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INTEGRAL INEQUALITIES OF HADAMARD TYPE 
FOR LOG-CONVEX FUNCTIONS 

A b s t r a c t . In this paper, we derive some integral inequalities for log-convex functions 
which are closely connected with the classical inequality due to Hermite-Hadamard. 

1. Introduction 
In what follows, I will be an interval of real numbers. Recall that the 

mapping / : I —• R is said to be convex on I , if for all x, y E I and t € [0,1] 
one has the inequality 

( 1 . 1 ) f ( t x + (1 - t)y) < t f ( x ) + (1 - t ) f ( y ) . 

A function / : / - * ( 0 , oo) is said to be log-convex or multiplicatively convex 
if log / is convex, or, equivalently, if for all x, y E I and t € [0,1] one has 
the inequality ([1], p. 7) 

( 1 . 2 ) f ( t x + (1 - t)y) < [ / ( * ) m y ) ) 1 ' * . 

We note that, if f,g are convex and g is increasing, then g o / is con-
vex; moreover, since / = exp(log/), it follows that a log-convex function is 
convex, but not conversely ([1], p. 7). This follows directly from (1.2) since 
by the arithmetic-geometric mean inequality, we have [/(a;)]i[/(y)]1—* < 
t f ( x ) + (1 - t ) f ( y ) for all x, y e I and t € [0,1]. 

The following relation (see e.g. [1], p. 137) is well-known in the literature 
as Hermite-Hadamard's inequality 

v ' a 

where /:/—»• R is a convex map on the interval I, and a,b € I with a < b. 
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For some very recent results related to this classical result see the papers 
[3]—[11] or the books [1], [2]. 

Note that, if we apply (1.3) for the log-convex functions /:/—»• (0,oo), 
we have 

, r f a + b \ ^ 1 c, „ w ^ ln/(a ) + ln/(6) 
x ' a 

implying 

(1-4) < e x p [ ^ S l n / ( x ) dx] < v T W W 

\ / L a 

which is an inequality of Hadamard type for log-convex functions. 
2. Results 
Let us denote by A(a, b) the arithmetic mean of the nonnegative real 

numbers a, b and by G(a, b) the geometric mean of the same numbers. Note 
that, by the use of these notations, Hadamard's inequality (1.3) can be 
written in the form 

1 6 

(2.1) f(A(a, b)) < — J A(/(x), f ( a + b — x)) dx < A(f(a), /(&)), 
a 

since 
b b 
J f ( x ) dx = J /(a + b — x) dx. 
a a 

We now prove a similar result for log-convex mappings and geometric 
means. 

THEOREM 2 .1 . Let /:/—>• (0,oo) be a log-convex mapping on I and 
a,b € I with a < b. Then one has the inequality 

(2.2) f(A(a, b))<—\ G(f(x), f ( a + b - x)) dx < G ( f ( a ) , /(6)). 
a 

P r o o f . Since / is log-convex, we have for all t € [0,1] the inequali-
ties 

/(<« + (1 - t)b) < [ / ( f l ) ] 1 ^ ) ] 1 " 4 , /((1 - t)a + tb) < {/(atf-Vib)]*. 

Multiplying them and taking the square roots, we obtain 

(2.3) G(f(ta + (1 - t)b), /((1 - t)a + tb)) < G(f(a), f(b)) 

for all t e [0,1]. 
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Integrating both members of (2.3) on [0,1] over t, we have 

l 
S G(f(ta + (1 - t)b), /((1 - t)a + tb)) dt < G(f(a), f(b)). 
o 

If we change the variable x ta + (1 — t)b, t € [0,1], we get 

l i ¡> 
J G(f(ta + (1 - t)b), /((1 - t)a + tb))dt = — J G(f(x), f(a + b- x)) dx 
0 a 

and the second inequality in (2.2) is proved. Now, by (1.2), for t = 1/2, we 
have f(s^jL) < y/f(x)f(y)ioT all x,y e I. If we choose x = ta+(l-t)b, y = 
(1 — t)a + tb, we get the inequality 

( 2 . 4 ) / ( ^ r ) ^ ^ ( / ( i a + ( 1 - t)b), /((1 - t)a + tb)) 

for all t € [0,1]. Proceeding as above, we obtain the first inequality in (2.2). 
This proves the theorem. 

