

S. S. Dragomir, B. Mond

INTEGRAL INEQUALITIES OF HADAMARD TYPE  
FOR LOG-CONVEX FUNCTIONS

**Abstract.** In this paper, we derive some integral inequalities for log-convex functions which are closely connected with the classical inequality due to Hermite-Hadamard.

**1. Introduction**

In what follows,  $I$  will be an interval of real numbers. Recall that the mapping  $f : I \rightarrow \mathbb{R}$  is said to be *convex* on  $I$ , if for all  $x, y \in I$  and  $t \in [0, 1]$  one has the inequality

$$(1.1) \quad f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y).$$

A function  $f : I \rightarrow (0, \infty)$  is said to be *log-convex* or *multiplicatively convex* if  $\log f$  is convex, or, equivalently, if for all  $x, y \in I$  and  $t \in [0, 1]$  one has the inequality ([1], p. 7)

$$(1.2) \quad f(tx + (1 - t)y) \leq [f(x)]^t[f(y)]^{1-t}.$$

We note that, if  $f, g$  are convex and  $g$  is increasing, then  $g \circ f$  is convex; moreover, since  $f = \exp(\log f)$ , it follows that a log-convex function is convex, but not conversely ([1], p. 7). This follows directly from (1.2) since by the arithmetic-geometric mean inequality, we have  $[f(x)]^t[f(y)]^{1-t} \leq tf(x) + (1 - t)f(y)$  for all  $x, y \in I$  and  $t \in [0, 1]$ .

The following relation (see e.g. [1], p. 137) is well-known in the literature as Hermite-Hadamard's inequality

$$(1.3) \quad f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x) dx \leq \frac{f(a) + f(b)}{2},$$

where  $f : I \rightarrow \mathbb{R}$  is a convex map on the interval  $I$ , and  $a, b \in I$  with  $a < b$ .

---

1991 *Mathematics Subject Classification*: 26D15, 26D99.

*Key words and phrases*: Convexity, log-convexity, Hadamard's inequality.

For some very recent results related to this classical result see the papers [3]–[11] or the books [1], [2].

Note that, if we apply (1.3) for the log-convex functions  $f : I \rightarrow (0, \infty)$ , we have

$$\ln f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b \ln f(x) dx \leq \frac{\ln f(a) + \ln f(b)}{2}$$

implying

$$(1.4) \quad f\left(\frac{a+b}{2}\right) \leq \exp \left[ \frac{1}{b-a} \int_a^b \ln f(x) dx \right] \leq \sqrt{f(a)f(b)}$$

which is an inequality of Hadamard type for log-convex functions.

## 2. Results

Let us denote by  $A(a, b)$  the *arithmetic mean* of the nonnegative real numbers  $a, b$  and by  $G(a, b)$  the *geometric mean* of the same numbers. Note that, by the use of these notations, Hadamard's inequality (1.3) can be written in the form

$$(2.1) \quad f(A(a, b)) \leq \frac{1}{b-a} \int_a^b A(f(x), f(a+b-x)) dx \leq A(f(a), f(b)),$$

since

$$\int_a^b f(x) dx = \int_a^b f(a+b-x) dx.$$

We now prove a similar result for log-convex mappings and geometric means.

**THEOREM 2.1.** *Let  $f : I \rightarrow (0, \infty)$  be a log-convex mapping on  $I$  and  $a, b \in I$  with  $a < b$ . Then one has the inequality*

$$(2.2) \quad f(A(a, b)) \leq \frac{1}{b-a} \int_a^b G(f(x), f(a+b-x)) dx \leq G(f(a), f(b)).$$

**Proof.** Since  $f$  is log-convex, we have for all  $t \in [0, 1]$  the inequalities

$$f(ta + (1-t)b) \leq [f(a)]^t [f(b)]^{1-t}, \quad f((1-t)a + tb) \leq [f(a)]^{1-t} [f(b)]^t.$$

Multiplying them and taking the square roots, we obtain

$$(2.3) \quad G(f(ta + (1-t)b), f((1-t)a + tb)) \leq G(f(a), f(b))$$

for all  $t \in [0, 1]$ .

