
DEMONSTRATE MATHEMATICA 
Vol. XXXI No 2 1998 

E. Magnucka-Blandzi, J. Popenda 

ON THE BEHAVIOUR OF RATIONAL FIRST ORDER 
DIFFERENCE EQUATION WITH 

CONSTANT C O E F F I C I E N T S 

In this note we consider difference equations with constant coefficients 
of the form 

El s n + 1 = ^ L j _ n e N cxn + a 
where a, b, c, d € R are such that 

a b 
c d K = ^ 0 and c / 0. 

Here by N, R we denote set of positive integers or real numbers respectively. 
We prove that almost each of the trajectories (except countable set of 

finite trajectories) tends to one of stationary points. 
This work is motivated by the results contained in the monograph Ko-

cic and Ladas [5], where the authors based on the paper [3] have presented 
asymptotic properties of solutions of Riccati equations. As it is noticed in [3] 
(see also papers quoted therein), Riccati equations appear in mathematical 
biology, optics, chemistry, and are applied in other branches of mathematics. 
Therefore, we have decided to present correct results on asymptotic proper-
ties of solutions of this equation. Our results are similar (not the same!) to 
these contained in [5], furhermore we have to notice that proofs contained 
in [5] are not correct because of wrong formulas for general solution of (El) 
(Theorem A.l (f) and essential applications of it in Theorems A.3, and A.4). 
(Also the result for Riccati equation with variable coefficients contained in 
Theorem A.3 are not correct because of the same mistake. This will be 
shown in separated paper). 

The case of (El) for which K = 0 leads to the equation xn+i = n G N 
while for c = 0 to the equation a;n+i = f^n + 3, « € N which is well 
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described in several monographs devoted to difference equations e.g. [4], 
some asymptotic properties can be found in [1], and so we shall not consider 
it here. 

Notice that if c ^ 0, then (El) can be transformed to the form 

Zn+i = - + 
_ K a . 

d 1 
C *n + 7 c 

Therefore, instead of studying (El), we can examine 

(E2) £n+i = a H ~TT> n e N . 

3-n "t" ® t 

Before we present main result related to (El), we consider its particular 
cases. We start with the case 
(E3) x n + i = a +' — — , n e N . 

z n + a 
D e f i n i t i o n , (see [2]) Let { 1 0 « } ^ ! be a sequence of elements of some 

set X and {X7 : 7 G T} be any family of disjoint subsets of X (that is 
XT fl Xa = 0 for all r, a G I \ r ^ <7). We say that this sequence oscillates in 
relation to the family X 7 if 

V7 € r 3{nlik}?=1 : V ke N wn^k € X 7 . 
We can suppose that U € r X 7 = X. 

For periodic (regular) oscillation between family of sets (that is in the 
case all { A n ^ ^ } ^ ^ € T are periodic (regular type) sequences) we can say 
about the cycles that is the string of m = i"7 consecutive elements of 
the sequence where r 7 is the fundamental period of the sequence 

X-y — semicycle consists of these consecutive terms of the cycle for which 
wn G X 7 . 

The number a such that € X1 (if any), wn,wn+1, • • - ,tt;n+<7_i G 
X 7 , and w n + a £ X 7 we will call the measure of X 7 — semicycle (in the 
point n). 

L e m m a 1. Let a,¡3 G R+- Then every solution x = { i n J ^ j (defined on 
the set N) of (E3) tends to y/a2 + ¡5. 

P r o o f . Notice at first that the function 

<j)(x) = a + — 
x + a 

is defined on R \ {—a} and possesses two stationary points 

xi = -y/a2 + /?, x2 = \J o? + ¡3. 
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If Xk = X\ or Xk = X2 for some k G N then xn = x\ respectively xn = x2 
for all n > k. Furthermore if Xk = - a then Xk+i does not exist. That is 
this solution consists of finite k terms and vanishes starting from n = k + 1. 
Such type of solutions are excluded from our considerations in this lemma. 

Let us denote : 

D\ = (—00,5Fi), D2 = ( x 1 , - a ) , D3 = ( - a , x 2 ) , D4 = (x2,oo), 

furthermore 

•03,1 = (-">")> D3t2 = (a,x2). 

Examining the function <f>(x) on the sets D{ one can observe that 

( r l ) <f>(D1)cD2UD3il, 

(r2) <¿(£>2) C Du 

( r 3 ) <j>(D3) C X>4, 

( r 4 ) <f>(D4) C D3i2. 

