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FILLING A CUBE WITH SUBSEQUENCES OF BOXES

Let C be a subset of Euclidean d-space E¢ and let (C,) be a finite or
infinite sequence of d-dimensional convex bodies. We say that (C,) permits
a filling of C, if there exist rigid motions oy, a3, .. .such that C\ |J,C, has
Lebesgue measure 0 and sets 0,Cr, where n = 1,2, ..., have pairwise disjoint
interiors and are subsets of C. Obviously, if (C,) is finite and permits a filling
of C, then |J0,C, = C. We say that C can be filled with a subsequence of
(C,) if there exists a finite or infinite subsequence (Cy,) of the sequence
(Cp) such that (Cn,) permits a filling of C, and we say that the bodies
CnyChy, . .. are used for the filling.

The problem is to find a possibly large class of bodies and a possibly
small number v such that each sequence of bodies from this class of total
volume not smaller than v contains a subsequence which permits a filling
of C. This question is a particular version of the general problem of finding
conditions under which a given container can be tiled by a given colection
of solids (comp. [2], [3]).

We can interpret a filling with subsequences as covering a floor with tiles.
We are given a container of tiles, and we know only that in the container
there are tiles of a fixed shape and that the total area of the tiles is greater
than or equal to v. We want to choose from the container as many tiles as
it is necessary in order to cover the floor with them. The question is, what
shape should the tiles have and how big should the number v be in order to
be able to cover the floor with some tiles from the container. For instance,
consider a covering a unit-square floor with square-shaped tiles. To cover
this floor we cannot use a container with tiles of side length —g— On the other
hand, for the covering we can use a container in which we have tiles of sides
of the form 27! or 37! of total area equal to 2. From the container we can

1991 Mathematics Subject Classification: 52C17.
Key words and phrases: packing, covering, filling, tiling, box.



378 J. Januszewski

choose identical tiles of total area equal to 1 and we can cover the floor with
them.

Let ¢ > 2 be an integer. A boz is a rectangular parallelotope, and a box
is g-standard if its edge lengths are of the form ¢!, where t € {0,1,...}.
Denote by I¢(s) the cube {(z1,...,74):0 < z; < sforj=1,...,d}. Byan
integer cube we mean the cube I'%(s), where s is a positive integer. In Section
1 we consider a filling of the integer cube with subsequences of sequences of
g-standard boxes. We give an estimate of the total volume of the sequences
containing a subsequence which permits a filling of I%(s). In Section 2 we
show that this estimate is the best possible.

1. Filling with subsequences of sequences of standard boxes

Let B be a box in E9. Denote by wy(B), ..., wq(B) the edge lengths of
B and assume that wy(B) < ... < wg(B). We will also write w; instead of
w;(B), for short. Let ¢ > 2 be an integer. By a g-regular boz we mean a
box R with w;j(R)=¢ * ! for j<kand wj(R)=q 'forj=k+1,...,d,
where ¢ is a non-negative integer and k € {0,...,d — 1}. Observe that each
g-regular box is ¢g-standard.

We begin with two lemmas concerning filling with g-regular boxes.

LEMMA 1. Let t be a non-negative integer. Fvery sequence of q-reqular
bozes of edge lengths not greater than q~* and of total volume equal to ¢—*¢
permits a filling of I%(¢™%).

Proof. Consider a sequence (R,) of g-regular boxes of edge lengths not
greater than ¢~* and of total volume equal to ¢~ ¢. Without loss of generality
we can assume that Vol(R;) > Vol(R;) > .... By a proper positionin I%(¢™%)
for a regular box R from our sequence we mean the position

{(z1,...,2q); ajw;j(R) < z; < (aj+ 1)w;(R) for j=1,...,d},

where a; € {0,..., q_’w}'l(R) —1}for j =1,...,d. A proper position for a
box Ry from the sequence (R,) is free if no interior point of this position is
covered by boxes oy Ry, ...,0¢—1 Rk—1. We can fill I%(¢™*) by putting boxes
Ry, R, ... succesively, in free proper positions. After putting each box Ry,
the uncovered part of our cube is the union of a number of ¢-regular boxes
each of which is congruent to Ry, and have disjoint interiors. Consequently,
our sequence can be packed in 7%(¢*). Thus, we obtain a filling of I¢(g~?). »

