

Gabriela Kohr

CERTAIN SUFFICIENT CONDITIONS
OF INJECTIVITY IN \mathbf{C}^n

In this paper we obtain some sufficient conditions of injectivity for continuous mappings defined on some domains in \mathbf{C}^n and we give some interesting consequences and examples.

1. Introduction

Let \mathbf{C}^n denote the space of n complex variables $z = (z_1, \dots, z_n)'$ with the Euclidean inner product $\langle z, w \rangle = \sum_{j=1}^n z_j \bar{w}_j$ and the usual norm $\|z\| = \langle z, z \rangle^{1/2}$.

Let I be the identity in the set of all continuous linear operators A from \mathbf{C}^n into \mathbf{C}^n with the standard operator norm $\|A\| = \sup\{\|Aw\| : \|w\| = 1\}$. Also, let B be the Euclidean unit ball in \mathbf{C}^n , which in the case $n = 1$ is denoted by U and it is called the unit disc. The symbol ' denotes the transpose of vectors and matrices and if $A = [a_{ij}]_{1 \leq i, j \leq n}$, $a_{ij} \in \mathbf{C}$, then we denote by \bar{A} the conjugate of matrix A , i.e. $\bar{A} = [\bar{a}_{ij}]_{1 \leq i, j \leq n}$. On the other hand, if $z = (z_1, \dots, z_n)' \in \mathbf{C}^n$, then $\bar{z} = (\bar{z}_1, \dots, \bar{z}_n)'$.

If D is a domain in \mathbf{C}^n and $f = (f_1, \dots, f_n) : D \rightarrow \mathbf{C}^n$, then we say that $f \in C^1(D)$ is for each $j, k = 1, \dots, n$, the functions $u_j = \operatorname{Re} f_j$, $v_j = \operatorname{Im} f_j$, have all first order partial derivatives with respect to the real variables $x_k = \operatorname{Re} z_k$, $y_k = \operatorname{Im} z_k$ and they are continuous on D . It is well known that if $f \in C^1(D)$ and

$$J_r f = \det \frac{\partial(u_1, v_1, \dots, u_n, v_n)}{\partial(x_1, y_1, \dots, x_n, y_n)} \neq 0,$$

where $u_j = \operatorname{Re} f_j$, $v_j = \operatorname{Im} f_j$, $j = 1, \dots, n$, then f is a locally diffeomorphism of C^1 class on D . Also, if f is univalent (injective) on D and $J_r f(z) > 0$, $z \in D$, then f is a diffeomorphism from D onto $f(D)$.

For $f \in C^1(D)$, let us

$$D_z f(u) = \left[\frac{\partial f_j}{\partial z_k}(u) \right]_{1 \leq j, k \leq n} \quad \text{and} \quad D_{\bar{z}} f(u) = \left[\frac{\partial f_j}{\partial \bar{z}_k}(u) \right]_{1 \leq j, k \leq n},$$

for all $u \in D$. If $f \in H(D)$, where $H(D)$ means the set of holomorphic mappings from D into \mathbf{C}^n , then $D_{\bar{z}} f(u) = 0$, for all $u \in D$ and $D_z f(u)$ is the Fréchet derivative of f at u , denoted by $Df(u)$. Also, if $f \in H(D)$, we say that f is biholomorphic on D , if its inverse f^{-1} does exist, is holomorphic on a domain Ω and $f^{-1}(\Omega) = G$.

P.T. Mocanu [Mo1] gave several sufficient conditions of univalence for functions of C^1 class defined on some domains in \mathbf{C} and very recently M. Cristea ([Cr1], [Cr2]) obtained other general topological conditions of injectivity. These conditions generalized some known criteria of univalence due to Alexander [Al], Noshiro [No], Warshawski [Wa], Ozaki [Oz], Kaplan [Ka] and Wolf [Wo]. An extension of Kaplan's results was given by T.J. Suffridge [Su1], considering holomorphic mappings defined on some convex domains in \mathbf{C}^n and in a Banach space.