COROLLARY 2 . 2 . With the above assumptions and if f is nondecreasing 
on I, we have the inequality 

1 6 
(2.5) f(G(a, b))<—\ G(f(x), f(a + b- x)) dx < G(f(a), /(&)). 

a 

The following result offers another inequality of Hadamard type for con-
vex functions 

COROLLARY 2 . 3 . Let f : I —• R be a convex function I and a,b G I with 
a < b. Then one has the inequalities 
(2.6) 

'f(x) + f(a + b-x)' 
dx m+m 

\ / L a 

P r o o f . Define the mapping g : I (0,oo), g(x) = exp f(x) which is 
clearly log-convex on I. If we now apply Theorem 2.1, we get 

exp f ( a ^ j < j y/exp f(x) • exp f(a + b - x) dx 
^ ' a 

< \/exp f(a) • exp f(b) 
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implying 

/ ( x ) + f(a + b - x) 
dx 

< exp 

Applying then the mapping log, we deduce the desired result ( 2 . 6 ) . 

C O R O L L A R Y 2 . 4 . Let f : I —• R be a convex function on the interval I, 
and a,b € / with a < b. I f f is symmetrical with respect to the point € I , 
then one has the inequality 

(2.7) ' ( ^ r ) [ r ^ S e x p f ( x ) d x < /(«)• 

The proof follows easily from Theorem 2.1 and we omit the details. 

T H E O R E M 2 . 5 . Let f : / —• (0 , oo ) be a log-convex mapping on I and 
a,b G I with a < b. Then one has the inequalities 

(2.8) / v ^ T / - e x p \ l n f ( x ) d x 

1 6 

< ^ \ G ( f ( x ) , f ( a + b-x))dx 
a 

i b 
^ mdx<L(f{a),f{b)) 

where L(p, q) is the logarithmic mean of the strictly positive real numbers 
p,q, i.e., 

L(p, q) = 
p-q 

tf P <7 and L(p,p) = p. 

ity 

In p — In q ' 

P r o o f . The first inequality of(2.8)is that of (1.4). Integrating the equal-

G(f(x), f(a + b — x)) = exp[ln (G(f(x), f(a+b- *)))] 

on [a, b] and using the well-known Jensen's integral inequality for the convex 
mapping exp(-), we have 
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i * 
-¡—\G(f(x),f(a + b-x))dx 

a 

i * 
= S exp[ln(G(/(x), f(a + b - *)))] dx 

b — a J 

> exp 

= exp 

= exp 

1 6 

— \]n[G(f(z),f(a+b-x))]dx 
a 

" 1 t /an/ (x ) + ln(/(a + 6 - x ) ) \ 1 
b-a H 2 L
 n

 N 0 
—— I In / (x ) dx 
— a J 

since obviously 

J In / (x ) dx = J In / (a + b — x) dx. 

So the second inequality in (2.8) is proved. 
By the arithmetic mean-geometric mean inequality, we have that 

<? ( / ( * ) , / (a + b - x ) ) < / ( * ) + / ( « + » - * ) , x 6 [ a , 6 ] > 

from which, by integration, we get 
b 

l 

b 

6 6 

\ G(f(x), f(a + b- x)) dx < -u \ f(x) dx 
— a J b — a J 

and the third inequality of (2.8) is proved. 
To prove the last inequality, we observe that, by the log-convexity of / , 

(2.9) /(<a + (1 -Of t ) < [ / ( « ) ] W ) ] 1 _ t 

for all t e [a, 6]. Integrating (2.9) over t in [0,1], we have 
l l 
5 / ( fa + (1 - t)b) dt < J[/(a)]<[/(6)]1-< dt. 

As 
1 6 
5 f(ta + (1 - t)b) dt = - — - j / (x ) dx 



360 

and 

S. S. Dragomir, B. Mond 

- 1 
= L(f(a),f(b)), 

the Theorem 2.5 is proved. 

COROLLARY 2.6 . Let f : I —> R be a convex function on I and a,b € I 
with a < b. Then one has the inequality 

(2.10) < exp ( J _ ( / ( x ) d z ) 

1 6 

exp 
f(x) + f(a + b-x)' 

dx 

< ^ j e x p f(x)dx<E(f(a),f(b)) 

where E is the exponential mean, i.e. 