LEMMA 2. Lett > 0 and z > 1 be integers and let (T,,) be a sequence of
g-reqular bozxes of edge lengths not greater than q~*. Let the total volume of
(T,) be equal to v. If v > 2™, then there ezists a subsequence of (Ty,) which
permits a filling of z disjoint cubes, each of edge length q~t. Moreover, if
v > 2q~%, then a finite subsequence of (T,) permits a filling of the z cubes.
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Proof. Observe that if v > z¢~*¢, then (T,) contains a finite subse-
quence (T, ) of total volume equal to zg~*. If v = z¢~*%, then we take (T})
as (T, ). We can divide boxes from (T, ) into z groups such that the volume
of boxes in each of the groups is equal to ¢~*¢. By Lemma 1 we conclude
that boxes from each of these groups permit a filling of a cube of edge length
q~t. Consequently, (T,,) permits a filling of z disjoint cubes of edge length

q"t. ]

Let ¢ be a non-negative integer and let £ € {0,...,d — 1}. We say that a
g-standard box S is of type (t,k), if w;(S) < ¢~t for j < k and w;(S) = ¢!
for j = k4 1,...,d. Observe, that each box of type (¢,0) is a cube. By
an r,-set we mean a union of a number of g-regular boxes with mutually
disjoint interiors. We admit here the infinite number of g-regular boxes. Also,
we regard the empty set as an r,-set.

In the next lemma we will show that every sequence of ¢-standard boxes
contains a subsequence which permits a filling of some r4-set of a sufficiently
large volume. Obviously, the total volume of boxes used for the filling of an
r4-set is equal to the volume of this set. We will estimate the total volume
of boxes not used for the filling.

LEMMA 3. Lettg > 0, d > 2 and ¢ > 2 be integers. Put

qq2qd

vd(q):(42—1)(q3~1)-----(q"—1)—q'

Assume than (S,) is a sequence of d-dimensional g-standard bozes of edge
lengths not greater than q~*. Moreover, let the total volume v of (Sy) be
greater than or equal to vy(q)g~t%. Then there ezists some T4-set @ whose
volume is greater than v — vy(q)q*?® and there ezists a subsequence (8n;)
of (8n) such that (S,;) permits a filling of Q.

Proof. We will proceed by induction with respect to the dimension d.

Let d = 2. Consider a sequence (!5,) of ¢g-standard rectangles of edge
lengths not greater than g~% of total area equal to v, where v > v3(q)g2%.

Let t be an integer not smaller than ¢y and let (S,,) be the subsequence
of all non-regular rectangles from ($,) with w; = ¢~% All the rectangles
from (S,,) can be divided into a number of groups such that the total area
of rectangles in one of the group is smaller than ¢~2!~! and such that the
total area of rectangles in each of the remaining groups is equal to ¢g=2*1,
Obviously, boxes with w, = ¢~* of total area equal to ¢~2!~1 permit a filling
of a g-regular rectangle with w; = ¢~*~! and w; = ¢!. Consequently, we
can fill some rg-set with a subsequence of (.95,) so that the total area of
rectangles not used for the filling is smaller than ¢=2~1.
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Clearly, the subsequence of g-regular rectangles from (S,) permits a
filling of some r,-set. In (.5,,) we have non-regular boxes with w; = ¢~*¢ for
t=to,t + 1,.... Observe that the union of r,-sets with disjoint interiors is
an r¢-set. Hence, a subsequence of (S,) permits a filling of some rg-set so
that the total area of the rectangles not used for the filling is smaller than

o0

—21— q _ -
D g = g = my(g)g
t=to ¢° -1

Thus, the area of this r,-set is greater than v — vy(g)g~2%.

Let d > 2. Assume that for each m = 2,...,d — 1 and for each non-
negative integer t every sequence of m-dimensional ¢g-standard boxes of total
volume v greater than or equal to ¢~*™v,,(g) contains a subsequence which
permits a filling of some m-dimensional ry-set whose volume is greater than
v — ¢ oL (q).

Consider a sequence (T,(Ld)) of ¢-standard d-dimensional boxes of type
(t, k), where t is a non-negative integer and k € {0,...,d—1}. If k = 0, then
all the boxes in (T,(ld)) are cubes. Hence (T,(Ld)) permits a filling of an rg-set
which is a union of a number of g-standard cubes.

Assume that k£ > 1. We will show that some r,-set can be filled with
a subsequence of (T,(zd)) so that the total volume of boxes not used for the
filling is smaller than (1 + vx(g))g~*~*. We put here v;(q) = 0.