We prove (r4) (proofs of the rest relations are similar). 
Let x G Di, then 

„ 1 1 
0<X2 + a < a ; + Q: yields — > x2 + a x + a' 

and consequently 

, n , P ^ , P -
<p{x) = a H — < a + -—•— = x2. 

x + a x2 -f a 

Suppose that (f>(x) < a. This can be written as a a. Therefore 
< 0, however it is impossible because x + a > 0 and /? > 0. Conse-

quently <j>{x) > a . The relation (r4) is proved. 
The next function we have to consider is 

= <f>(<f>(x)) - a + ^-¡-^r = a + ^ 
a + 4>{x) a + ( a + _ | _ ) -

The domain of the function (f> is the set R \ {—a}. Therefore does not 
exist for x = —a. As the composition <f> 0 <f> of two functions <j>, the function 
& does not exist also when <p(x) = —a. Solving the equation 

(1) w — a-\ ——, for w ^ a 
z • f a 

with respect to z, we obtain 

(2) z = a i + P - a w 
w — a 
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and this solution is unique. Solving (1) for W = -A we obtain from (2) 

In the considered case a,/? G R+, there is 

Following above, the domain of the function W IS R \ { — A — —a}. The 
function 9 can be transformed to the form 

R/ X P(X + A) 

It can be checked that the function possesses the only X\, x2 as stationary 
points. Furthermore 
( m l ) X < V(X) for i g D j U D j U D1A, 
(m2) X > &{X) for X G DLT2 U D4. 

We show condition (ml) for X € D2 U D3. For X £ D2U D3 WE have X2 < 
A2 + ¡3. From there (because A > 0 ) we obtain 

2AX2 < 2A3 + 2a/3, 

LAX2 + 2A2X + FIX < 2A3 + 2A/3 + 2A2X + FIX, 

that is 
(3) X(2AX + 2A2 + ¡3) < A(2AX + 2A2 + 0) + FI(X + A). 

On the other hand for X E D2L)D3 there is X > —A — from there we get 

(4) 2 AX + 2A2 +/3>0 

Combining (3) with (4) we have 
(3(X + A) T. . 

X <A + ^-P-Z =• = P(Z) 
2A2 + 2AX + /3 V ; 

that is (ml), in the case X G D2 U D3. 
In the rest of the proof we will examine solutions with initial point x\ in 

each of the sets D{. 
(pi) Let X\ G D4. 

Then by (r4) and (r3) we have X2 € -03,2,^3 € D4. Consequently by (m2) 
x 3 < »1. Following this way, we get X2K+I < X2K-I for all K G N. Moreover, 
Di 3 x2k~\ > x2. Therefore, the sequence {z2fc-i}fcLi is decreasing and 
bounded from below by X2, hence convergent to some G >X2. Let us observe 
that since X2K+I = }P(X2K-I), the limit G has to be stationary point of the 
function W. The only such a point in [X2,00) is X2, so G = X2. Since x2fc_i G 
D4 then x2k G .£3,2 for all K G N, by (r4). Furthermore, by (ml) there is 
^2fc+2 > X2K for all K G N. This yields the sequence {x2fc}fcLi ¡ s increasing 
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and bounded from above by x2 hence convergent to some g G (a , Again 
from equality x2k+2 = continuity of W on the set ( a ,x 2 ] we deduce 
that g = x2. The lemma for the case x\ G jD4 has been proved. 

(p2) Let X! G D3. 

Then by (r3) we have x2 G D4 and we come back to the case (p i ) with 

D4 3 X2k > X2k+2 X2, Z>3)2 9 x2k+l < X2k+3 X2, k £ N. 

(p3) Let xi G D\. 

Then by ( r l ) x2 G D2,x2 G -03,1 or x2 = - a . 
= —a leads to the finite trajectory (this holds if x\ = —a — 

£2 G 03,1 leads to the just considered case (p2), 
x2 G D2 leads by (r2) to £3 G -Di and we come back to the starting 

position with £3 instead of x \ . 

Following this, by ( r l ) and (r2) three possible cases should be considered: 

(p3,l) x2k = —a for some k G N which gives finite trajectory, out of our 
considerations, 

(p3,2) x2k G D3 ,i for some k G N which in turns leads to the case (p2) 
and hence gives a solution convergent to stationary point x 2 , 

(p3,3) the solution oscillates between the sets D\ and D2 and 
measures of Di-semicycle and ZVsemicycle are equal 1. 

Because of properties we have observed above, we need to study the case 
(p3,3). 

