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A COINCIDENCE THEOREM 
FOR DENSIFYING MAPPINGS AND APPLICATIONS 

1. Introduction 
Over the past two decades there has been a great deal of work on 

the fixed point theorems for contractive and densifying nonlinear map-
pings in Banach and metric spaces (cf. [1]). Unfortunately a small num-
ber of these can be applied to real significant problems (cf. [1]). After 
the paper of Goebel [2], the coincidence theory of contractive nonlinear 
mappings develops in much the same manner as the fixed point theory 
(cf. [1]). 

In a recent paper [3] a coincidence theorem in uniform spaces for non-
linear mappings under contractive type conditions has been proved. As a 
consequence of it an existence of singular solutions for ordinary and hyper-
bolic partial differential equations has been obtained. The main purpose of 
the present paper is to formulate a coincidence theorem for a class of non-
linear mappings. An application to the existence of generalized solutions of 
ordinary differential equations in Banach spaces is made. 

2. Preliminaries and an abstract result 
First we are going to prove a fixed point theorem adapting for our pur-

poses a scheme developed in [4] and [5]. We recall some definitions and 
notations from these two papers. 

By E we shall mean a TVseparated locally convex linear topological 
space. Let {x a(")}aea (where 21 is an index set) be a family of measures 
of noncompactness on E and j : 21 —• 21 be a mapping of the index 
set 21 into itself. A mapping x [0)°°] satisfying x(co^) = x(^) 
for every subset Q C E (coQ being the convex closure of ft) is called a 
measure of noncompactness. We suppose that every x<*(') is semiadditive 
(x«(fli U Q2) = max{xa(^i),Xa(^2)}, a € 21) and translation invariant 
(Xai® + to) = Xa(to) for every x 6 E, a € 21, and fl C E). It is known (cf. 
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[5]) that semiadditivity implies monotonicity (i.e. l?i C tt2 => Xa(^i) < 
X«(/22), « € 21). 

We make the following basic assumptions which will be denoted by 
(B): 

(Bl) E satisfies the first countability axiom. 
(B2) Xj(a)(ft) < Xa(fi) for every Q G 2E and a G 21. 
Let MCE. The mapping f : M ^ E is called densifying iff it is con-

tinuous and for every noncompact set ii C M there exists a(fi) G 21 such 
that Xa(n)(f(tt)) < Xj(«(n))(fl)-

T H E O R E M 1. Under the assumptions (B) the densifying mapping f : 
M —• M has a fixed point in M. 

Proof . We first prove that 

(1) X«({*} U ii) = Xa(rt) 
for every a G 21, every x € E and every ii C E. 

Let us choose an arbitrary a G 21. Since Xa is monotone (being semiad-
ditive) we have Xaii®}) < Xa(ii) if ® G Since Xa is translation invariant, 
Xa({®}) < Xa(fl) holds true for every x G X and every ii C E. Now, the 
semiadditivity of Xa implies: 

Xa({*} U ii) = max{xa({a;}),Xa(^)} = XaW) 
and (1) is proved. 

Next we are going to show that there exists a nonempty compact set 
K C M such that f(K) = K. Let us choose x G M and denote ii = 
{fn{x) : n = 0,1,2,...}. Then ii = {x} U f(ii), i.e. Xa(i2) = *«( / («)) 
for every a G 2t because of (1). Since / is densifying, Q is compact. Let 
K be the set of its limit points and let us choose an arbitrary y G K. 
Then y = limfc.+oo /"* (x), i.e f(y) = limt^oo fnk+1(x). This means that 
f(K) C K. On the other hand, let z be a limit point of the set 

{ / n t _ 1 ( « ) } * i i C ii (without loss of generality m > 1). 
Then z = lim/_oo/n*'_1(z), which implies f(z) = lim/^oo fnki (z) = y. 
Since z G K, we have y = f(z) G f(K), i.e. K C f(K). We thus proved 
f(K) = K. Since / is densifying, K is a compact subset of M. 