Very recently M. Kohr-Ile, G. Kohr [Ko-I-Ko] obtained other extensions of Alexander-Noshiro-Warshawski and Kaplan's results for functions of C^1 class defined on some convex domains on the complex plane. Note that, these criteria of univalence are extensions of some new results due to E. Janiec [Ja], A. Lecko and J. Stankiewicz [Le-St]. Also, some sufficient conditions of univalence for mappings of C^1 class, defined on some domains in \mathbf{C}^n , were obtained by the authors (see for example [Ko1], [Ko2], [Ko-Li]).

On the other hand, recently P.T. Mocanu [Mo2] obtained some very nice and interesting conditions of univalence for functions of C^1 class defined on some domains in \mathbf{C} and also, M. Cristea [Cr3] using a topological reason, extended these results for functions which are only continuous on \mathbf{C} .

In this paper, we are going to present other conditions of injectivity for mappings which are continuous on some domains (not necessarily convex) in \mathbf{C}^n . Note that, some of our results (for example Theorems 2.1 and 2.2), could be easily extended on a Hilbert space.

For our purpose, let us the following definition.

DEFINITION 1.1. Let D be a domain in \mathbf{C}^n and let $\varphi \in [0, \pi)$. We say that D is φ -angular convex if it is possible to join each pair of distinct points $z_1, z_2 \in D$ by a pair of straight line segments $[z_1, z_3]$ and $[z_3, z_2]$ lying in D such that

$$(1.1) \quad |\arg(z_2 - z_3, z_3 - z_1)| \leq \varphi.$$

Obviously, each zero-angular convex domain in \mathbf{C}^n is convex.

For $0 < \varphi \leq \pi$, we denote by C_φ the cone $\{z \in \mathbf{C} : |\arg z| < \varphi\}$.

If $D \subset \mathbf{C}^n$ is open, $\lambda \in \mathbf{C}^n$, $\|\lambda\| = 1$, $f : D \rightarrow \mathbf{C}^n$ is a mapping and $z \in D$, we set

$$M(f, z; \lambda) = \left\{ w \in \mathbf{C}_\infty : \right. \\ \left. \exists (t_p) \subset \mathbf{R}, t_p \rightarrow 0, \frac{1}{t_p} \langle f(z + t_p \lambda) - f(z), \lambda \rangle \rightarrow w, p \rightarrow \infty \right\}.$$

Note that, if $f \in C^1(D)$, then

$$M(f, z; \lambda) = \{ \langle [D_z f(z)]\lambda + [D_{\bar{z}} f(z)]\bar{\lambda}, \lambda \rangle \}$$

and if $f \in H(D)$, then, of course, $M(f, z; \lambda) = \{ \langle Df(z)\lambda, \lambda \rangle \}$.

2. Main results

THEOREM 2.1. *Let D be a φ -angular convex domain in \mathbf{C}^n , where $0 \leq \varphi < \pi$ and let $f : D \rightarrow \mathbf{C}^n$ be a continuous mapping, such that $M(f, z; \lambda)$ is compact, for all $z \in D$ and $\lambda \in \mathbf{C}^n$, $\|\lambda\| = 1$.*

If

$$|\arg w| < \frac{\pi - \varphi}{2}, \quad w \in M(f, z; \lambda), z \in D, \lambda \in \mathbf{C}^n, \|\lambda\| = 1,$$

then f is injective on D .

Proof. Let $z_1, z_2 \in D$, with $z_1 \neq z_2$. Since D is φ -angular convex, there exists $z_3 \in D$ such that $z_1 \neq z_3$, $z_2 \neq z_3$, $[z_1, z_3] \cup [z_2, z_3] \subset D$ and $|\arg(z_2 - z_3, z_3 - z_1)| \leq \varphi$.

Let $\psi = \frac{\pi - \varphi}{2}$ and $\lambda = \frac{z_1 - z_3}{\|z_1 - z_3\|}$. Also, let $q : [0, 1] \rightarrow \mathbf{C}^n$, given by $q(t) = (1 - t)z_1 + tz_3$, for all $t \in [0, 1]$, then $q(t) \in D$, $t \in [0, 1]$.