Since x2 G D2 then x2k G D2 for all k G N. Furthermore, by (ml ) , 
x2k < %2k+2 what means that the sequence {x2k}kLi increasing and 
bounded from above by —a and hence convergent to some g G (xi , —a]. 
Suppose that x2n —»• —a as n —• 00 Then from the equality 

T , \ P 
X2n+2 = #(X2n) = « + ¡3 7 

we obtain l i m « - ^ x2n+2 = —a, while 

= a . 

This contradiction shows that the relation g — —a is impossible. If g ^ —a 
then the continuity of the function W yields that g has to be stationary point 
of However, in the interval we consider such a point does not exist. 

The case (p3,3) can not hold. So the only possible for the solution defined 
on the whole N is (p3,2). 

(p4) Let xi G D2. 
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Then by (r2) x2 G D\ and we come to the case (p3) with x2 instead of Xi. 
This completes the proof. 

R E M A R K 1. In Lemma 1 we do not consider finite trajectories. However 
considering the initial value problem (related to (2)): 

a2 + ¡3 - awn 
Wn+1 = , n G N wn-a 

w\ = —a 

by (rl),(r2),(ml),(m2) we obtain {-Di,2, -D2 }-oscillating infinite sequence 
with the property 

lim wn = x\ n-t- 00 

and such that the trajectory of the equation (E3) starting from the point 
Wk is finite and consists of k terms. 

L E M M A 2 . Let a G R+, /? G R-, a2 + ¡3 > 0 . Then every solution x = 
{ a ^ } ^ ! (defined on the set N) of(E3) tends monotonically to y/a2 + /3. 

P r o o f . In this case let us denote by 

D\ = ( -00, —a), D2 = ( - a , x i ) , D3 = (xi,x2), D4 = (x2,oo). 

As in Lemma 1 the stationary points of the function <f>(x) — a + are 

X! = —y/a2 + ¡3, x2 = y/a2 + p. 

We can check that now 

( 5 ) ¿ ( A ) C £ > 4 , <j>(D2)cD1UD2, <I>{D3)CD3, <^(Z>4) C D4. 

Furthermore, 

(6) x > <f>(x) for x £ D2 and x G D4, 

(7) x < (f>(x) for x G -D3. 

Let x — { in}^-! be a solution of (E3) such that 

(pi) X\ G D4. 
Then by (5) and (6) this solution is strictly decreasing and bounded from 
below by x2. Hence convergent. As in the proof of Lemma 1 we can show 
that limn->ooXn = x2. Now let 

(P2) X! G £>1. 

Then by (5) x2 G D4 and we return to the case (pi) with x2 instead of x\. 
Therefore in this case limn^oo xn = x2. Let 

(p3) X l G D3. 
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Now, by (5) and (7) the sequence { i n } ^ ! is increasing and bounded from 
above by £2• Hence also convergent. It can be shown that l im^oo xn = £2. 
Finally let 
(p4) £1 € D2. 

For infinite solution {£n}£Li by (5) we have two possibilities: 
(p4,l) xn e D2 for all n € N, 
(p4,2) there exists k € N such that £* € D\. 
In the case (p4,l), by (6), the sequence {£n}^_1 is decreasing, bounded from 
below by —a and hence convergent to some g G [—a,£j). The limit can not 
be —a because we would have 

what is a contradiction. The limit can not be any other number from [—a, x\) 
because this would lead to the fact that <f>(x) possesses stationary point in 
(—a,£i), what is not true. So (p4,2) holds but this gives the case (p2) with 
Xk instead of x\. 

LEMMA 3. Let a € R-, ¡3 E R+. Then every solution {xn}^=1 (defined 
on the set N) o/(E3) in the oscillating mode tends to 

LEMMA 4. Let a,(3 G R-, a2 + / ? > 0. Then every solution x = { £ n } ^ = i 
(defined on the set N ) o/(E3) monotonically tends to —\Ja2 + (3. 

However, this is not the case we consider in this paper, we give one 
example of the asymptotic properties of the solutions of (E3) in the case 
a 2 + (3 < 0, to show different type of the behaviour. 

LEMMA 5. Let a E R+, P € R-, a2 + f3 < 0. Then every trajectory of 
(E3) is finite or non-convergent, infinite {Di, D2}-oscillatory, where D\ = 
(—00,— a), D2 = (—a, 00). The measure of eachtD\-semicycle is equal 1, 
and moreover stii>fc,/>n||®fc| — > 2a for all n £ N. 

