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¢-FUNCTIONS OF N VARIABLES

In this note, Young’s inequality uv < ¢(u)+ ¢*(v) , where ¢ and ¢* are
convex @-functions complementary in the sense of Young, is generalized to
the case when ¢ is a function of N variables. Some inequalities given in [1]
and [3] are extended to the case of ¢-functions of N variables.

Let N > 1 be a natural number and R; = [0,00). Let ¢ be a real
function on R_’f denoted by

PUL ey Ui 1,8 41 0 YN (ul) = ()O(ula coogUic1, Uiy Uig1y. - -y UN),

for fixed uy,...,%j—1, Uit1,...,uN € R4.
@ is called a ¢-function if it satisfies the following conditions:

1. ¢(0,...,0) =0,
2. for every i € {1,..., N} and fixed uy,...,%;—1,%it+1,...,un the func-
tion @y, ... .uil1,ui41,...,un (4i) is non-decreasing, continuous and

u}'l_rfloo ‘PU] peensWUim 1 UiF1 000  UN (u') = oo.

Let us denote

1) ¢*(u1y...,un)= sup {wmz1+...+unvzy—@(Z1,-..,ZN)}-
Ty,..ZN20

One can easily see that the function ¢* is a convex function, i.e., it
satisfies the condition ¢*(Au + (1 — A)v) < Ap*(u) + (1 — A)g*(v) for ev-
ery real A, 0 < A < 1, and arbitrary v = (u1,...,un), v = (v1,...,0N)
from Rf,\_’ . It follows from convexity of ¢* that it is continuous. Without
difficulty one can show that the function ¢* is a ¢-function. For instance,
we prove that for arbitrary fixed wuy,...,%i—1,%iz1,...,uy > 0 we have
]jmui—'OO ‘:021,...,u;_1,u;+1,...,u,v (’U.,‘) = o0.

In what follows let wy,...,%;—1,%i41,...,un > 0 and the real M > 0 be
given. We choose arbitrary vy,...,v;_1,%it1,...,vn > 0 and we take v; > 0
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such that
wvr F .o Uim Vi1 F Ui1Vip1 + .- F UNON < (V1,00 ON).
Let us denote

1
m=[M+e(vy,...,on)—(w1v1+.. .+ Ui—1vi—1 +¥ip1Vi41+. . .+quN)];.

t

Then for u; > m we get

* o
<pu1 yeenyUim 1y Uid1 ooy UN (uz)

*
Z <P1L1 yeenyUgm1yU41 400, UN (m)

= sup {wz1+...+ w121 + ma;
Z1,..4ZN20

+ uit1Zit1 + ...+ unzy — o(21,...,2N)}
2 UV + .o+ U101 MY+ UiV + .
+ unon — @(v1,...,08) = M.
From (1) it follows the Young’s inequality
wvr + ...+ unon < p(ug,...,un) + @*(v1,...,0N)

which is true for arbitrary uy,...,un,v1,...,0n8 > 0.

For a -function ¢ let us denote ¢;(u;) = ¢(0,...,0,u;,0,...,0). Assume
that fori = 1,..., N the functions ; have derivatives ¢} continuous, strictly
increasing and such that ¢}(0) = 0 and lim,,, . @}(u:) = co. Let p} denote
the inverse functions to ¢!. Because the functions

pi(ui) = Si pi(t)dt and Si p;(t)dt
0 0

are complementary in the sense of Young, then from [4] (Theorem 13.6) it
follows

u;
| p1(0)dt = sup {wizi — pi(x:)}
o i>0
= sup] sup {u;z; — ¢(0,...,0,z;,0,...,0)
3120 Ilv-'-rzi—lvzi'f'l1"'13N20
+ ¢(0,...,0,z;,0,...,0) — ¢(21,...,2N)}]
= sup {0-z1+...40-2;

L1,..4ZN20
+uiz; +0-2i401+...+ 0258 — @(21,...,2N8)}
= <p*(0,...,0,u,-,0,...,0).
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Therefore for every ¢ = 1,..., N we have