If $t \in [0, 1]$, using the fact that $M(f, q(t); \lambda)$ is a compact set included in the open set C_ψ , then we can find an $\varepsilon_t > 0$ such that

$$\langle f(q(t)) - f(q(s)), q(t) - q(s) \rangle \in C_\psi, \quad \text{for } |t - s| < \varepsilon_t.$$

On the other hand, since $[0, 1]$ is compact, we can find $0 = t_0 < t_1 < \dots < t_p = 1$ such that there exists $\alpha_i \in (t_{i-1} - \varepsilon_{t_{i-1}}, t_{i-1} + \varepsilon_{t_{i-1}}) \cap (t_i - \varepsilon_{t_i}, t_i + \varepsilon_{t_i})$ for $i = 1, \dots, p$. We let $s_0 = t_0$, $s_1 = \alpha_1$, $s_2 = t_1$, $s_3 = \alpha_2, \dots, s_{2k} = t_k$ for $k = 0, 1, \dots, p$, $s_{2k+1} = \alpha_{k+1}$, for $k = 0, 1, \dots, p - 1$ and we denote by

$$Z_k = \left\langle f(q(s_{k+1})) - f(q(s_k)), \frac{q(s_{k+1}) - q(s_k)}{\|q(s_{k+1}) - q(s_k)\|^2} \right\rangle,$$

for $k = 0, 1, \dots, 2p - 1$.

It is clear that $q(s_{k+1}) - q(s_k) = (s_{k+1} - s_k)(z_3 - z_1)$ and also,

$$|\arg Z_k| = |\arg \langle f(q(s_{k+1})) - f(q(s_k)), q(s_{k+1}) - q(s_k) \rangle| < \psi,$$

hence $Z_k \in C_\psi$, for $k = 0, 1, \dots, 2p - 1$. Now, since C_ψ is a convex set and

$$\sum_{k=0}^{2p-1} (s_{k+1} - s_k) = 1,$$

it follows that

$$\sum_{k=0}^{2p-1} (s_{k+1} - s_k) Z_k \in C_\psi,$$

thus

$$\frac{1}{\|z_3 - z_1\|^2} \langle f(z_3) - f(z_1), z_3 - z_1 \rangle = \sum_{k=0}^{2p-1} (s_{k+1} - s_k) Z_k \in C_\psi,$$

i.e.

$$|\arg \langle f(z_3) - f(z_1), z_3 - z_1 \rangle| < \psi.$$

Therefore, if $A = \langle f(z_3) - f(z_1), z_3 - z_1 \rangle$, then $A \in C_\psi$, so $|\arg A| < \psi$ and $A \neq 0$.

Using same kinds of arguments as before, we deduce that $B \in C_\psi$, where

$$B = \langle f(z_2) - f(z_3), z_2 - z_3 \rangle,$$

hence $|\arg B| < \psi$ and $B \neq 0$.

Note that, the following relation holds:

$$\begin{aligned} \langle f(z_2) - f(z_1), (z_3 - z_1)A \rangle &= \langle f(z_2) - f(z_3), (z_3 - z_1)A \rangle \\ &\quad + \langle f(z_3) - f(z_1), (z_3 - z_1)A \rangle \\ &= |A|^2 \left[1 + \frac{1}{A} \langle f(z_2) - f(z_3), z_3 - z_1 \rangle \right]. \end{aligned}$$

On the other hand, since

$$\begin{aligned} \left| \arg \frac{\langle f(z_2) - f(z_3), z_3 - z_1 \rangle}{A} \right| &\leq |\arg A| + |\arg \langle f(z_2) - f(z_3), z_3 - z_1 \rangle| \\ &\leq |\arg A| + |\arg B| + |\arg \langle z_2 - z_3, z_3 - z_1 \rangle| \\ &< \pi - \varphi + \varphi = \pi, \end{aligned}$$

then,

$$1 + \frac{1}{A} \langle f(z_2) - f(z_3), z_3 - z_1 \rangle \neq 0,$$

therefore,

$$\langle f(z_2) - f(z_1), (z_3 - z_1)A \rangle \neq 0,$$

which implies that $f(z_1) \neq f(z_2)$. This completes the proof.

