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A COINCIDENCE THEOREM
FOR DENSIFYING MAPPINGS AND APPLICATIONS

1. Introduction

Over the past two decades there has been a great deal of work on
the fixed point theorems for contractive and densifying nonlinear map-
pings in Banach and metric spaces (cf. [1]). Unfortunately a small num-
ber of these can be applied to real significant problems (cf. [1]). After
the paper of Goebel [2], the coincidence theory of contractive nonlinear
mappings develops in much the same manner as the fixed point theory
(cf. [1]).

In a recent paper [3] a coincidence theorem in uniform spaces for non-
linear mappings under contractive type conditions has been proved. As a
consequence of it an existence of singular solutions for ordinary and hyper-
bolic partial differential equations has been obtained. The main purpose of
the present paper is to formulate a coincidence theorem for a class of non-
linear mappings. An application to the existence of generalized solutions of
ordinary differential equations in Banach spaces is made.

2. Preliminaries and an abstract result

First we are going to prove a fixed point theorem adapting for our pur-
poses a scheme developed in [4] and [5]. We recall some definitions and
notations from these two papers.

By E we shall mean a T-separated locally convex linear topological
space. Let {x a(-)}acu (where 2 is an index set) be a family of measures
of noncompactness on F and j : 4 — U be a mapping of the index
set 2 into itself. A mapping x : 2% — [0, 00] satisfying x(c602) = x(£2)
for every subset 2 C E (tof2 being the convex closure of 2) is called a
measure of noncompactness. We suppose that every x o(-) is semiadditive
(xa(24 U £22) = max{xa(21), xa(22)}, @ € A) and translation invariant
(Xa(z + 2) = Xa($2) for every 2 € E, a € ¥, and 2 C E). It is known (cf.
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[5]) that semiadditivity implies monotonicity (i.e. 21 C 2 = xo(f21) <
Xo($22), @ € ).

We make the following basic assumptions which will be denoted by
(B):

(B1) E satisfies the first countability axiom.

(B2) X j(a)(2) < Xa(2) for every 2 € 2F and a € A.

Let M C E. The mapping f : M — FE is called densifying iff it is con-
tinuous and for every noncompact set 2 C M there exists a(f2) € U such
that Xa(a)(f(£2)) < Xj(a(a))($2)-

THEOREM 1. Under the assumptions (B) the densifying mapping f :
M — M has a fized point in M.

Proof. We first prove that

(1) Xa({m} U 2) = xa(£2)
for every a € %, every z € E and every 2 C E.

Let us choose an arbitrary o € . Since x, is monotone (being semiad-
ditive) we have xo({z}) < xa($2) if z € £2. Since x, is translation invariant,
Xo({z}) < xa($2) holds true for every z € X and every 2 C E. Now, the
semiadditivity of xo implies:

Xa({x} U 'Q) = ma'x{Xa({x})7 Xa('Q)} = Xa('Q)

and (1) is proved.
Next we are going to show that there exists a nonempty compact set
K C M such that f(K) = K. Let us choose £ € M and denote 2 =
{f*(z) : n =0,1,2,...}. Then 2 = {z} U f(£2), i.e. xoa(2) = xa(f(£2))
for every a € 2 because of (1). Since f is densifying, £2 is compact. Let
K be the set of its limit points and let us choose an arbitrary y € K.
Then y = limg_ 0 f™ (), i.e f(y) = limg— oo f™ (). This means that
f(K) € K. On the other hand, let 2 be a limit point of the set
{f™Y()}$2, C 2 (without loss of generality n; > 1).
Then z = limj_ o f™ ~!(z), which implies f(z) = limj_o f™*(2) = y.
Since z € K, we have y = f(2) € f(K),ie. K C f(K). We thus proved
f(K) = K. Since f is densifying, K is a compact subset of M.
Let us now construct a transfinite sequence of sets {2} in the following
way:
20=M,
tof(f2y-1) if v has a predecessor,
2y = { N g<v $2y  if 7 has no predecessor.