. expo —expo , . . 
E{p,q)= for p f- q and E(p,p) = expp. p-q 

P r o o f . The mapping g : I —• (0,oo), g(x) = exp/(a:) is log-convex. 
Now, if we apply Theorem 2.5 for the mapping g, we easily deduce the 
inequality (2.10). We omit the details. 

R e m a r k 2.7. Note that the inequality 

r 1 & 1 
(2.11) exp T \ln f(x)dx 

b — a J 
o J 

6 6 
< ^ \ G(f(x), f(a + b- x)) dx < — \ /(*) dx 

a a 

holds for every strictly positive and integrable mapping / : [a, 6] —»• R and 
the inequality 

b \ , b 
RIN + t i n. -t- n — TI 

dx 2 
a ' a 

(2.12) exp J f(x) dx)<-^\ exp 
\ n ' n 
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< -—^— \ exp f(x) dx 
b — a 1 

a 

holds for every map / on [a, 6], / : [a, 6] —• R integrable. Taking into ac-
count that the above two inequalities hold, we can assert that for every map 
/ : [a, 6] —• (0, oo) integrable on [a, 6] we have the inequalities 

T 1 6 1 6 

(2.13) exp J In /(*) dx < j^— J G(/(x), f(a + b- x)) dx 
a a 

/(*)«<* 
a 

r i 6 i < In 7 J exp A(/(x), /(a + 6 - x)) dx I 0 ~ CL w n J 

n 

exp f(x) dx 

which is of interest by itself. 

3. Applications 
1). Let p > 1 and a,b € [0,oo) with a < b. Then one has the inequali-

ties 

1 \ 
(3.2) exp < exp 

dx 
gP + bP 

S 2 ' 
r fcp+i _ ap+i i 
L ( p + i ) ( ò - o ) . 

i 6 
exp 

xp + (a + 6 — x)p" 
dx 

exp bp — exp ap 

Vp ' 

where (3.1) follows from Corollary 2.3 and (3.2) from Corollary 2.6 applied 
for the convex mapping / : [0, oo) —• [0,oo), /(x) = xp. We omit the de-
tails. 
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2). Consider a,b € (0, oo) with 0 < a < b and the convex mapping 
/ : (0, oo) —»• R, f ( x ) = — In x. Applying Corollary 2.3, we get 

In x + ln(a + b — x) ]H 
< 

In a + In b 

which is equivalent to 

i.e. a refinement of the A — G inequality. If we apply Corollary 2.6 for the 
same mapping, we get 

b 
exp — In — e x P — — j In a; da; 

1 b 

< 7 \ exp 
b — a J 

In a; + ln(a + b — x)' 
dx 

< J _ t e x p [ - l n , ] d , < e x P ( - l n 6 ) - e x p ( - l n a ) 
J ~ - I n 6 +In a 

Having 

we deduce from the above inequality, 

- A l/(6-a) 

(3.4) 2 <e(^ 
a + b ~ \bb K b - a \ \fx{ai 

dx 

a y/ x ( a + b ~ x ) 
^ In 6 — In a ^ b — a 

b — a 6a(ln b — In a) 

or, equivalently, 

(3.5) A(a, b) > /(«, b) > ( J - \ ^ ) ' 
\ b ~ a n V + b~ X)J 

> L(a,b) > 

a V^ 
6a(ln b — In a ) 

b — a 
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where A(a,b) = ^-ari thmet ic mean, I(a, b) = i(^-)1^i>~°^-identric mean 
L(a,b) = in fclin a -logarithmic mean. 

3). Consider a, 6 € (0,oo) with 0 < a < b and the convex mapping 
/ : (0, oo) -»• (0, oo), f ( x ) = i . Applying Corollary 2.3, we get 

< In 
a + b 

which is equivalent to 

i 
a+b 

2 • 
x(a + b - x) 

dx < ± 
1 -I" i n ' h 

( 1 b 

(3.6) A(a, 6) > ( In iexp 
V b — a J v L n 

a+b 
2 

x(a + b — x) 
dx ) >H(a,b), 

where H(a,b) = 2(a 1 + b x) 1 is the harmonic mean of a, b > 0. Now, if 
we apply Corollary 2.6 to / we easily obtain the inequality 

exp 
a+b 

2 
x(a + b — x) 

dx 
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