Integrating both members of (2.3) on  $[0, 1]$  over  $t$ , we have

$$\int_0^1 G(f(ta + (1-t)b), f((1-t)a + tb)) dt \leq G(f(a), f(b)).$$

If we change the variable  $x := ta + (1-t)b$ ,  $t \in [0, 1]$ , we get

$$\int_0^1 G(f(ta + (1-t)b), f((1-t)a + tb)) dt = \frac{1}{b-a} \int_a^b G(f(x), f(a+b-x)) dx$$

and the second inequality in (2.2) is proved. Now, by (1.2), for  $t = 1/2$ , we have  $f(\frac{x+y}{2}) \leq \sqrt{f(x)f(y)}$  for all  $x, y \in I$ . If we choose  $x = ta + (1-t)b$ ,  $y = (1-t)a + tb$ , we get the inequality

$$(2.4) \quad f\left(\frac{a+b}{2}\right) \leq G(f(ta + (1-t)b), f((1-t)a + tb))$$

for all  $t \in [0, 1]$ . Proceeding as above, we obtain the first inequality in (2.2). This proves the theorem.

**COROLLARY 2.2.** *With the above assumptions and if  $f$  is nondecreasing on  $I$ , we have the inequality*

$$(2.5) \quad f(G(a, b)) \leq \frac{1}{b-a} \int_a^b G(f(x), f(a+b-x)) dx \leq G(f(a), f(b)).$$

The following result offers another inequality of Hadamard type for convex functions

**COROLLARY 2.3.** *Let  $f : I \rightarrow \mathbb{R}$  be a convex function  $I$  and  $a, b \in I$  with  $a < b$ . Then one has the inequalities*

$$(2.6) \quad f\left(\frac{a+b}{2}\right) \leq \ln \left[ \frac{1}{b-a} \int_a^b \exp \left[ \frac{f(x) + f(a+b-x)}{2} \right] dx \right] \leq \frac{f(a) + f(b)}{2}.$$

**Proof.** Define the mapping  $g : I \rightarrow (0, \infty)$ ,  $g(x) = \exp f(x)$  which is clearly log-convex on  $I$ . If we now apply Theorem 2.1, we get

$$\begin{aligned} \exp f\left(\frac{a+b}{2}\right) &\leq \frac{1}{b-a} \int_a^b \sqrt{\exp f(x) \cdot \exp f(a+b-x)} dx \\ &\leq \sqrt{\exp f(a) \cdot \exp f(b)} \end{aligned}$$

implying

$$\begin{aligned} \exp f\left(\frac{a+b}{2}\right) &\leq \frac{1}{b-a} \int_a^b \exp \left[\frac{f(x) + f(a+b-x)}{2}\right] dx \\ &\leq \exp \left(\frac{f(a) + f(b)}{2}\right). \end{aligned}$$

Applying then the mapping  $\log$ , we deduce the desired result (2.6).

**COROLLARY 2.4.** *Let  $f : I \rightarrow \mathbb{R}$  be a convex function on the interval  $I$ , and  $a, b \in I$  with  $a < b$ . If  $f$  is symmetrical with respect to the point  $\frac{a+b}{2} \in I$ , then one has the inequality*

$$(2.7) \quad f\left(\frac{a+b}{2}\right) \leq \ln \left[ \frac{1}{b-a} \int_a^b \exp f(x) dx \right] \leq f(a).$$

The proof follows easily from Theorem 2.1 and we omit the details.

**THEOREM 2.5.** *Let  $f : I \rightarrow (0, \infty)$  be a log-convex mapping on  $I$  and  $a, b \in I$  with  $a < b$ . Then one has the inequalities*

$$\begin{aligned} (2.8) \quad f\left(\frac{a+b}{2}\right) &\leq \exp \left[ \frac{1}{b-a} \int_a^b \ln f(x) dx \right] \\ &\leq \frac{1}{b-a} \int_a^b G(f(x), f(a+b-x)) dx \\ &\leq \frac{1}{b-a} \int_a^b f(x) dx \leq L(f(a), f(b)) \end{aligned}$$

where  $L(p, q)$  is the logarithmic mean of the strictly positive real numbers  $p, q$ , i.e.,

$$L(p, q) = \frac{p - q}{\ln p - \ln q}, \quad \text{if } p \neq q \quad \text{and} \quad L(p, p) = p.$$