Note that, in the case $n = 1$ this result was recently obtained by M. Cristea [Cr3].

If $f \in C^1(D)$ in Theorem 2.1, we obtain the following condition of univalence.

COROLLARY 2.1. *Let D be a φ -angular convex domain in \mathbf{C}^n , where $0 \leq \varphi < \pi$ and let $f \in C^1(D)$.*

Assume that

$$(2.1) \quad |\arg\langle [D_z f(z)](v) + [D_{\bar{z}} f(z)](\bar{v}), v \rangle| < \frac{\pi - \varphi}{2},$$

for all $z \in D$ and $v \in \mathbf{C}^n$, $\|v\| = 1$, then f is univalent (injective) on D .

COROLLARY 2.2. *Let $0 \leq \varphi < \pi$ and $D \subset \mathbf{C}^n$ be a φ -angular convex domain. Let $f \in H(D)$ which satisfies the following relation*

$$|\arg\langle Df(z)(v), v \rangle| < \frac{\pi - \varphi}{2},$$

for all $z \in D$ and $v \in \mathbf{C}^n$, $\|v\| = 1$, then f is univalent on D .

For $n = 1$ in Corollary 2.1, we deduce the following result due to P.T. Mocanu [Mo2].

COROLLARY 2.3 [Mo2]. *Let $D \subset \mathbf{C}$ be a φ -angular convex domain with $\varphi \in [0, \pi[$. If $f \in C^1(D)$ satisfies*

$$(2.2) \quad |\arg f'_\theta(z)| < \frac{\pi - \varphi}{2},$$

for all $z \in D$ and $\theta \in [0, 2\pi[,$ where $f'_\theta(z) = \frac{\partial f}{\partial z} + e^{-2i\theta} \frac{\partial f}{\partial \bar{z}}$, then f is univalent on D .

Proof. Let $z \in D$ and $v \in \mathbf{C}$, $|v| = 1$.

Then

$$\begin{aligned} [D_z f(z)](v) + [D_{\bar{z}} f(z)](\bar{v}) &= \frac{\partial f}{\partial z}(z)v + \frac{\partial f}{\partial \bar{z}}(z)\bar{v} \\ &= v \left[\frac{\partial f}{\partial z}(z) + e^{-2i\arg v} \frac{\partial f}{\partial \bar{z}}(z) \right] = vf'_\theta(z), \end{aligned}$$

where $\theta = \arg v$. If the condition (2.2) holds, then

$$|\arg\langle vf'_\theta(z), z \rangle| = |\arg f'_\theta(z)| < \frac{\pi - \varphi}{2},$$

hence the condition (2.1) holds. Therefore, using the result of Corollary 2.1, we conclude that f is univalent on D .

A direct application of Theorem 2.1 is the following sufficient condition of injectivity.

THEOREM 2.2. *Let $D \subset \mathbf{C}^n$ be a domain, let $f : D \rightarrow \mathbf{C}^n$ be a continuous mapping and let $g : D \rightarrow \mathbf{C}^n$ be a homeomorphism such that $g(D)$ is φ -angular convex domain in \mathbf{C}^n , with $0 \leq \varphi < \pi$. If for every $a \in D$ there*

exists $\varepsilon_a > 0$ such that

$$|\arg\langle f(z) - f(a), g(z) - g(a)\rangle| < \frac{\pi - \varphi}{2},$$

if $\|z - a\| < \varepsilon_a$, $z \neq a$, then f is injective on D .