It is easy to verify that the following propositions hold for every +:
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(a) 2, C M,

(b) £2, is closed and convex,

(c) () € 2y,

(d) K C £2,.

In addition we have £2, C §2,_; if v has a predecessor and 2, C {25 for
B < v if v has no predecessor. Then there is an ordinal number v, such that
2y0+1 = £24,. It follows from (a)—(d) that £2,, is a nonempty closed and
convex subset of M.

Moreover, we have

Xa(12y0) = Xa(2yo+1) = Xa(€0f(£2y,)) = Xa(f(£2+,))

for each @ € . Taking into account (B) and the fact that f is densi-
fying, we conclude that §2,, is compact. Because f(£2,,) C f2,, we can
apply the Shauder—Tikhonoff fixed point theorem and thus complete the
proof.

Our next aim is to prove a corollary of Theorem 1 which gives a some-
what different point of view on its result. In order to do this we recall some
necessary notions and some basic relations between them.

Let A be an arbitrary set, (X,7) be a topological space and the oper-
ators R and T map A into X. The topologies 7r and 77 on A are defined
as

tr={R7Y0):0e71}, T ={T"'6):0¢c7}

where 7 is the family of the open subsets of X. The mapping R is said to
be continuous with respect to the mapping T if for each z € A and for each
neighbourhood U of Rz there exists a neighbourhood V of Tz such that
RT-Y(V)C U (i.e. Ty € V implies Ry € U).

LeMMA 1 ([6]). The mapping R is continuous with respect to T iff 77 is
stronger than Tr (every R-open set is T-open).

LEMMA 2 ([6]). Let A be an arbitrary set, (X,7) be a Hausdorff topologi-
cal space, R and T map A into X and let R be continuous with respect to T .
Let R(A) and T(A) be the ranges of R and T respectively. Then the mapping
H :T(A) — R(A) defined by Hx = RT 'z, z € T(A), is single-valued and
continuous.

Now we are ready to prove the corollary of Theorem 1 which can be
viewed upon as a coincidence theorem.

COROLLARY 1. Let A be an arbitrary set, R and T map A into E and
R(A) and T(A) be the ranges of R and T respectively. Let T(A) be a closed
and convex subset of E, R(A) C T(A) and R be continuous with respect
to T. We assume that for every 2 C A, such that T($2) is noncompact,
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there exists a(f2) € A such that Xo(2)(R(2)) < Xj(a(2))(T(2)). Then there
erists ag € AU such that Rag = Tay.

Proof. Let us define the operator Hz = RT 1z for z € T(A). We have
H :T(A) — R(A) C T(A) and according to Lemma 2 H is single-valued
and continuous. Let ¥ C T(A) be noncompact and let 2 = T-}(X), i.e.
2 ={a€ A:Tac€ X} Let o(22) € A be such that x,2)(R(2)) <
Xi(a(2)(T(£2)). Then Xo(a)(H(Z)) = Xa()(RT7H(Z)) = Xa(a)(R(2)) <
Xi(a()(T(£2)) = Xj(a(2))(¥), i-e. H : T(A) — T(A) is densifying. Accord-
ing to Theorem 1 there exists € T(A) such that z = Hz,i.e. z = RT 'z,
Let ag € A be such that Tay = z. Then Rag = z = Tap and the corollary
is proved.

Remark 1. Corollary 1 generalizes Theorem 1 on p. 45 in [6] in the case
when:

(a) ¥ C E is compact iff xo(X) = 0 for each o € A and

(b) 7 : U — A is surjective.

3. An application: treatment of noncontinuable solutions

In this section we use the approach proposed in [3] to treat noncon-
tinuable solutions of ordinary differential equations in Banach spaces, i.e.
solutions which “blow up”. The setting of the problem follows next.