**P r o o f.** The first inequality of (2.8) is that of (1.4). Integrating the equality

$$G(f(x), f(a+b-x)) = \exp[\ln(G(f(x), f(a+b-x)))]$$

on  $[a, b]$  and using the well-known Jensen's integral inequality for the convex mapping  $\exp(\cdot)$ , we have

$$\begin{aligned}
& \frac{1}{b-a} \int_a^b G(f(x), f(a+b-x)) dx \\
&= \frac{1}{b-a} \int_a^b \exp[\ln(G(f(x), f(a+b-x)))] dx \\
&\geq \exp \left[ \frac{1}{b-a} \int_a^b \ln[G(f(x), f(a+b-x))] dx \right] \\
&= \exp \left[ \frac{1}{b-a} \int_a^b \left( \frac{\ln f(x) + \ln(f(a+b-x))}{2} \right) dx \right] \\
&= \exp \left[ \frac{1}{b-a} \int_a^b \ln f(x) dx \right],
\end{aligned}$$

since obviously

$$\int_a^b \ln f(x) dx = \int_a^b \ln f(a+b-x) dx.$$

So the second inequality in (2.8) is proved.

By the *arithmetic mean-geometric mean* inequality, we have that

$$G(f(x), f(a+b-x)) \leq \frac{f(x) + f(a+b-x)}{2}, \quad x \in [a, b],$$

from which, by integration, we get

$$\frac{1}{b-a} \int_a^b G(f(x), f(a+b-x)) dx \leq \frac{1}{b-a} \int_a^b f(x) dx$$

and the third inequality of (2.8) is proved.

To prove the last inequality, we observe that, by the log-convexity of  $f$ ,

$$(2.9) \quad f(ta + (1-t)b) \leq [f(a)]^t [f(b)]^{1-t}$$

for all  $t \in [a, b]$ . Integrating (2.9) over  $t$  in  $[0, 1]$ , we have

$$\int_0^1 f(ta + (1-t)b) dt \leq \int_0^1 [f(a)]^t [f(b)]^{1-t} dt.$$

As

$$\int_0^1 f(ta + (1-t)b) dt = \frac{1}{b-a} \int_a^b f(x) dx$$

and

$$\begin{aligned} \int_0^1 [f(a)]^t [f(b)]^{1-t} dt &= f(b) \int_0^1 \left( \frac{f(a)}{f(b)} \right)^t dt \\ &= f(b) \left[ \frac{\left( \frac{f(a)}{f(b)} \right)^t}{\ln \left( \frac{f(a)}{f(b)} \right)} \right] \Big|_0^1 = f(b) \left[ \frac{\frac{f(a)}{f(b)} - 1}{\ln \left( \frac{f(a)}{f(b)} \right)} \right] = L(f(a), f(b)), \end{aligned}$$

the Theorem 2.5 is proved.

**COROLLARY 2.6.** *Let  $f : I \rightarrow \mathbb{R}$  be a convex function on  $I$  and  $a, b \in I$  with  $a < b$ . Then one has the inequality*

$$\begin{aligned} (2.10) \quad \exp f\left(\frac{a+b}{2}\right) &\leq \exp \left( \frac{1}{b-a} \int_a^b f(x) dx \right) \\ &\leq \frac{1}{b-a} \int_a^b \exp \left[ \frac{f(x) + f(a+b-x)}{2} \right] dx \\ &\leq \frac{1}{b-a} \int_a^b \exp f(x) dx \leq E(f(a), f(b)) \end{aligned}$$

where  $E$  is the exponential mean, i.e.

$$E(p, q) = \frac{\exp p - \exp q}{p - q} \quad \text{for } p \neq q \quad \text{and} \quad E(p, p) = \exp p.$$

**Proof.** The mapping  $g : I \rightarrow (0, \infty)$ ,  $g(x) = \exp f(x)$  is log-convex. Now, if we apply Theorem 2.5 for the mapping  $g$ , we easily deduce the inequality (2.10). We omit the details.

**Remark 2.7.** Note that the inequality

$$\begin{aligned} (2.11) \quad \exp \left[ \frac{1}{b-a} \int_a^b \ln f(x) dx \right] \\ \leq \frac{1}{b-a} \int_a^b G(f(x), f(a+b-x)) dx \leq \frac{1}{b-a} \int_a^b f(x) dx \end{aligned}$$

holds for every strictly positive and integrable mapping  $f : [a, b] \rightarrow \mathbb{R}$  and the inequality

$$(2.12) \quad \exp \left( \frac{1}{b-a} \int_a^b f(x) dx \right) \leq \frac{1}{b-a} \int_a^b \exp \left[ \frac{f(x) + f(a+b-x)}{2} \right] dx$$