Let us now construct a transfinite sequence of sets in the following 
way: 

J?o = M, 
( co/(i27_i) if 7 has a predecessor, 

7 — | f]|3<7 i ^ 7 has no predecessor. 
It is easy to verify that the following propositions hold for every 7: 
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(a) i2 7 C M, 
(b) i ? 7 is closed and convex, 
(c) / ( / 2 7 ) C i 2 7 , 
(d) K C J ? 7 . 
In addition we have ,i?7 C J7 7 _ i if 7 has a predecessor and J? 7 C for 

f3 < 7 if 7 has no predecessor. Then there is an ordinal number 70 such that 
J ? 7 o + 1 = /27 o . It follows from (a) - (d) that J?7o is a nonempty closed and 
convex subset of M . 

Moreover, we have 

X a ( ^ 7 o ) = = X a ( c o / ( ^ 7 o ) ) = X a ( / ( ^ 7 o ) ) 

for each a € SI. Taking into account (B) and the fact that / is densi-
fying, we conclude that ftl0 is compact. Because / ( i 7 7 o ) C Q l a we can 
apply the Shauder-Tikhonoff fixed point theorem and thus complete the 
proof. 

Our next aim is to prove a corollary of Theorem 1 which gives a some-
what different point of view on its result. In order to do this we recall some 
necessary notions and some basic relations between them. 

Let A be an arbitrary set, ( X , r ) be a topological space and the oper-
ators R and T map A into X. The topologies tr and ry on A are defined 
as 

t r = {R-\e) -.9er}, rT = {T-\e) : 9 € r } , 

where r is the family of the open subsets of X. The mapping R is said to 
be continuous with respect to the mapping T if for each x 6 A and for each 
neighbourhood U of Rx there exists a neighbourhood V of Tx such that 
RT~X(V) C U (i.e. TyeV implies Ry € U). 

L e m m a 1 ([6]). The mapping R is continuous with respect to T iff tt is 
stronger than tr (every R-open set is T-open). 

L e m m a 2 ([6]). Let A be an arbitrary set, (X,r) be a Hausdorff topologi-
cal space, R and T map A into X and let R be continuous with respect to T. 
Let R(A) andT(A) be the ranges of R and T respectively. Then the mapping 
H : T(A) R(A) defined by Hx = RT_1x, x £ T(A), is single-valued and 
continuous. 

Now we are ready to prove the corollary of Theorem 1 which can be 
viewed upon as a coincidence theorem. 

C o r o l l a r y 1. Let A be an arbitrary set, R and T map A into E and 
R{A) and T(A) be the ranges of R and T respectively. Let T(A) be a closed 
and convex subset of E, R(A) C T(A) and R be continuous with respect 
to T. We assume that for every ft C A, such that T(ft) is noncompact, 
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there exists a ( i? ) € 21 such that Xa(n)(R(fy) < Xj(a(n))(T(t2))- Then there 
exists ao € 21 such that Rao = Tao-

P r o o f . Let us define the operator Hx = RT_1x for x e T(A). We have 
H : T(A) —• R{A) C T{A) and according to Lemma 2 H is single-valued 
and continuous. Let S C T{A) be noncompact and let Q = T~1(S), i.e. 
Q = {a e A : Ta € E). Let a(Q) G 21 be such that Xa(n)(R(M)) < 
XHcm(T(i2)) . Then Xa(fl)(JT(27)) = x ^ ^ T " 1 ^ ) ) = Xa(a)(R(n)) < 
Xj(a(s?))(T(i2)) = Xj(a(n))(Z), i-e. H : T{A) -»• T{A) is densifying. Accord-
ing to Theorem 1 there exists x € T(A) such that x = Hx, i.e. x = RT~^x. 
Let ao G A be such that Tao — x- Then Rao = x — Tao and the corollary 
is proved. 

R e m a r k 1. Corollary 1 generalizes Theorem 1 on p. 45 in [6] in the case 
when: 

(a) S C E is compact iff XaC-S1) = 0 for each a € 21 and 
(b) j : 21 21 is surjective. 

3. An application: treatment of noncontinuable solutions 
In this section we use the approach proposed in [3] to treat noncon-

tinuable solutions of ordinary differential equations in Banach spaces, i.e. 
solutions which "blow up". The setting of the problem follows next. 