Let {tx}32o be a sequence of numbers having the properties:

1)ty < tggr for £ =1,2,...; 2) limg_,o0 tx = +00. Let {pi(t)}52, be a
sequence of functions with the properties: p(-) is differentiable and mono-
tonely increasing on [tx,tr+1); Pr(tx) = 1; lims, ., —0 P&(t) = +oo0.

Let Y be a Banach space and f : [tp,+00) XY = Y.

The function z(+) : [to, +00) — Y is called a generalized solution of the
Cauchy problem (cf. [3])

(2) z'(t) = f(t,z(t)) fort >t
() =z €Y
if it has the following properties:

a) z(t) is continuous on [t,tx41) for k =0,1,2,..;

b) z(t) = zx + S f(s,z(s))ds on [tk,tkt+1);

tx

¢
€) Ty = lim {[zk-i- Sf(s,:z:(s)) ds]/pk(t)}exists for k=0,1,2,...
t—ip 410 th
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Following [5], we introduce a family of measures of noncompactness in

C([to, +o0),Y).

ProprosITION 1 ([5]). Let 2 C C([to, +0),Y), 2: = {f(t): f€ N} CY
and xg be the Hausdorff measure of noncompactness in Y. Then

(3) Xa($2) =, max XH(£2¢)

is a family of semiadditive and translation invariant measures of noncom-
pactness in C([to, +00),Y) for a > to.

Remark2. In [5] B. N. Sadovski considers the Banach space C([a, d},Y)
and introduces one measure of noncompactness in it as in Proposition 1.

Remark 3. The family (3) of measures of noncompactness (for a > t;)
will be used in the application of the results of the previous section for
proving existence of a generalized solution of the Cauchy problem (2).

THEOREM 2. Let p,q and r be reals satisfying

4) p>q, p>1, ¢>0, r>0
and
(5) p—gq-—pr>0.

Let pi(t) = (te+1 — te)P/(tk4r — )P in [tk tiy1) for k= 0,1,2,...
Let Y be a Banach space and f(t,y) : [to,+00) X Y — Y have the fol-
lowing properties:

~

(6) a) lf®y)lly < (L+1lglly) fort € [tk,tksr) andy €Y

(tks1 — 1)

where C is a positive constant;
b) if K is a compact subset of [tx,tx+1) for some k =0,1,2,..., and B
is a bounded subset of Y, then f(t,y) is uniformly continuous on K X B;
c) for every subset D of Y and for every t € [tg,tkt1)

(7) xulf(t, D)) < k- xu(D)

holds true, where x is the Hausdorff measure of noncompactnessinY and
the constant k satisfies

(8) E(tkgr —te) <1 fork=0,1,2,....

Then there ezists a generalized solution of (2).
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The proof of Theorem 2 will be divided into several steps aimed at mak-
ing preparations for applying Theorem 1.

Let us first note that (4) and (5) imply r < 1.

Let 2 € Y be the initial condition of the problem (2), let {Lx}{2, be a
sequence of positive reals and let us define inductively Co = 0, Cx = Cr—1 +
Ly_1(tg—tx—1)for k =0,1,2,.... We define the set M C C([to, +00),Y) by
(9) M ={z(-) € C([to, +0),Y) : |lz(tx) — zolly

< Cyfor k=0,1,2,... and z(-)
is Lipschitz continuous on [t,?x+1] with Lipschitz constant Ly
for k=0,1,2,...}.

Let the operator S : M — F([to, +00),Y) be defined as

1
Pr(t)

where zj for k = 1,2,3,... is defined by

(10) (Sz)(t) = [xk + S f(s,pr(s).2(8)) ds] for t € [tk,tks1)

. 1 :
(11) T = t—1>ltrkn—0 pk-—1(t) [a:k_l + tks l f(8ypr=1(8).z(s)) ds]
(if it exists) and F([to, +0), Y') is the set of all functions defined on [tp, +00)
and taking values in Y.