$$\leq \frac{1}{b-a} \int_a^b \exp f(x) dx$$

holds for every map  $f$  on  $[a, b]$ ,  $f : [a, b] \rightarrow \mathbb{R}$  integrable. Taking into account that the above two inequalities hold, we can assert that for every map  $f : [a, b] \rightarrow (0, \infty)$  integrable on  $[a, b]$  we have the inequalities

$$\begin{aligned}
 (2.13) \quad \exp \left[ \frac{1}{b-a} \int_a^b \ln f(x) dx \right] &\leq \frac{1}{b-a} \int_a^b G(f(x), f(a+b-x)) dx \\
 &\leq \frac{1}{b-a} \int_a^b f(x) dx \\
 &\leq \ln \left[ \frac{1}{b-a} \int_a^b \exp A(f(x), f(a+b-x)) dx \right] \\
 &\leq \ln \left[ \frac{1}{b-a} \int_a^b \exp f(x) dx \right],
 \end{aligned}$$

which is of interest by itself.

### 3. Applications

1). Let  $p \geq 1$  and  $a, b \in [0, \infty)$  with  $a < b$ . Then one has the inequalities

$$(3.1) \quad \left( \frac{a+b}{2} \right)^p \leq \ln \left[ \frac{1}{b-a} \int_a^b \exp \left[ \frac{x^p + (a+b-x)^p}{2} \right] dx \right] \leq \frac{a^p + b^p}{2},$$

$$\begin{aligned}
 (3.2) \quad \exp \left( \frac{a+b}{2} \right)^p &\leq \exp \left[ \frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)} \right] \\
 &\leq \frac{1}{b-a} \int_a^b \exp \left[ \frac{x^p + (a+b-x)^p}{2} \right] dx \\
 &\leq \frac{1}{b-a} \int_a^b \exp x^p dx \leq \frac{\exp b^p - \exp a^p}{b^p - a^p},
 \end{aligned}$$

where (3.1) follows from Corollary 2.3 and (3.2) from Corollary 2.6 applied for the convex mapping  $f : [0, \infty) \rightarrow [0, \infty)$ ,  $f(x) = x^p$ . We omit the details.

2). Consider  $a, b \in (0, \infty)$  with  $0 < a < b$  and the convex mapping  $f : (0, \infty) \rightarrow \mathbb{R}$ ,  $f(x) = -\ln x$ . Applying Corollary 2.3, we get

$$\begin{aligned} -\ln\left(\frac{a+b}{2}\right) &\leq \ln\left[\frac{1}{b-a} \int_a^b \exp\left(-\left[\frac{\ln x + \ln(a+b-x)}{2}\right]\right) dx\right] \\ &\leq -\frac{\ln a + \ln b}{2} \end{aligned}$$

which is equivalent to

$$(3.3) \quad \frac{a+b}{2} \geq \left(\frac{1}{b-a} \int_a^b \frac{dx}{\sqrt{x(a+b-x)}}\right)^{-1} \geq \sqrt{ab}$$

i.e. a refinement of the  $A - G$  inequality. If we apply Corollary 2.6 for the same mapping, we get

$$\begin{aligned} \exp\left[-\ln\left(\frac{a+b}{2}\right)\right] &\leq \exp\left[-\frac{1}{b-a} \int_a^b \ln x dx\right] \\ &\leq \frac{1}{b-a} \int_a^b \exp\left[-\frac{\ln x + \ln(a+b-x)}{2}\right] dx \\ &\leq \frac{1}{b-a} \int_a^b \exp[-\ln x] dx \leq \frac{\exp(-\ln b) - \exp(-\ln a)}{-\ln b + \ln a}. \end{aligned}$$

Having

$$\frac{1}{b-a} \int_a^b \ln x dx = \ln \left[ \left( \frac{b^b}{a^a} \right)^{1/(b-a)} \cdot \frac{1}{e} \right],$$

we deduce from the above inequality,

$$\begin{aligned} (3.4) \quad \frac{2}{a+b} &\leq e \left( \frac{a^a}{b^b} \right)^{1/(b-a)} \leq \frac{1}{b-a} \int_a^b \frac{dx}{\sqrt{x(a+b-x)}} \\ &\leq \frac{\ln b - \ln a}{b-a} \leq \frac{b-a}{ba(\ln b - \ln a)} \end{aligned}$$

or, equivalently,

$$\begin{aligned} (3.5) \quad A(a, b) &\geq I(a, b) \geq \left( \frac{1}{b-a} \int_a^b \frac{dx}{\sqrt{x(a+b-x)}} \right)^{-1} \\ &\geq L(a, b) \geq \frac{ba(\ln b - \ln a)}{b-a}, \end{aligned}$$

where  $A(a, b) = \frac{a+b}{2}$ -arithmetic mean,  $I(a, b) = \frac{1}{e} \left( \frac{b^b}{a^a} \right)^{1/(b-a)}$ -identric mean  
 $L(a, b) = \frac{b-a}{\ln b - \ln a}$ -logarithmic mean.