P r o o f . In this case the inequality x2 — a2 — ¡3 > 0, which holds for all 
£ 6 R, gives 

Furthermore, <£((—00,— a)) C (a, 00). 
Therefore, if for some term xk of the solution there is x^ < 

—a, then £*+i > a . Suppose that xn € (—a, 00) for all n > k. Then, by 
the condition (8), the sequence {xn}'^=k+l is decreasing and bounded from 
below. Hence convergent to some g 6 [ — a, 00). However this leads to the 

—a = lim £n+i = lim <f>(xn) = lim <f>(x) = —00 

(8) 
f £ > (}>{x) 
\ X < <j>(x) 

if £ > —a, 
if x < —a. 
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contradiction 

- a = lim x n + i = lim <f>(xn) = lim <j>(x) = —oo n—*oo n—*oo x—* — a+ 

or states that the function <j> possesses stationary point what is not true. 
Hence, for some I > k + 1 there is xi < —a and so on. 

REMARK 2. Generalizing the observations from Remark 1 we can say 
that solving the initial problem 

a2 + ¡3 - awn wn+1 = ne N, 
wn- a 

Wi = —a, 

we obtain countable set of points which are initial points for finite trajec-
tories of (E3). The trajectory starting at point Wk consists of k terms and 
xfc = -a. 

For the sequence {w n }~ = 1 we have 

lim wn = —y/a2 + (3 (in the case a > 0), 
71—• OO 

lim wn — y/a2 + f3 (in the case a < 0). 
n—• oo 

REMARK 3. Notice, that if ¡ 3 ^ 0 , the two stationary points of the 
function (j>{x): x\ = — -y/a2 + x2 = y/a2 + f3 form constant solutions of 
(E3), that is the sequences 

xn = -y/a2 + (3, ne N, 

xn = y/a2 + /?, n e N 

are solutions of (E3). If a — 0, then every solution of (E3) (except for 
the case x\ = 0 which leads to finite trajectory) is 2-periodic sequence 
{ x i , P / x i , x i , / 3 / x i , . . . } . Basing on Lemmas 1-4 we can obesrve the follow-
ing bifurcation phenomena passing over zero on the a - axis. If 

a < 0 then each infinite (nonconstant) solution is attracting by left 
stationary point X\; 

a = 0 then xi lose his attractive property and each solution stay 2-
periodical; 

a > 0 then each (nonconstant) solution stays attracting by the right 
stationary point X2. 

Let us observe that any solution of the equation 

(EFC) xn+k = a + — , neN, %n ~r OL 
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where k is arbitrary but fixed positive integer can be considered as the 
composition of k independent solutions of equations 

Vi,n+i = a + — — . — , n e N, i = 1 , . . . , * 
Vi,n + a 

where yi<n = Zj+(„_i)fc and all {yi,n}n=i a r e infinite sequences if infinite is 
the solution x = { i n } ^ . Basing on the above remarks and Lemmas 1-4 
we can prove : 

THEOREM 1. Let a, (3 € R \ { 0 } be such that a2 + ¡3 > 0. Then every 
solution x = {xn}'^L1 (which has no nonconstant subsequences and is defined 
on the set N ) of (E&) tends to s g n ( a ) y / a 2 + (3. 

R E M A R K 4 . The case a = 0, ¡3 ^ 0, leads to 2 ¿-periodic solutions of 
(E*;), while /3 = 0 to constant solutions. In the general case (Ek) possesses 
solutions which has constant subsequences equal to one of stationary points 
and the rest which tends to sgn(a)y/a2 + /?. 

Now we turn our attention to the equation (E2). 

THEOREM 2. Let a,(3,6 e R be such that ¡3^0, (a + 6)2+4(3 > 0 . Then 
every nonconstant solution x — {iCnj^lj (defined on the set N ) of(E2) has 
the property 

lim xn = ( ^ ^ + sgn (a + ¿ ^ ( a + 6)2 + 4/3 ] if a + S ± 0, 71 —fOO \ ^ ^ / 

x is 2-periodic if a + 6 = 0. 

P r o o f . Let x = be any solution of (E2). Then the sequence 
y = {yn}n.Li defined by 
. . a — S 

Vn ~ ®n 2 

is defined for all n (E N and satisfies the equation 

(10) t / n + 1 = S + — i 6 — , neN 
Vn + a 

where a = Let us observe that 

a2 + (3 — 2 + 0 = i ( ( a + 6)2 + 4/3) > 0. 