For k¥ = 1 all the boxes from (T,(ld)) have edge lengths w; < ¢~% and
wy = ... = wg = ¢ t. All the boxes from (T,(Ld)) can be divided into a
number of groups such that the total volume of boxes in one of the group is
smaller than ¢~*¥~1 and such that the total volume of boxes in each of the
remaining groups is equal to ¢~**~1. Boxes of total volume equal to g~t¢~1
permit a filling of a g-regular box with w; = ¢ *land wy = ... = wy = ¢~%.
Consequently, we can fill some r-set with a subsequence of (T,(ld)) so that
the total volume of boxes not used for the filling is smaller than ¢~*¢-! =
(14 vy)g~ -1,

Let £ > 2. Consider the sequence (T,gk)) of k-dimensional bottoms of
boxes from (T,(Ld)). By a k-dimensional bottom of T{Y we mean the k-
dimensional box of edge lengths w; (T,(ld)), . .,wk(T,(ld)).

Assume that the total k-dimensional volume of (T,(,k)) is not smaller than
v(q)g~t*~*. By the inductive assumption we conclude that (T,(lk)) contains
a subsequence (T,(zf)) which permits a filling of some k-dimensional rg-set
so that the total volume of boxes not used for the filling is smaller than
vk(q)gt**. Let the total k-dimensional volume of boxes from (T,(,f)) be
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equal to v(F). There exists a non-negative integer z such that 2q -k <
v(®) < (2 + 1)g~*~*. By Lemma 2 we conclude that we can fill z disjoint
k-dimensional cubes of edge length ¢~*~! with a subsequence of (T,,(f)) SO
that the volume of boxes not used for the filling is smaller than ¢~**=*. If
2z = 0 here, then we regard all the boxes from (T,(f)) as not used for the
filling. Consequently, we can fill a number of disjoint k-dimensional cubes
of edge lengths ¢~¢~! with a subsequence of (T,(lk)) so that the total volume
of boxes not used for the filling is smaller than (1 + vx(g))g~t*~*.

Assume that the total k-dimensional volume of (T,(lk)) is smaller than
vrq~t*~F. Then we can also say that a number of cubes can be filled with
a subsequence of (T,(Lk)) so that the volume of boxes not used for the filling

is smaller than (14 vk(q))g~t*~*. In this case all the boxes are not used for
the filling.

For £ > 2 all the boxes from (T,(,d)) have edge lengths wi4 = ... =
wq = g~t. Obviously, the box with w; = ... = wy = ¢~*"! and with
Wgp1 = ... = wg = ¢ is g-regular. Consequently, some d-dimensional
T4-set can be filled with a subsequence of (T,(,d)) so that the total volume of
boxes not used for the filling is smaller than

(1+ vk(q))g g H4=0) = (1 4+ vi(g))g~ "~ .

Consider a sequence (5,) of d-dimensional g-standard boxes of edge
lengths not greater than ¢~%. In (S,) we have boxes of types (t,k) for
t >ty and for k = 0,...,d — 1. Boxes of type (¢,0) permit a filling of an
ro-set. For k > 1 we can fill an r,-set with a subsequence of boxes of type
(t,k) from (S) so that the total volume of boxes not used for the filling is
smaller that (1 + vx(g))g~*@~*. This means that we can fill some 7,-set. with
a subsequence of (S,) so that the total volume of boxes not used for the
filling is smaller than

oo d-—1

DD [+ v(a)g™H*

t=tg k=1
d
= q-fodgf_—ltq-l(l +01(0) + ..o+ (L + vasa ()]
This value is equal to vy(q)g~%¢. This means that if the total volume v of

(S,) is not smaller than vy(q)g~%¢, then (S,) contains a subsequence which
permits a filling of some 74-set whose volume is greater than v—24(q)g %% =
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THEOREM. Let ¢ > 2 and s > 1 be integers. Every sequence (Sy) of
g-standard bozes of total volume greater than or equal to

d
st+q]Jd/(d -1)-
=2
contains a subsequence which permits a filling of I%(s). Moreover, a finite
subsequence of (Sy) suffices.

Proof. Cons1der a sequence of g-standard boxes of total volume greater
than or equal to s% + q]’[l_2 ¢'/(¢ — 1) — ¢ = s% + v4(q). By Lemma 3 we
conclude that an r,-set of the volume greater than s¢ can be filled with
a subsequence of our sequence. By Lemma 2 we see that this subsequence
contains a finite subsequence which permits a filling of s¢ disjoint unit cubes.
Hence, this finite subsequence permits a filling of I%(s). =