Next we show that we can choose the constants {Lx}{2, in such a way,
that S(M) C M be satisfied. In this case all z; from (11) are well defined
because M consists of functions which are uniformly Lipschitz on [tx,2x+1]
fork=1,2...

Remark 4. For the calculations in the proof of the following Proposi-
tion 2 we make an additional assumtion: ¢ # 1 and pr + ¢ # 1. In the case
when ¢ = 1 or pr4¢ = 1 the calculations and the inequality (13) (see below)
must be changed (accordingly).

PROPOSITION 2. The numbers {Lx}52, can be choosen in such a way
that S(M) C M be satisfied, where the set M is defined by (9) and the
operator S : M — F([t0,4+0),Y) is defined by (10).

Proof. Let, by induction , L; for : = 0,1,...,k — 1 be already choosen.
This means that zx € Y is well defined by (11) (the initial condition zg
being given), that C; for ¢ = 0,1,...,k are already known and that

(12) llzxlly < ||zolly + Ck-
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Since r < 1 we can choose Lj so large that the following inequality is
satisfied:

pllzolly + Cx) ¢ [ 2p
thy1 — tk (tke1.— k)71 —4ql

é? ( 2p )
+ +1)-[llz + Cr + Li(t —t.)" < L.
(tk+1 - tk)q |1 —-q- p,,.' [” 0”Y k k( k+1 k)] k

(13) + 1]

Let z(:) be an arbitrary fixed element of M. Using (9), for t € [tx, tx+1]
we obtain

||:v(t) - :B(tk)” < Lk(t - tk) < Lk(tk+1 - tk), i.e.
(14) lz@®lly < lz@)lly + Lr(trs+1 — tx) < llzolly + Cr + Li(tr1 — te)-

In view of the mean value theorem, it is sufficient to prove that ||[(Sz)(?)]'||y
< Ly for t € [tg,tr+1]- Because of

(Sa)®)] = ”g’:—jﬁi)— [os+ | £s,pr(o)a(s)) ds]

4 Akt = 8)7 (tesr = 8)° f(t, pr(t).z(2)),

(the1 = te)P’

taking into account (4), (5), (6), (12) and (14), we have
I(S=) D) lly
< M—t)— (lally + S 1o, pr(s)a(s)) ds]

(Lt

# IO (@)@l

(tk -1 )P

< Plesr —8)P~ -1

(tk41 — t)P
t

X C\(t — a(1 (te+1 k ,.
[||:vk||Y + A( k+1 — 8) < + Crrs = 5)7 llz()y | ds
(tkt1 = 1) c [ (the1 — te)?"

+ . 1 Al
(tk-{-l - tk)P (tk+1 — t)q + (tk-l-l _ s)pr ”l‘( )”Y]
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- ~ — t
< Pllzklly (tesr — )P 1 Cop(trgr —t)P!

-\ (2 —38) %ds
(tk+1 - tk)P (tk+1 - tk)p ts,,( k+1 )

C.p(tesr — )P
(tr41 — e )PP7
t

x §(tker = )77 lloolly + Ci + Li(tisr — )] ds
tx

+

é(tk.H — )P a(tk+1 —t)p-a-pr
(tk+1 — te)P (trg1 — ti )PP
X [lzolly + Ck + Lr(te+1 — te)]"

(tkt1 — te)P 1-q (tkt1—te)?

C.p tegr — £)P!
1—q (tk4r — tg)pte?

_ Pllzelly (tear = )P Cp (g1 —tyP0

+

N [_ C.p.(tpyr — )PP N C.p.(try1 — t)P1 ]
(1—q—pr)(tegr — te)P~?" (1 — g — pr)(tesr — tg)PHa-!
X [lzolly + Ck + Li(tis+1 — i)l
Cltier = 1)P~1 | Cltpyr —t)p~977"
(tks1 — )P (tkg1 — te)PPm
X [llzolly + Cx + Li(te+1 — )"

< Plsolly +Cw) | 2Cp 1 ¢
= . +
(tk+1 - tk) |1 - QI (tk+1 - tk)q (tk+1 — tk)q
2C. 1
+ p

[1—g—prl (tesr —te)s [lzolly + Ck + Li(te+1 — te)]”

-~

C
+ ————Tllzolly + Ck + Li(tes1 — t&)]" < Li,
o —tk)q[” olly + C + Li(terr — t)]” < Ly

the last inequality being (13). Proposition 2 is thus proved.