Let {ifcj^o be a sequence of numbers having the properties: 
1) tk < tk+1 for k = 1,2, . . . ; 2) lim^ooifc = +°o. Let {pk(t)}kLo b e a 

sequence of functions with the properties: Pk(-) is differentiate and mono-
tonely increasing on [i*,f*+i); Pk(h) = 1; limt_>ijt+1_o pk(t) = +oo-

Let Y be a Banach space and / : [io, +oo) x Y —> Y. 
The function x(-) : [f0,+oo) —• Y is called a generalized solution of the 

Cauchy problem (cf. [3]) 

(2) x'(t) = f(t,x(t)) for t > to 

x(t0) = Xo e Y 

if it has the following properties: 

a) x(t) is continuous on [ifc, ijt+i) for k = 0,1,2, . . . ; 

t 
b) x(t) = xk + \ f(s,x(s))ds on [ifc,ifc+i); 

tk 
t 

c) Xk+i = lim q | |a:fc+J/(s,x(5))iisj/pfc(/) |exists for A; = 0 , l , 2 , . . . 
* + 1 tk 
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Following [5], we introduce a family of measures of noncompactness in 
c ( [ i 0 , + o o ) , r ) . 

PROPOSITION 1 ([5]). Let Q ç C([i0,+oo), Y), Ot = {/(«) : / € Q) ç Y 
and XH be the Hausdorff measure of noncompactness in Y. Then 

( 3 ) X a ( G ) = m a x X H W t0<t<a 

is a family of semiadditive and translation invariant measures of noncom-
pactness in C([i0, +oo), Y) for a > io-

Re m ar k 2. In [5] B. N. Sadovski considers the Banach space C([a, 6], Y) 
and introduces one measure of noncompactness in it as in Proposition 1. 

R e m a r k 3. The family (3) of measures of noncompactness (for a > to) 
will be used in the application of the results of the previous section for 
proving existence of a generalized solution of the Cauchy problem (2). 

THEOREM 2 . Let p,q and r be reals satisfying 

(4) p > q, p > 1, q > 0, r > 0 

and 

(5) p — q — pr > 0. 

Let pk(t) = (tk+1 - tk)p/(tk+1 - ty in [tfc, i fe+1) for k = 0 , 1 , 2 , . . . 
Let Y be a Banach space and f(t,y) : [fo,+oo) xY ^ Y have the fol-

lowing properties: 

(6) a) ||/(t,y)||y < + /or< G [ifc,i*+i) andyïY 

where C is a positive constant; 
b) if K is a compact subset of [f*, ijt+i) for some k = 0 , 1 , 2 , . . . , and B 

is a bounded subset of Y, then f(t, y) is uniformly continuous on K x B; 
c) for every subset D of Y and for every t G 

(7) XH[f(t,D)]<k-XH(D) 

holds true, where xh is the Hausdorff measure of noncompactness in Y and 
the constant k satisfies 

(8) /or fc = 0,1,2, — 

Then there exists a generalized solution of (2). 
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The proof of Theorem 2 will be divided into several steps aimed at mak-
ing preparations for applying Theorem 1. 

Let us first note that (4) and (5) imply r < 1. 
Let xo € Y be the initial condition of the problem (2), let {£fc}£i0 be a 

sequence of positive reals and let us define inductively Co = 0, Cjt = Ck-i + 
Lk-i (tk-tk-i) for k = 0 ,1 ,2 , . . . . We define the set M C C([<0, +oo),Y) by 

(9) M = {*(•) G C([«„, +oo), Y) : \\x(tk) - x0\\Y 

< Ck for k = 0 ,1 ,2 , . . . and x(-) 

is Lipschitz continuous on with Lipschitz constant Lk 

for k = 0,1,2, . . .} . 

Let the operator S : M J7{{to, +oo), Y) be defined as 

1 r 4 
(10) (Sx)(t) = -r-r Xk + \ f(s,pk(s).x(s))ds for t € [ifc,<fc+l) 

Pk{t) J 

where Xk for k = 1 ,2 ,3 , . . . is defined by 

1 i 
( 1 1 ) xk = Hm j-r xk-i + \ f(s,pk-i(s).x(s))ds *k— 1 
(if it exists) and ^"([io, +oo), F ) is the set of all functions defined on [fo, +oo) 
and taking values in Y. 