U4
©*(0,...,0,1;0,...,0) = | py(t) dt.
0

From (1) it follows that

e(ury...,un) > sup  {wzi + ...+ unen — ¢ (21,...,2N)}
T1,y..ZN20

We will show that

(2)  p(ur,...,un)= sup {wmz1+...+unzy — ¢*(21,...,2N8)}
L1,..,ZN20

For this let us suppose, that there exist u;,...,uxy > 0 such that

3) e(ury...,un)> sup {wz1+...+unveny - " (z1,...,2N)}

T1,...,ZN 20
Since the functions p} are increasing and lim; o, pf(t) = 00,1 =1,..., N,
so for given uy,...,un > 0 there exist yy,...,yn > 0 such that we have
vi
S[u1+...+uN—p’{(t)]dt <0 and u3+...+un-p;(t)<0,i=1,...,N,
0
for t > y;. Let R = v/ N max{y,,...,yn}. We shall prove that for arbitrary
1,...,2nN satisfying 22 + ...+ 2%, > R? we have

f(z1,..,an)=wmz1 + ...+ unveny — ¢*(21,...,2N8) < 0.

In what follows let be zo = max{z1,...,zn}. Then 29 = z; for any z;,
. R
t=1,...,N,and z; > /i > vy;. Hence

f(z1,...,2N) = mz1 + ...+ unzN — @*(21,...,ZN)

<wz;+...+unz; — ¢*(0,...,0,2;,0,...,0)

=Vl + ...+ un - p}(t)] dt
0
Yi z;

= [l +...+unv - pr@)]dt+ ([ + ...+ uy — p}(2)] dt
0 Yi

<0.

Therefore for every z1,...,zn satisfying z2 + ...+ 2% > R? the function
f is negative, what implies that f can be nonnegative only in the compact
set {(z1,...,2n) € RY :2? +...4 2% < R?}. Since ¢* is continuous, also
the function

f(z1,...,zn)=wmz1 + ...+ unzn — ©"(21,...,ZN)
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is continuous. Therefore, there exist vy,...,vnx > 0 such that

sup {f(z1,-..,2N)}=wmv1 +...+ unon — ¢*(v1,...,VN).

Z1y.-0ZN 2

From this and (3) we get
o(ur,...,uny)> sup {wz1+...+unzy —@*(21,...,2N)}

Z1yeen@N 20
=uv + ...+ unvny — @*(v1,...,UN)
and
@*(v1y--,ON) > wvr + ...+ uNON — @(U1,. .., UN).
On the second hand from (1) it follows
©*(v1,--,on) Suvr + ...+ unon — (U, .. UN)
which gives a contradiction.

The ¢-functions ¢ and ¢* satisfying (1) and (2) are called complementary
in the sense of Young, analogously to ¢-functions of one and two variables.

EXAMPLE 1. Let ¢(uq,...,un) = %(uf + ...+ uk), with p > 1. Then
1, ., 11
(U, .. .,uny) = —(ud +...+ud) with =+ - =1.
P,y un) = (a4 ok ) with 24
EXAMPLE 2. Let ¢(uq,...,un) = %(uf + ...+ u%)%, with p > 1. Then
cp*(ul,...,uN)z%(u%+...+u§v)% where%-{-é:l.

THEOREM 1. Let ¢ denote a @-function of class C. If for every i €
{1,...,N} and fired uy,...,u;—1, Uiy1,...,un € Ry the function
PUl ey icm1y Uigd e yUN (ui) is convez, then

N
ZU,’@{‘P(Ul, o .,UN) < N‘P(zulv . '72uN))
i=1

(0:¢p denotes partial derivative of ¢ with respect to u;).