PROPOSITION 3. The set M, defined by (9) is closed and convez subset
Of C([to, +OO),Y)

Proof. Obvious.
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PROPOSITION 4. The operator S : M — M is continuous in the topology
of C([to, +°°)’ Y)'

Proof. Let the sequence {z,()}3; C M tend to Z(-) in the
topology of C([To,+00),Y), which is generated by the family of seminorms
lz( e = maxe<i<a ||2(t)]ly for a > to (since M is closed, Z(-) € M
holds true). We have to prove that the sequence {S(z,)(-)}32; tends to
($7)(-) in the same topology. Since every interval (i, a] consists of finite
number of intervals [tx,tx4+1] (plus, may be, an interval [tg,a]), it is suffi-
cient to prove that {S(z,)()}5%, converges uniformly to (ST)(-) on every
[tks tot]-

Fix k and 6§ € (0,tk41 — tx). Because of the definitions of M and
pi(t), the set {y € Y : y = p(¢).z(t), t € [tk,tk+1 — 6]} is contained in
B={yeY:|yly <7} for suﬁic1ent1y large v. Choosing an arbitrary
€ > 0, we can find 6 > 0 such that #,Z € [tk, k41 — 6], [t — 1| < & and
v1,92 € B, lly1 — 2lly < & imply [|f(,3) — G, 1)lly < ¢ because f is
uniformly continuous on [tx,tx41 — 8] X B. Further on, there is an integer ng
such that n > ng implies max;, <i<t,,, -5 Px(1)]|2n(t) — Z(t)||ly < 6o. Then
for n > ng we have

max 6”(51‘n)(t) - (Sz)()lly

tp St<tk 41~

[ 7(s, Pa(s)-n(s)) ds — | f(.s,pk(s),?c'(t))ds”Y

¢
te <t<tip1—6 Pr(t) t

< LB 3 1£(3, 2r(5)-2n(5)) = (5, pi(5)-2(s))lly ds
tep1—6
< S eds = £.(tk+1 — 1k — (5)

tk

The uniform convergence of {S(2,)(-)}3%; to (ST)(:) on [tk,tx41 — 6] is
thus proved. Since § € (0,tx4+1 — tx) was arbitrary fixed, we conclude
that {S(z,)(-)}3%, is pointwise converging to (ST)(:) on [tk,fx+1]- Since
{S(zx)(-)}3L1 C M, it consists of uniformly Lipschitz on [tx,%k4+1] func-
tions (with Lipschitz constant L). It follows directly from here and from
the pointwise convergence of {S5(z,)(-)}5%, to (SZ)(-) on [tk,tk+1] that
{8(zn)(-)}3L, converges to (SZ)(:) uniformly on [tk,ti41].

PROPOSITION 5. Let 2 be a subset of M such that K = {yeY :y=
(Sz)(tx),z(-) € 2} is a compact set and 2, = {z(t) : 2(-) € 2} C Y. Then
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for each t € [ty,tr+1] we have
{ . ¢

(15) xa{ s [R+ | Somuto) )]}

(t

< ku(tipr = tr)- N <r?2’tx xH(£2:).

where x g is the Hausdorff measure of noncompactness in Y.