REMARK 1. Two-standard boxes are considered by many authors dis-
cussing covering and packing methods (see the survey papers [1] and [6]).
Obviously, not every covering is a filling. Therefore most of the covering
methods are not useful for a filling. The covering method of Moon and
Moser [7] is an exception. They consider a method of covering of the unit
cube by boxes of edge lengths not greater than 1. This method is based on
the method of covering by sequences of two-standard boxes. The first obser-
vation is that in the case when ¢ = 2, Theorem can be also proved by the
similar way like Theorem 2 from [7]. Another observation is as follows: in
the proof of Theorem 2 from [7] each box B of edge lengths not greater than
1 contains a two-standard box $ such that Vol(B)/Vol(S§) < 2¢. Observe,
that it is sufﬁcrent to consider two-standard boxes of edge lengths smaller
than or equal to 1 3- Each box B of edge lengths not greater than 1 contains
a two-standard box S of edge lengths smaller than or equal to % 7 such that
Vol(B)/Vol(S) < 2¢. We have an equality here only for B = I 4(1). If we con-
sider two-standard boxes of edge lengths not greater than 1 in the proof of
Theorem 2 from [7], then we can put there [1+(3 )‘11;,1(2)]2‘12 24 +1.463.
instead of [1 + v4(2)]2¢ = 2.463.

REMARK 2. Consider a ﬁl]jng of an integer cube I%(s) with a subsequence
(Sn,) of a sequence (S,) of g-standard boxes such that:

(i) each box o0,,S,, has edges parallel to the axes of the coordinate
system,

(ii) the projection of the edge of o,,5,, parallel to the j-th coordinate
axis on the j-th coordinate axis is a segment whose both endpoints are
multiples of the length of the edge of 0,,,5,, parallel to the j-th axis.

The filling described above is called g-adic (comp. [4] and [5]). From our
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proof we conclude that Theorem is true also if the word filled” is replaced
by the expression ”g-adic filled”.

In Theorem we consider g-standard boxes. A natural question is how to
extend this class of boxes. The first observation, based on Theorem, is as
follows:

COROLLARY. Let m > 2 be an integer and let ¢,...,qn be integers
greater than 1. Assume that a sequence (Qr) contains bores which are g;-
standard, where i = 1,...,m. If the total volume of (Q,) is greater than or
equal to Y v, [1+ va(gi)], then the unit cube can be filled with a subsequence

of (@n)-

Let ¢1,...,92and py,...,pq be positive integers. By a (¢1,p1,. - -, 94, Pd)-
standard boxr we mean a box with w; = pJ-_lq;mf, where m; € {0,1,...}
for 7 = 1,...,d. Arguing similarly like for ¢-standard boxes we conclude
that there exists a number v such that every sequence of (¢1,p1,...,94,Pa)-
standard boxes of total volume not smaller than v contains a subsequence
which permits a filling of the unit cube. We can generalize this result. Let
p and ¢ be positive integers. By a [p, q]-standard boz we mean a (¢, p1,. ..
...,qd,pq)-standard box, where p; < p and ¢; < g for j = 1,...,d. Let
(Qr) be a sequence of [p, g]-standard boxes of total volume equal to v. Ob-
viously, there exist positive integers py,...,pq and q1,...,¢qq such that (Q,)
contains a subsequence of (¢1,p1,. .-, ¢4, pa)-standard boxes of total volume
not smaller than p~?g~%v. Consequently, we obtain the following result.

PROPOSITION. Let p and q be positive integers. Then there exists a num-
ber v such that every sequence of [p, q]-standard bozes of total volume greater
than or equal to v contains a subsequence which permits a filling of the unit
cube.

2. A lower-bound example

In this section we will show that the value given in Theorem cannot be
lowered. Observe that if we have a sequence of ¢-standard boxes of total
volume equal to 1+ v which does not permit a filling of the unit cube, then
by adding s? — 1 cubes of edge length 1 we obtain a sequence of g-standard
boxes of total volume equal to s + v which does not permit a filling of
I%(s). Consequently it is sufficient to consider the case when s = 1. For
simplicity we will consider only the case when ¢ = 2. For other ¢ we proceed
similarly.

We say that a rectangle R with w(R) = b and wy(R) = h is of the form
b X h. Since now we will say standard instead of two-standard and regular
instead of two-regular, for short.



384 J. Januszewski

Now we present a sequence of standard boxes of total volume arbitrarily
close to 1+ v4(2) such that I%(1) cannot be filled with any subsequence of
this sequence. This sequence is constructed inductively.

Let p > 2 be an integer. For d = 2 our sequence contains the following
rectangles:

(i) a square of edge length h for each h =271,...,277,
(ii) a regular rectangle of the form A x 2h for each h =271,...,277,
(iii) a rectangle of the form 27* x 27Y for each v = 0,...,p — 2 and for
eachu=v+2,...,p.