If a + 8 ^ 0 then 5 ^ 0 and all assumptions of the Theorem 1 are satisfied 
(in relation to the equation (10)). Therefore 

lim yn = sgn(5)\ /5 2 + (3 = sgn(a + yj(a + S)2 +4/3 
n—t-oo Z 

and our result follows from (9). 
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If a + S = 0 then a = 0 and we have the equation yn+\ = ^ which 
corresponds to the equation x n + i = a + P_a. Now by Remark 4 we see that 
y is 2-periodic sequence, what by (9) yields that xn = yn + a is 2-periodic 
as well. 

To get the result for (El) it suffices to put in (E2) 
a K d 

a = - , 0 = —T' ® = 
c cl c 

and we obtain the following theorem. 

T H E O R E M 3. Let a,b,c,de R be such that c ± 0, K ^ 0, ( a + d ) 2 - 4 K > 0 . 
Then every (nonconstant) solution x — {aJn}^! (defined on the set N) of 
(El) has the property 

lim xn = ( ^ + sgn(a + + d ) 2 - 4 k ) if a + d ± 0, n-+oo \ ¿c Ic ) 
x is 2-periodic if a + d = 0. 

R E M A R K 5. In [3] Brand has considered (El), and has presented results 
on asymptotic behaviour of the solutions of equation 

(E4) yn+1=p-± 
yn 

to which (El) can be transformed putting p = q = and substituting 
xn = yn — Next, using Riccati substitution yn = ^ f ^ , he has got second 
order linear difference equation zn+2 — pzn+1 + Qzn = 0, which in the case 
p2 + 4q 0 has general solution of the form zn = CiA" + C2 , where 
Ci ,C 2 are arbitrary constants and AI,A2 different roots of the respective 
characteristic equation. Consequently general solution of (E4) can be written 
as follows 

(11) « - C i ^ + ft*?*1 

Using the above formula Brand has studied asymptotic properties of (E4) 
(also in the case p2 + 4q < 0). The error made by Kocic and Ladas in [5] 
consists in this, that (11) does not valid for (El), and should be modified 
for (El) . Namely, we have the following. If c ^ 0 and (a + d)2 — 4K ^ 0, then 
the general solution of (El) can be presented in the form 

X n ~ cCxA^ + cCiA? ' 
Formula (12) gives the same solution of (El) starting from the given x\ each 
time C\, C2 are taken such that 

(Aic — d — cxi)Ci + (A2C — d — cxi)C2 = 0. 
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E X A M P L E . Consider the equation 
4 

zn+i=4+ -, neN. 
®n - 1 

Let us observe that all conditions of Theorem 2 are satisfied. Therefore, we 
get because o f a + <5 = 4 - 1 ^ 0 , that every solution defined on N has the 
asymptotic behaviour 

Urn xn = + sgn(a + y / ( a + 6)> + 4p) 
n—*oo \ z Z J 

= + sgn(4 - l ) ^ ( 4 - l ) 2 + 4 - 4 ) = 5. 

Let us quote part a) of Theorem A.4 from [5 p.182]. 
"Consider the Riccati difference equation with constant coefficients xn+\ 

= ^, where o, 6, c, d are real numbers such that ad — be ^ 0 and c ^ 0. 
Let Ai and A2 be the roots of the quadratic equation A2 —pX — q = 0, where p 
and q are given by p = d + a and q — be — ad. Then the following statements 
are true: 

(a) If Ai and A2 are real and either |Ai| > | A21 or Ai = A2 then l i m ^ o o xn 

= Ai. (A.22) 
Let us transform our equation to the form (El) (considered by Kocic 

and Ladas): 

(13) * n + 1 = 
J-n J-

Here a = 4 , 6 = 0 , c = 1 , d = —1. Notice that all assumptions of the above 
quoted statement are satisfied. The characteristic equation has the form 

A2 - 3A - 4 = 0, and roots Ai = 4, A2 = - 1 . 

Therefore, by the quoted theorem there is 

(14) lim xn = 4. 
n—too 

However it is impossible because if x = {a?n}£Li is any solution of (13) and 
(14) holds, then left hand side of equality (11) tends to 4, while the right 
hand side to In the considered example Ai = Let us observe that in 
this case our formula (12) gives 

_ (a - d)Ci(a/c)n _ (a - d)C1an 

Xn ~ cCi(a/c)n + cC2(d/c)n ~ eC\an + cC2dn 

because then A2 = so for (13) we have 
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-> 5, for Ci / 0 

which coincides with the result obtained by Theorem 2. 
The constant solution xn = 0 for all n € N is related with stationary 

points which for (E2) (in the case ( a -f S)2 + 4/3 > 0) are defined by 
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