Next we show that we can choose the constants {Zjt}£l0 in such a way, 
that S(M) C M be satisfied. In this case all Xk from (11) are well defined 
because M consists of functions which are uniformly Lipschitz on 
for fe = 1 , 2 . . . 

R e m a r k 4. For the calculations in the proof of the following Proposi-
tion 2 we make an additional assumtion: q ^ 1 and pr + q ^ 1. In the case 
when q = 1 or pr + q = 1 the calculations and the inequality (13) (see below) 
must be changed (accordingly). 

PROPOSITION 2. The numbers {Lk}kL0 can be choosen in such a way 
that S(M) C M be satisfied, where the set M is defined by (9) and the 
operator S : M ^([tO, +oo),Y) is defined by (10). 

P r o o f . Let, by induction , Li for i = 0 ,1 , . . . , k - 1 be already choosen. 
This means that Xk G Y is well defined by (11) (the initial condition xq 
being given), that C,- for i = 0 ,1 , . . . , k are already known and that 

(12) \\xk\\Y <\\x0\\Y + Ck. 
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Since r < 1 we can choose Lk so large that the following inequality is 
satisfied: 

( 1 3 ) K I M r + C*) | 

+ 

tk+l-tk (tk+l.~tk)q 

c 

2P 

Lli- f f l 
+ i 

(ijk+i - tk)* + l ) • [ I M | y + Ck + Lk(tk+i - tk)]r < Lk. 

Let x(-) be an arbitrary fixed element of M. Using (9), for t £ [ijfc,f*+i] 
we obtain 

| | i(i) - x(f*)|| < Lk(t - t k ) < Lk(tk+i - t k ) , i.e. 

(14) | |x(/)| |y < ||®(i*)||y + Lk(tk+1 - t k ) < \\x0\\Y + Ck + Lk(tk+1 - t k ) . 

In view of the mean value theorem, it is sufficient to prove that ||[(5'a:)(i)]'||y 
< Lk for t € Because of 

[(Sx)(t))' = 
, _ P(tk+1 - t y - 1 

Xk + \ f(s,pk(s)x(s))ds 
tk (tk+i ~ tk)p 

taking into account (4), (5), (6), (12) and (14), we have 

\\{(Sx)(t)]'\\Y 

< p(tk+1 - t y - 1 

(tk+i - t k y 

(tk+i - t y 

z 

M r + S l l / ( W ^ M ^ I M * ] 
tk 

+ 

< 

(tk+i - t k y 

p(tk+1 - t y - 1 

(tk+1 - t k y 

INIIr 

|| f(t,pk(t).x(t))\h 

x 

+ 

+ c S (tk+1 - * ) - « ( i + ^ ll»(')lly) d s 

(tk+1 - t y c 
( t k + i - t k y (tk+i-ty 1 + W< 
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p\\Xk\\y(tk+l - c.p (tk+1-ty-i i _ 
(tk+i-tky T (tk+i-tky J 

C . p . J T K + r - T Y - 1 

(tk+i - i f c ) p - p r 

t 
X S ( t f c + 1 - 5) - ' - p r [||x 0 ||y + Ck + Ifc(ifc+1 - ifc)]r ds 

tk 

C(tk+1 - QP-9 C(tk+1 - ty-*-Pr 

(ifc+1 - i*)p (ifc+1 - *fc)p-pr 

x [\\x0\\Y + Ck + Lk(tk+1 -ifc)]r 

p.||®fc||y.(ifc+i - ty-1 c.p (ifc+i - ty~" 

+ 

(Îfc+1 - *fc)p 1 - q {tk+1 - tky 

C.p tk+ ! - Î ) p _ 1 

1 -q (tk+i - ifc)p+9_1 

+ (1 - q - pr)(tk+l - tk)P-Pr (1 - q - pr)(tk+1 - i t ) " * 9 " 1 J 

x [||z0||r + Ck + Lk(tk+l -tk)]r 

C(tk+1 - C(tfc+i ~ <)p-q-pr 

(ifc+i - ' * ) p (*fc+i - ifc)p _ p r 

x [||z0||y + Ck + Lk(tk+1 

< p(llx0]|y + C k ) | 2C.p 1 | 

(¿ik+l-ifc) |l-ç| (tk+l-tk)l (tk+l~tk)l 

+ J T ^ H ' + + -

+ ^ ^ < f c ) g HMIr + + ^fcCfc+i - < Lk, 

the last inequality being (13). Proposition 2 is thus proved. 