The total area of this sequence is equal to 3 —2(3)? — 3(1)?. Obviously,
we can choose a number p in such a way that the area of our sequence is
arbitrarily close to 1+ v2(2) = §. We will show that the unit square cannot
be filled with any subsequence of this sequence.

The total area of regular rectangles from this sequence is equal to 1—( i—)p .
This means that we can fill only a part of I?(1) with the subsequence of
regular rectangles from the sequence.

Consider a regular rectangle of the form %hxh contained in I?(1) which is
not filled with regular rectangles from our sequence. Observe that we cannot
fill any regular rectangle with a subsequence of a sequence of non-regular
rectangles. If we use a number of non-regular rectangles with ws; = h for
the filling of a regular rectangle of the form %h x h, then we fill only a part
of this rectangle with them. Let the uncovered part be a rectangle R of the
form b x h, where b < h. We show that this uncovered rectangle R cannot
be filled with any subsequence of rectangles from our sequence with w; = h.
Consider three cases. If b = %h, then a part of R can be filled with a regular
rectangle of the form b x 2b. A rectangle of the form b x 2b contained in
R remains uncovered. This uncovered rectangle cannot be filled with any
subsequence of regular rectangles from our sequence. If we use non-regular
rectangles for the filling, then we encounter a similar situation as at the
beginning. We have to fill a rectangle of the form %ho X ho, where hg = 1h.
Ifbo> ;}h, then we can partially cover R with a subsequence of rectangles
with w; = h in such a way that the uncovered part is a rectangle of the
form b x 4b. We obtain our first case when b = %h. Ifb< %h, then we can
partially fill R with a subsequence of non-regular rectangles in such a way
that a rectangle of the form b X 4b remains uncovered. We obtain our first
case.

Since the above consideration is true for each h, we conclude that the
unit square cannot be filled with any subsequence of our sequence.

We proceed by induction. Let d > 3 and let ¢,, > 0form=2,...,d— 1.
Assume that we have a finite sequence of m-dimensional standard boxes, for
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each m € {2,...,d—1},such that the m-dimensional volume of this sequence
is greater than 1 + v,z(2) — €, and such that the unit m-dimensional cube
cannot be filled with any subsequence of this sequence. This means that,
for each m € {2,...,d — 1} and for each r € {0,1,...}, we can constuct
a finite sequence of m-dimensional standard boxes of edge lengths smaller
than or equal to 2~7 of total volume greater than (1 4+ vp(2) — €,,)27™
such that the cube of edge length 2™ cannot be filled with any subse-
quence of this sequence. Consequently, for each j = 1,...,d — 2 , for each
h = 2°,2',... and for each €4—; > 0, we can find the following family
F(j,h,€4—;) of d-dimensional standard boxes. Each box from F(j, h,€4—;)
has edge lengths wy_j41 = ... = wq = h. The total volume of boxes from
F(j, h,€q—;) is greater than h/(1h)4<I(1 + v4—;(2) — €4—;). The (d — j)-
dimensional cube of edge length 5h cannot be filled with any subsequence
of the sequence of (d — j)-dimensional bottoms of boxes from F(j, h,€4—;).
By (d — j)-dimensional bottom of a box B we mean a box of edge lengths
wl(B), ey wd_j(B).

Let p > 2 be an integer. By the above assumption we can construct the
following sequence of d-dimensional standard boxes. Our sequence contains:

(ii) a cube of edge length 27 for each u = 1,...,p,

(iii) a box with w; = 27% and with wy, = ... = wy = 277 for each
v=0,...,p—2and foreachu=v+2,...,p,

(iv) boxes from the family F(j,h,e4-;) for each j = 1,...,d — 2 and for
eachh=1,...,27pt,
The total volume of boxes described in (i) and (i%) is equal to 1 — 2797, The
total volume of boxes from (7:¢) is equal to

l. 9d _ 9—d(p-2) _ (l)p _ 1 — 2-(d-1)(»p-2) (;)p_l.

2 2d 1 2 2d _9

The total volume of boxes described in (iv) is equal to

g (127 () (14 m@) - )+t (5) T (e @) - o).

This means that we can choose a number p and numbers ¢3,...,€4—1 in such
a way that the total volume of our sequence is arbitrarily close to
2d [1 1\¢

T[54 (%)2(1 to@)+..+(3) T4 va@)] = 1+ v(2).
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Observe that boxes from (¢) and (i) cannot fill the entire unit cube.
Moreover, we cannot fill any box described in () or (¢7) with a subsequence
of the sequence of boxes described in (¢i¢) and (iv). Arguing similarly as for
d = 2 we conclude that the unit cube cannot be filled with any subsequence
of our sequence.
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