3). Consider  $a, b \in (0, \infty)$  with  $0 < a < b$  and the convex mapping  $f : (0, \infty) \rightarrow (0, \infty)$ ,  $f(x) = \frac{1}{x}$ . Applying Corollary 2.3, we get

$$\frac{2}{a+b} \leq \ln \left[ \frac{1}{b-a} \int_a^b \exp \left[ \frac{\frac{a+b}{2}}{x(a+b-x)} \right] dx \right] \leq \frac{\frac{1}{a} + \frac{1}{b}}{2}$$

which is equivalent to

$$(3.6) \quad A(a, b) \geq \left( \ln \left[ \frac{1}{b-a} \int_a^b \exp \left[ \frac{\frac{a+b}{2}}{x(a+b-x)} \right] dx \right] \right)^{-1} \geq H(a, b),$$

where  $H(a, b) = 2(a^{-1} + b^{-1})^{-1}$  is the harmonic mean of  $a, b > 0$ . Now, if we apply Corollary 2.6 to  $f$  we easily obtain the inequality

$$\begin{aligned} \exp \left( \frac{2}{a+b} \right) &\leq \left( \frac{b}{a} \right)^{1/(b-a)} \leq \frac{1}{b-a} \int_a^b \exp \left[ \frac{\frac{a+b}{2}}{x(a+b-x)} \right] dx \\ &\leq \frac{1}{b-a} \int_a^b \exp \left( \frac{1}{x} \right) dx \leq \frac{\exp(\frac{1}{a}) - \exp(\frac{1}{b})}{a^{-1} - b^{-1}}. \end{aligned}$$

## References

- [1] J. E. Pečarić, F. Proschan and Y. L. Tong, *Convex Functions, Partial Orderings and Statistical Applications*, Academic Press, 1991.
- [2] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, *Classical and New Inequalities in Analysis*, Kluwer Acad. Publ., 1993.
- [3] S. S. Dragomir, J. E. Pečarić, J. Sándor, *A note on the Jensen–Hadamard inequality*, Anal. Num. Theor. Approx., 19 (1990), 29–34.
- [4] S. S. Dragomir, *Two mappings in connection to Hadamard's inequality*, J. Math. Anal. Appl., 167 (1992), 49–56.
- [5] S. S. Dragomir, *On Hadamard's inequality for convex functions*, Mat. Balkanica, 6 (1992), 215–222.
- [6] S. S. Dragomir, *Some integral inequalities for differentiable convex functions*, Contributions Makedonian Acad. Sci. Arts, 13 (1) (1992), 13–17.
- [7] S. S. Dragomir, *A refinement of Hadamard's inequality for isotonic linear functionals*, Tamkang J. Math., 24 (1993), 101–106.
- [8] S. S. Dragomir, D. Milosević, J. Sándor, *On some refinements of Hadamard's inequalities and applications*, Univ. Beograd., Publ. Elek. Fac., Ser. Math., 4 (1993), 21–24.

- [9] D. Barbu, S. S. Dragomir, C. Buşe, *A probabilistic argument for the convergence of some sequences associated to Hadamard's inequality*, Studia Univ. Babeş-Bolyai Math., 38 (1993), 29–33.
- [10] S. S. Dragomir, G. Toader, *Some inequalities for  $m$ -convex functions*, Studia Univ. Babeş-Bolyai Math., 38 (1993), 21–28.
- [11] S. S. Dragomir, *Some remarks on Hadamard's inequalities for convex functions*, Extracta Math., 9 (1994), 88–94.

S. S. Dragomir

DEPARTMENT OF MATHEMATICS

TIMIŞOARA UNIVERSITY

B-dul V. Pârvan 4

RO-199, TIMIŞOARA, ROMANIA

B. Mond

SCHOOL OF MATHEMATICS

LA TROBE UNIVERSITY

BUNDOORA, VICTORIA 3083, AUSTRALIA

*Received March 24, 1997.*