PROPOSITION 3. The set M, defined by ( 9 ) is closed and convex subset 
ofC([to,+oo),Y). 

P r o o f . Obvious. 
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PROPOSITION 4 . The operator S : M —• M is continuous in the topology 
ofC([t0,+oo),Y). 

P r o o f . Let the sequence C M tend to x(-) in the 
topology of C([T0, +00), Y), which is generated by the family of seminorms 
||x(-)||a = max i o<i< a ||x(i)||y for a > t0 (since M is closed, x(-) € M 
holds true). We have to prove that the sequence {.SXznX-)}«^! tends to 
(5'x)(-) in the same topology. Since every interval [¿o, a] consists of finite 
number of intervals (plus, may be, an interval [ft, a]), it is suffi-
cient to prove that {5 ,(ccn)(-)}^i1 converges uniformly to (Sx)(-) on every 

Fix k and 6 G (0,ifc+i - tk)- Because of the definitions of M and 
Pk(t), the set {y 6 Y : y = pk(t).x(t), t G [tk,tk+1 — is contained in 
B = {y G Y : ||y||y < 7 } for sufficiently large 7 . Choosing an arbitrary 
£ > 0, we can find ¿>0 > 0 such that t , t (E [tk,tk+i — 6], — t\ < Sq and 
yi,V2 € B, ||yi - y2\\y < k imply \\f(t,yi) - 2/2>||y < e because / is 
uniformly continuous on [tk, ifc+i —S]xB. Further on, there is an integer no 
such that n > n0 implies maxtk<t<tk+1-6 Pk(t)\\xn(t) - z(i)||y < ¿o- Then 
for n > no we have 

max \\(Sxn)(t)-(Sx)(t)\\Y 
tk <t<tk+1 —0 

< max 
tk<t<tk+1 

1 ,, * * 

-s pk{t) II J 

^ , „B?* « \ ll/(S'i>fc(S)-a;rl(s)) - f(s,pk(s).x(s))\\Yds 
tk<t<tk+i-6 ,J 

tk 

tk+1—6 

< J £ ds = £.(tk+1 - tk -
tk 

The uniform convergence of {5(a;n)(-)}^L1 to (Sx)(-) on \tk,tk+1 — is 
thus proved. Since 6 6 (0, ifc+i — tk) was arbitrary fixed, we conclude 
that { 5 ( x n ) ( - ) } ^ = 1 is pointwise converging to (Sx)(-) on [ifc, ¿fc+i]- Since 
{5 (x„ ) ( - ) }^ . 1 C M, it consists of uniformly Lipschitz on ¿fc+i] func-
tions (with Lipschitz constant Lk). It follows directly from here and from 
the pointwise convergence of {<i>(®n)(')}n^i to (Sx)(-) on [¿^, ifc-t-i] that 
{5'(a;n)(-)}^. 1 converges to (Sz)(-) uniformly on [tk,tk+i]. 

PROPOSITION 5 . Let Q be a subset of M such that K = {y e Y : y = 
(Sx)(tk),x(-) 6 S2} is a compact set and iit — {^( i ) : ®(0 G C Y. Then 



374 V. G. Ange lov , Ts. Y. T s a c h e v 

for each t € [ifc, we have 

(15) J /(*,pfc(*).i2)<fc]} 
tk 

< k.(tk+1 - i t ) , max xh(/2f). 
tk<t<tk+i 

where xh is the Hausdorff measure of noncompactness in Y. 