Proof. For every i € {1,..., N} and for fixed uy,...,%i—1,Ui41,...,UN
€ R, the function 8;¢(u1,...,un) is non-decreasing with respect to u;
because the function @u,, .. ui_1,uip1,..uy (u;) is convex. We can calculate

N
Z u,f(?,-go(ul, ceey UN)
i=1

N 2u;
< Z S aiSO('U/l,...,Ui_l,t,ul‘q.l,---,’U/N)dt

i=1 u;
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IA

2u;
S 0,-(,0(111,. . °7ui—1$t,ui+17‘ . -’U'N) dt
0

= 1 1M

[‘Pulv aUi=1yUi41 e qu(2u') <pulv U= 1y Uig1 e ;uN(O)]

< Ncp(2u1, . 2uN).

THEOREM 2. Let ¢ denote a ¢-function of class C? such that the differ-

ential of second order d*¢ is nonnegative. Let for every uy, ..., ui—1, Uis1,. .-

-y UN € Ry the function @u,,....u;_1,uis1,....un (8i) be convez and let i(0) =

0 for every i € {1,..., N}. Then for every differentiable functions fy,..., fn
from R into R we have

%‘Pﬂfl(t)h oo [IN@D L e(AO - IINOD+Ne2LA®), - -, 2 In(D)])-

Proof. Using Taylor’s formula and the assumption d%p > 0, we get
(P(zl" . 'amN)

N
=¢(U1,---,UN)+Zai<P(u1,---,UN)($i—Ui)
1 N N
522 2i0(Ers o En) (i — wi)(@; — ug)
=1 j=1

> Z Oip(uy,y .. -, un)(Ti — ug).
=1

Hence ¢(z1,.. ., :cN)—Efil Oip(u1,...,uN)(zi—u;) > 0. Using Theorem 1,
we get

Z Oip(ur, ..., un)zi — p(T1,...,ZN)
i=1

N
< Zaiso("l,---,uN)zi —o(21,..,ZN)

+ [(p(:l:l, ce s EN) — i@;ga(ul,..-,UN)(wi - '“i)]
i=1

N
= zaﬁo(un ey UN)Y;
i=1

< Np(2uy,...,2upn).
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From this
(,D*(al(p(’ul, ey uN), ceny aNLp(ul, ey uN))
N
= sup {)Y Gip(ur,...,un)zi— @(21,...,2N)} < Np(2uy,...,2uN).
L1y ZN20 i=1

We can extend the domain of ¢-function ¢ taking ¢(e1%1,...,enuN) =
o(uy,...,un), where ¢; = £1. From the Young inequality it follows

%¢(|f1(t)|, o N @)
_ %<P(f1(t), -+ IN(2))

N
i=1

N
< Y a1, | INODIAO)
=1

+ @ (810(ILA@; - -, IINDD, - -, One(| A, - -, | I (R)])
< (A IINOD + Ne@l A, - -5 21 fn(E)]).
In the sequel let us take the notation
A={a=(a1,...,an):a;=00ra; =1;i=1,...,n}.

The inequality |t| > |s| for ¢t = (t1,...,t,) and s = (s1,...,S,) means that
[ti] > |si| for i = 1,...,n. For given r > 0 we denote the sets
Je = {tk sk <tp < sp+7if sp > 058, — 7 < ¥ < sy if s < 0},
C(S,T)=J1 X Jg X ... X Jy.
THEOREM 3. Let the p-function ¢ satisfy the assumption of Theorem 2
and let {2 be an open set in R™ such that for any r > 0 and every s € §2 at
least one set C(s,r) is included in (2. If functions fi,...,fn: 2 — R have

continuous derivatives D®f; i = 1,...,N for a € A, then for every s € 2
we have

el fi (), s n(o))
n—|al
<3 (N B 1) J @D (B, .., 2* 7D fn (1)) dt.
2

a€A
Proof. The proof runs analogously as that of Theorem 3 from [1].
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THEOREM 4. Let the o-function ¢ satisfies the assumption of Theorem 2.
If functions f;,...,fn : R® — R have continuous derivatives D f;i =
1,...,N a € A, then for every s € R" the inequality

e(1f1(3); - - | fn(3)D)

< Y Nkl | g@rleDef (), .., 27 D i (D)) di
a€A ls<el

holds.
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