Proof. Let t € [tx,tx4+1] be fixed. Since

i { [ + § £(s,pu(5)-2) ds| } = x| § £(5,p(5).2) ds]

ty

(because of the compactness of R ), (15) is equivalent to

(16) )xH[sf(s P()2) ds] < Foltiwr — te)., max xu(20)

pi(t p<t<try
Since 2 C M, the set {y € Y : y = p(s).z(s), s € [t,t],2(-) € 2} is
contained in a bounded subset B of Y. The inclusion 2 C M implies also
that {2 is equicontinuous. Since f is uniformly continuous on [tx,t] X B, the
set of functions f(pk(s).92) is equicontinuous too. Hence for each £ > 0 there

exists a sufficiently large number n such that

t— 1) —

> f(si,pk(s,-)w(si»HY <e

(17)

J £(s,pu(s)a(s)) ds —

for each 2(-) € £2, where s; =t + %(t -t),1=0,1,2,...,n
Let us denote

ru={veyiv= 13 foumisate) =0 2}

Then (17) means that the sequence of sets {(t — tx).I'n}o2, tends to
Stk f(3,pr(8).02) ds in the Hausdorff metric. Hence limy, o0 xa[(2— %) %] =
XH[S:,, (s, pr(8)$2) ds], because x g is continuous with respect to the Haus-
dorff convergence. Hence, to prove (16), we need to show that

(t = te)xm (L) < k(tesr — tx)  max Xa(82e).

(18) ty <t<tp4

L
Pr(t)
We shall prove that xg(Ih) < pk(t)%ma’xtkStStk.,_l XxH(£2;) which, because
of t — t < tr41 — tx and pi(t) > 0, implies (18).



Coincidence theorem for mappings 375

Denoting @n = UL, f(sirpu(si)2,), we have xu(Qn) =
maxX;=1,...n XH|f(5i, Pk(5i)92;)] because xpg is semiadditive. Since I', C
©0Q,,, then taking into account (7) and the fact that pi(s) is increasing
we have

xH(In) € xH(®Qn) = x#(@Qnr) < i;glgfn%-xfz[pk(si)ﬂs..]

< max k.pe(si)xu(2s) < pe(t)-k. | max  xu(2).
We thus proved (15) for ¢t € [tk,tx41). To prove (15) for t = ti4q1, we
note that the set of functions S(f2) is equicontinuous because S(£2) C M.
Hence [S(2)]: = {y € Y : y = y(t),y(-) € S(£2)} is continuous in t with
respect to the Hausdorff metric. Hence we can pass to the limit in (15)
when ¢t — #x41(t < tg41) and thus complete the proof of the proposi-
tion.

Remark 5. The proof of Proposition 5 follows directly the proof of
Lemma 3 on p. 237 in [5]. We give the proof here for reader’s conve-
nience. _

Proof of Theorem 2. Let A = [tg,+0), {Xo}aea be defined by (3) and
j : A — A be defined by j(a) = a for each a € 2. Since j(a) = a, (B2) is
satisfied. In view of the preceeding propositions, what remains to be shown
is that the operator 5 is densifying.

Let £2 be a noncompact subset of M. Since 2 C M implies equiconti-
nuity of {2 on every interval, [tp,a], @ > tg, there is t > tp such that 2,
is noncompact in Y. Let k be the integer with the property: £2; is compact
for all ¢ < ¢ (if there is t € [tp,?1] such that £2; is noncompact, k£ = 0 by
definition) and there is t € (¢, ¢x41] such that £2; is noncompact. Then in
view of (8) and (15) we have max;, <i<s,,, X#[S(22)] < Xty,, (12). Further
on (15) implies Xz, [S(£2)] = 0, because {2; is compact for ¢ < t;. Hence
X1 [S(82)] < Xty4,(92), which means that S : M — M is densifying. Apply-
ing Theorem 1 we end the proof.

Remark 6. Under the additional assumption txy; — tx < 1 Theorem 2
is valid with pi(t) = exp{(trs+1 — tx) "1}/ exp{(tx+1 — t)"'}. We omit the
calculations, because they are long and boring, but in principal the same as
in the proof of Proposition 2.
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