P r o o f . Let t G be fixed. Since 
t t 

XH{ [ K + J f(s,pk(s).ft) da] } = XH [ J F ( S , P K ( S ) - V ) DS 

tk tk 

(because of the compactness of K), (15) is equivalent to 

1 t
 ~ 

(16) —77T ' XH I \ f(s,pk(s)ft) ds < k.(tk+i - tk). max Xff ( ^ 0 -
ĵt 

Since C M, the set {y € Y : y = pk(s).x(s), s G G i?} is 
contained in a bounded subset B of Y. The inclusion ft C M implies also 
that ft is equicontinuous. Since / is uniformly continuous on [it, i] x B, the 
set of functions f(pk(s).ft) is equicontinuous too. Hence for each e > 0 there 
exists a sufficiently large number n such that 

(17) \ f(s,pk(s)x(s))ds- -——y2f(si,pk(si)x(si)) J n i—J 
»=i 

< £ 

for each x(-) € ft, where Si = tk + ^( i — tk), i = 0 ,1 ,2 , . . . , n. 
Let us denote 

rn = j s / e Y :y= 

Then (17) means that the sequence of sets {(/ — i fc ) . / ^}^ ! tends to 
\lk f(s^Pk(s)-ft) ds in the Hausdorff metric. Hence l im^oo XH[(t — tk)r n ] = 
X i f f ( s , p k ( s ) f t ) ds], because XH is continuous with respect to the Haus-
dorff convergence. Hence, to prove (16), we need to show that 

(18) — ^ - ( i - tk)xH(rn) < k(tk+1 - tk) max XHW-
Pk{t) tk<t<tk + a 

We shall prove that XH(rn) < Pk(t)km&xtk<t<tk+1 XH(ftt) which, because 
of t — tk < tk+1 - tk and pk(t) > 0, implies (18). 
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Denoting QN = U L i F(SI,PK(SI)fis>), we have XH(QU) = 
m a x , • = ! , . . . , „ b e c a u s e x h is semiadditive. Since Tn C 
coQn, then taking into account (7) and the fact that Pk(s) is increasing 
we have 

XH(RN) < XH(coQn) = XH(QU) < . m a x K.XH\PK(SI).0SI] 
t= l , . . . , n 

< m a x k.pk(si).XH(fiSi) < Pk(t).k. max Xh{^i)-
t= l , . . . , n tk<t<th+1 

We thus proved (15) for t G /fc+i)- To prove (15) for t = tk+i, we 
note that the set of functions S(f2) is equicontinuous because S(fi) C M. 
Hence [5(i2)]t = { y G Y : y = y(t),y(-) £ 5"(i2)} is continuous in t with 
respect to the Hausdorff metric. Hence we can pass to the limit in (15) 
when t —> tk+i(i < ijt+i) a n d thus complete the proof of the proposi-
tion. 

R e m a r k 5. The proof of Proposition 5 follows directly the proof of 
Lemma 3 on p. 237 in [5]. We give the proof here for reader's conve-
nience. 

P r o of of Theorem 2. Let 21 = [¿o, +°o), {X a} a eA be defined by (3) and 
j : Ql —• Ql be defined by j(a) = a for each a G 01. Since j(a) = a, (B2) is 
satisfied. In view of the preceeding propositions, what remains to be shown 
is that the operator S is densifying. 

Let Q be a noncompact subset of M. Since Q C M implies equiconti-
nuity of Q on every interval, [¿o, a], O- > ¿o, there is t > to such that Qt 
is noncompact in Y. Let k be the integer with the property: Qt is compact 
for all t < tk (if there is t G [io^i] such that f2t is noncompact, k = 0 by 
definition) and there is t G (ifc,ifc+i] such that f2t is noncompact. Then in 
view of (8) and (15) we have maxijfc<i<ijt+1 Xiff'S'(^)] < Xtk+1(&)- Further 
on (15) implies Xtk[S{Q)] — 0, because Qt is compact for t < tk. Hence 
Xij.[5(i2)] < xtt+1(1i7), which means that S : M —> M is densifying. Apply-
ing Theorem 1 we end the proof. 

R e m a r k 6. Under the additional assumption tk+i —tk< 1 Theorem 2 
is valid with Pk(t) = exp{(ffc+i — i*:)-1}/exp{(ifc+i — i ) - 1 } . We omit the 
calculations, because they are long and boring, but in principal the same as 
in the proof of Proposition 2. 
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