Proof. Let denote by $\Delta = g(D)$, then Δ is a φ -angular convex domain and if $h(w) = (f \circ g^{-1})(w)$, $w \in \Delta$, then h is continuous on Δ and it satisfies the following relation:

$$|\arg\langle h(w) - h(b), w - b\rangle| < \frac{\pi - \varphi}{2},$$

for all $b \in \Delta$, and $w \in \Delta$ closed to b , $w \neq b$. Using a similar proof as in Theorem 2.1, we deduce that h is injective on Δ , hence f is injective on D , too.

Another consequence of Corollary 2.1 is the following result.

COROLLARY 2.4. *Let $0 \leq \varphi < \pi$, let $D \subset \mathbf{C}^n$ be a domain, let $f \in C^1(D)$ and $g \in H(D)$, such that g is biholomorphic on D and $g(D)$ is a φ -angular convex domain in \mathbf{C}^n .*

If

$$(2.3) \quad |\arg\langle [D_z f(z)][Dg(z)]^{-1}(v) + [D_{\bar{z}} f(z)][\overline{Dg(z)}]^{-1}(\bar{v}), z\rangle| < \frac{\pi - \varphi}{2},$$

for all $z \in D$ and $v \in \mathbf{C}^n$, $\|v\| = 1$, then f is univalent on D .

Proof. If we denote by $\Delta = g(D)$, then Δ is φ -angular convex domain and if $h(w) = (f \circ g^{-1})(w)$, for all $w \in \Delta$, then $h \in C^1(\Delta)$ and by a straightforward calculation, we obtain

$$\begin{aligned} D_w h(w) &= [D_z f(z)][Dg(z)]^{-1}, \\ D_{\bar{w}} h(w) &= [D_{\bar{z}} f(z)][\overline{Dg(z)}]^{-1}, \end{aligned}$$

for all $w \in \Delta$ and $z = g^{-1}(w)$. Now, if the condition (2.3) holds, then the following condition holds too:

$$|\arg\langle [D_w h(w)](\alpha) + [D_{\bar{w}} h(w)](\bar{\alpha}), \alpha\rangle| < \frac{\pi - \varphi}{2},$$

for all $w \in \Delta$ and $\alpha \in \mathbf{C}^n$, $\|\alpha\| = 1$, therefore from Corollary 2.1, we deduce that h is univalent on Δ , so f is univalent on D , too. This completes the proof.

REMARK. Note that, if in Corollary 2.4 we change the assumption that g is biholomorphic, by the following: $g \in C^1(D)$, such that g is injective on D and $J_r g(z) > 0$, $z \in D$, and also if $g(D)$ is φ -angular convex domain, with $0 \leq \varphi < \pi$, then we can obtain another sufficient condition of injectivity for

$f \in C^1(D)$. Note that, if $g(z) \equiv z$, $z \in D$, in Corollary 2.4, then we obtain the result of Corollary 2.1.

Also, if in Corollary 2.4 $g(D)$ is a convex domain, we obtain a result, recently deduced by the author (see [Ko2]).

We finish this paper with some simple examples, which are direct applications of the above results.

EXAMPLE 2.1. Let $0 \leq \varphi < \pi$, let $D \subset \mathbf{C}^n$ be a domain, let $h \in H(D)$ and $g \in H(D)$ such that g is biholomorphic on D and $g(D)$ is a φ -angular convex domain in \mathbf{C}^n .

If

$$(2.4) \quad |\arg([Dh(z)][Dg(z)]^{-1}(v) + \bar{v}, v)| < \frac{\pi - \varphi}{2},$$

for all $z \in D$ and $v \in \mathbf{C}^n$, $\|v\| = 1$, then f is univalent on D , where $f(z) = h(z) + \overline{g(z)}$, $z \in D$.

Proof. Since $g, h \in H(D)$, then $f \in C^1(D)$ and it satisfies the following relations

$$D_z f(z) = Dh(z) \quad \text{and} \quad D_{\bar{z}} f(z) = \overline{[Dg(z)]}.$$

Next, it is sufficient to see that the relation (2.4) is equivalent to the following:

$$|\arg([D_z f(z)][Dg(z)]^{-1}(v) + [D_{\bar{z}} f(z)][\overline{Dg(z)}]^{-1}(\bar{v}), v)| < \frac{\pi - \varphi}{2},$$

for all $z \in D$ and $v \in \mathbf{C}^n$, $\|v\| = 1$, therefore, applying the result of Corollary 2.4, we conclude f is univalent on D .

