initial problem
2
wnyy = LBz oy
W, —
w = —a,

we obtain countable set of points which are initial points for finite trajec-
tories of (E3). The trajectory starting at point wj consists of k terms and
T = —aQ.

For the sequence {wy,}.., we have

lim w, = —v/a? + [ (in the case a > 0),

lim w, = v/a?+ 3 (in the case a < 0).
n—0o0

REMARK 3. Notice, that if § # 0, the two stationary points of the

function ¢(z): Ty = —\/a? + B, T = y/a? + 3 form constant solutions of
(E3), that is the sequences

zn:'—Vaz'*';B’ n€N,
T, =vVa*+83, neN

are solutions of (E3). If & = 0, then every solution of (E3) (except for
the case z; = 0 which leads to finite trajectory) is 2-periodic sequence
{xl, B/x1, 21,8/, - - - } Basing on Lemmas 1-4 we can obesrve the follow-
ing bifurcation phenomena passing over zero on the a — axis. If

a < 0 then each infinite (nonconstant) solution is attracting by left
stationary point Zi;

o = 0 then T, lose his attractive property and each solution stay 2-
periodical;

a > 0 then each (nonconstant) solution stays attracting by the right
stationary point Z5.

Let us observe that any solution of the equation

B

Tp+a

(Ek) Tnyk =+ , n€N,
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where k is arbitrary but fixed positive integer can be considered as the
composition of k£ independent solutions of equations

B
Yin + o
where yin = Ti4(n—1)k and all {y;n};_; are infinite sequences if infinite is
the solution z = {z,}52,. Basing on the above remarks and Lemmas 1-4
we can prove :

THEOREM 1. Let a,3 € R\ {0} be such that o + 3 > 0. Then every
solution z = {2, }52, (which has no nonconstant subsequences and is defined

on the set N) of (Ex) tends to sgn(a)y/0? + .
REMARK 4. The case a = 0, § # 0, leads to 2 k-periodic solutions of
(Ex), while 8 = 0 to constant solutions. In the general case (Fj) possesses

solutions which has constant subsequences equal to one of stationary points

and the rest which tends to sgn(a)+/a? + 3.
Now we turn our attention to the equation (E2).

THEOREM 2. Let @, 3,6 € R be such that 8 # 0, (a+6)% +48 > 0. Then
every nonconstant solution z = {xn}:ozl (defined on the set N') of (E2) has
the property

lim z, = (a—;—6+sgn(a+6)%\/(a+6)2+4ﬂ) ifat+é#0,

n—o00

Yint1 = 0+ , mE€N,i=1,...,k

z is 2-periodic ifa+é=0.

Proof. Let 2 = {2,}72; be any solution of (E2). Then the sequence
y = {yn}7Z, defined by

a-—2§6
(9) Yn = Ty — 2
is defined for all n € N and satisfies the equation
(10) =G+ bz, neN
where a = %6. Let us observe that
- +6\° 1
& +p= (a2 ) +8= Z((a+6)2+4ﬂ)>0'

If a + é # 0 then a # 0 and all assumptions of the Theorem 1 are satisfied
(in relation to the equation (10)). Therefore

. ~ = 1
nh—vnéo yn = sgn(a)v/a? + 8 = sgn(a + 6)5 (a+6)2+4p

and our result follows from (9).
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If a+ 6 = 0then @ = 0 and we have the equation yp41 = -yé"- which
corresponds to the equation 2,41 = a+ —L Now by Remark 4 we see that
y is 2-periodic sequence, what by (9) ylefds that z, = yn + o is 2-periodic
as well.

To get the result for (El) it suffices to put in (E2)

d
= = — 6= -
7 ﬂ Cz 7 ¢ ?
and we obtain the following theorem.

THEOREM 3. Let a,b,c,d € R be such thatc # 0, k # 0, (a+d)?—4x > 0.
Then every (nonconstant) solution x = {z,}32, (defined on the set N) of
(E1) has the property

im z, = (a_d +sgn(a+d) \/(a—i-d)z 4n) ifa+d#0,
z is 2-periodic ifa+d=0.
REMARK 5. In [3] Brand has considered (E1), and has presented results
on asymptotic behaviour of the solutions of equation

q
(E4) Ynt1 =P — —

Yn
to which (El) can be transformed putting p = 2%, ¢ = % and substituting
Tp = Yn — 2. Next, using Riccati substitution y, = -—:—;ﬂ he has got second

order hnear dlfference equation 2,42 ~ pZn41 + ¢zn = 0, which in the case
p’ + 4q # 0 has general solution of the form z, = C1A} + CyA}, where
C1,C, are arbitrary constants and A;, A, different roots of the respective
characteristic equation. Consequently general solution of (E4) can be written
as follows
n+1 n+1
(1) o= SA L
1AT + CoA]

Using the above formula Brand has studied asymptotic properties of (E4)
(also in the case p? + 4¢ < 0). The error made by Kocic and Ladas in [5]
consists in this, that (11) does not valid for (E1), and should be modified
for (E1). Namely, we have the following. If ¢ # 0 and (a +d)? — 4k # 0, then
the general solution of (E1) can be presented in the form

(/\IC - d)CI/\? + (}\26 had (1)0’2)\;1

CCl /\il + 602)\9’ ’
Formula (12) gives the same solution of (E1) starting from the given z; each
time Cp,C> are taken such that

(Me—d—=cz1)C1 + (Ae—d —cz1)Cy = 0.

(12) Tp = n € N.
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ExaMPLE. Consider the equation

4
= e N.
Tntl 4+$ _1’ n e

n
Let us observe that all conditions of Theorem 2 are satisfied. Therefore, we
get because of o + § =4 — 1 # 0, that every solution defined on N has the
asymptotic behaviour

lim z, = (aT—é + sgn(a + 6)%\/(a + 6)? + 4ﬂ)

- (%Jrsgn@—n% (4-1)2+4.4) _

Let us quote part a) of Theorem A.4 from [5 p.182].

“Consider the Riccati difference equation with constant coefficients z 44
= g:,.+3’ where @, b, ¢, d are real numbers such that ad — bc # 0 and ¢ # 0.
Let A\; and A, be the roots of the quadratic equation A2 —pA—q = 0, where p
and q are given by p = d+a and q = bc — ad. Then the following statements

are true:
(a) If Ay and A, arereal and either |A;| > |A2] or Ay = Ag thenlim, o 2,
=M. (A.22)
Let us transform our equation to the form (E1) (considered by Kocic
and Ladas):
4z,
zn—1"

(13) Tntl —

Here a =4,b=0,c=1,d = —1. Notice that all assumptions of the above
quoted statement are satisfied. The characteristic equation has the form

A —3X—4=0, and roots A\; =4, = —1.
Therefore, by the quoted theorem there is
(14) lim z, =4.

n—oo

However it is impossible because if z = {z,}32, is any solution of (13) and
(14) holds, then left hand side of equality (11) tends to 4, while the right
hand side to %. In the considered example A; = 2. Let us observe that in
this case our formula (12) gives

o = (a -d)Ci(a/c)*  (a—d)Cra™
" eCi(a/c)® + cCa(d/c)™  cCra™ + cCad®

because then A; = ¢, so for (13) we have
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L __arnee
r Ci4m + Cz(—l)"‘
which coincides with the result obtained by Theorem 2.
The constant solution z, = 0 for all » € N is related with stationary
points which for (E2) (in the case (a + §)% + 48 > 0) are defined by

-6 1 -§ 1
1= e - V(@ + 807 +4, Fr="s-+5/(a+oP +4B.

2

— 5, for C; #0
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