For example, if we consider $h(z) = \lambda g(z)$, where $\lambda \in \mathbf{C}$, then, from Example 2.1, we obtain:

EXAMPLE 2.2. Let $0 \leq \varphi < \pi$, let $D \subset \mathbf{C}^n$ be a domain and let $g \in H(D)$ such that g is biholomorphic on D and $g(D)$ is a φ -angular convex domain in \mathbf{C}^n . If $\lambda \in \mathbf{C}$ and if

$$\operatorname{Re} \lambda - \operatorname{tg} \frac{\varphi}{2} |\operatorname{Im} \lambda| > \operatorname{tg} \frac{\varphi}{2} + 1,$$

then f is univalent on D , where $f(z) = \lambda g(z) + \overline{g(z)}$, $z \in D$.

Proof. Let $h(z) = \lambda g(z)$, $z \in D$, then $h \in H(D)$ and $Dh(z) = \lambda Dg(z)$, $z \in D$, hence the relation (2.4) is equivalent to the following

$$|\arg[\langle \bar{v}, v \rangle + \lambda]| < \frac{\pi - \varphi}{2},$$

for all $v \in \mathbf{C}^n$, $\|v\| = 1$.

It is obvious to see that the above inequality is equivalent to the following

$$(2.5) \quad \operatorname{Re}[\lambda + \langle \bar{v}, v \rangle] > \operatorname{tg} \frac{\varphi}{2} |\operatorname{Im}[\lambda + \langle \bar{v}, v \rangle]|,$$

for all $v \in \mathbf{C}^n$, $\|v\| = 1$.

Therefore, if

$$\operatorname{Re}\lambda - \operatorname{tg} \frac{\varphi}{2} |\operatorname{Im}\lambda| > \operatorname{tg} \frac{\varphi}{2} + 1,$$

then the relation (2.5) holds and taking into account Example 2.1, we conclude that f is univalent on D , where $f(z) = \lambda g(z) + \overline{g(z)}$, $z \in D$.

Finally, we construct an example of a univalent mapping on a $\frac{\pi}{2}$ -angular convex domain, by starting from some holomorphic functions of one variable, which satisfy the following requirements.

EXAMPLE 2.3. Let D be a $\frac{\pi}{2}$ -angular convex domain in \mathbf{C}^n and let $f_1(z_1), \dots, f_n(z_n)$ be holomorphic functions (of one variable) on \mathbf{C} , which satisfy

$$\sum_{j=1}^n |v_j|^2 \operatorname{Re} f'_j(z_j) > \left| \sum_{j=1}^n |v_j|^2 \operatorname{Im} f'_j(z_j) \right|,$$

for all $z = (z_1, \dots, z_n)' \in D$ and $v_1, \dots, v_n \in \mathbf{C}$, $\sum_{j=1}^n |v_j|^2 = 1$, then h is univalent on D , where

$$h(z) = (f_1(z_1), \dots, f_n(z_n))', \quad z = (z_1, \dots, z_n)' \in D.$$

Proof. It suffices to observe that the assumption from hypothesis is equivalent to the following

$$\operatorname{Re} \langle Dh(z)(v), v \rangle > |\operatorname{Im} \langle Dh(z)(v), v \rangle|, \quad z \in D, \quad v \in \mathbf{C}^n, \quad \|v\| = 1,$$

i.e.

$$|\operatorname{arg} \langle Dh(z)(v), v \rangle| < \frac{\pi}{4}, \quad z \in D, \quad v \in \mathbf{C}^n, \quad \|v\| = 1.$$

Therefore, applying the result of Corollary 2.2, we deduce that h is univalent on D .

Finally, we would like to point other excellent papers concerning univalent mappings, especially harmonic univalent mappings in the complex plane. For this aim, see [Cl-Sm], [Dor-Su], [Su2].

References

- [Al] W. Alexander, *Functions which map the interior of the unit circle upon simple regions*, Ann. Math. 17 (1915/16), 12–22.
- [Cl-Sm] J. Clunie, T. Sheil-Small, *Harmonic univalent functions*, Ann. Acad. Sci. Fenn. Ser. A. I Math. 9 (1984), 3–25.
- [Cr1] M. Cristea, *Certain sufficient conditions for univalence*, Studii și Cerc. Matem. (Mathematical Report) 44, 1 (1992), 37–42.
- [Cr2] M. Cristea, *Certain sufficient conditions for global univalence*, Mathematica (Cluj), 36(59), 2(1994), 137–144.
- [Cr3] M. Cristea, *A generalization of a theorem of P.T. Mocanu*, (to appear).
- [Dor-Su] M. Dorff, T. J. Suffridge, *The inner mapping radius of harmonic mappings on the disc*, Complex Variables, 33, 1-4(1997), 97–104.
- [Ja] E. Janiec, *Some sufficient conditions for univalence of holomorphic functions*, Demonstratio Math. 22, 3 (1989), 717–727.
- [Ka] W. Kaplan, *Close-to-convex schlicht functions*, Michigan Math. J. 1 (1952), 169–185.
- [Ko1] G. Kohr, M. Kohr, *Some sufficient criteria of univalence in C^n* , Zeszyty Nauk. Politech. Rzeszow, Matematyka 18 (1995), 65–70.
- [Ko2] G. Kohr, *Certain sufficient conditions of univalence for complex mappings in the class C^1 on C^n* , Studii și Cerc. Matem. 48, 5-6(1996), 349–356.
- [Ko-Li] G. Kohr, P. Liczberski, *On some criteria of injectivity for complex mappings in the class C^1* , Complex Variables Theory Appl. 32 (1997), 217–223.
- [Ko-I-Ko] M. Kohr-Ile, G. Kohr, *Some sufficient conditions of univalence for complex functions in the class C^1* , Mathematica (Cluj), 37(60), 1-2(1995), 123–129.
- [Le-St] A. Lecko, J. Stankiewicz, *Some sufficient conditions for univalence*, Zeszyty Nauk. Politech. Rzeszow, Matematyka 14, 101(1992), 33–38.
- [Mo1] P. T. Mocanu, *Sufficient conditions of univalence for complex functions in the class C^1* , Mathematica, Rev. Anal. Numér. Théor. Approx. 10, 1(1981), 75–79.
- [Mo2] P. T. Mocanu, *A sufficient condition for injectivity in the complex plane*, P.U.M.A., 6, 2, (1995), 231–238.
- [No] K. Noshiro, *On the theory of schlicht functions*, J. Fac. Sci. Hokaido Imp. Univ., 2(1934), 124–155.
- [Oz] S. Ozaki, *On the theory of multivalent functions*, Sci. Rep. Tokyo Bunrika Daigaku A, 40(1935), 167–188.
- [Su1] T. J. Suffridge, *Starlikeness, convexity and other geometric properties of holomorphic mappings in higher dimensions*, Lecture Notes in Math. 599 (1976), 146–159.
- [Su2] T. J. Suffridge, *Harmonic univalent polynomials*, Complex Variables (to appear).

- [Wa] S. E. Warschawski, *On higher derivatives on the boundary in conformal mappings*, Trans. Amer. Math. Soc. 38 (1935), 310–340.
- [Wo] I. Wolf, *L'intégrale d'une fonction holomorphe et a partie réelle positive dans un semi-plane est univalente*, C.R. Acad. Sci., Paris 198: 13 (1934), 1209–1210.

FACULTY OF MATHEMATICS
BABEŞ-BOLYAI UNIVERSITY
1 M. Kogălniceanu Str.
3400 CLUJ-NAPOCA, ROMANIA
E-mail: gkohr@math.ubbcluj.ro

Received May 12, 1997.