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SEMI-RIEMANNIAN TRANSVERSAL MAPS

Abstract. A generalization of semi-Riemannian submersions to semi-Riemannian
transversal maps is given. Also a fundamental equation of a regular, normal semi-Rieman-
nian transversal map is obtained.

1. Introduction

A major flaw in Riemannian and semi-Riemannian geometry (as com-
pared to other subjects) is a shortage of suitable kind of functions from one
manifold to another that will compare their geometric properties. A class
of such functions in Riemannian geometry was introduced by Fischer [1]
and are called Riemannian maps. Later on, this concept was generalized to
semi-Riemannian geometry by the author [2] and these functions are called
semi-Riemannian maps.

A kind of such functions that compare the geometric properties of semi-
Riemannian manifolds are semi-Riemannian submersions [4], [5]. Here we
will generalize these functions from semi-Riemannian submersions to semi-
Riemannian transversal maps to a semi-Riemannian foliation. Also, we will
obtain a fundamental equation of a regular, normal semi-Riemannian trans-
versal map to a semi-Riemannian foliation.

2. Preliminaries

Let E; and E; be inner product spaces (possibly indefinite) with inner
products h; and hy, respectively, and let f : 4y — E; be a linear map. The
transpose 'f : Ey — Fy of f is defined by hy(*fz,y) = ho(z, fy), where
z € Fy and y € E;. The indefinite square norm || f]|* of f with respect to
inner products h; and h; is defined by ||f]|* = tr(f o f).

Let (M3, g2) be a semi-Riemannian manifold with metric g, and let ¢ =
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{Na}aca be a foliation on M; such that leaves of ¢ are (immersed) semi-
Riemannian submanifolds (Nq, g2y, ) with induced metric g;_ of constant
index for all N,. Then we will call (¢, g2,) a semi-Riemannian foliation on
(M, g2). Also let T(M2,¢) = Uyea UpGNa TpN, be the tangent bundle of

(#,92,) and let T(Maz,8)* = U, ea Upen. Tp,NZ. be the normal bundle of
(¢, g2¢)-

Let (M1,91) be a semi-Riemannian manifold with metric g; and let
f: (My,91) = (M3, g2) be a smooth function. Also let (¢,g,) be a semi-
Riemannian foliation on (Ms,g;). Recall that f is called transversal to
(#,92,) i fo, (Tp, M1) + Tf(p,)(M2,¢) = Ts(p,) M2 for every p1 € My. Note
that then f~1(N,), @ € A, are the leaves of a foliation on M; denoted by

f*(¢).

3. Transversal semi-Riemannian maps

Let f : (M1,91) — (M2,g2) be a smooth function and let p; = f(p1).
Define a linear function f,,l,,1 : Tpy My — Tp, (M3, $)* by f,f;l:v = (fap, )4,

where (f.,”:v)l is the component of f, =z in Tp,( My, ).
Now define

Li(p) = (kerf,f;l)ﬂ (kerf,,f;l)‘L C Ty, My,
Ly(p;) = (range ff;l) N (range f,f;l)l C Tp, M,.

Note that Ly(p;) is the degenerate space of the restrictions of metric 9,,
to (ker f,;tl) and (ker f,f;l)J“. Also Ly(p2) is the degenerate space of the
restriction of metric g;,, to (range fil ). Also define

Ai(p) = (kerf,f;l) + (ker "{;1 )L, Aa(pz) = (ra.ngef,,l”).

Next we will define some quotient spaces out of V(p;) = (ker f,t ),
1

H(py) = (ker f3 ), A1(p1) and Az(ps) :

(1) V(p1) = V(p1)/L1(p1) and 7 : V(p1) — V(p1) is the natural pro-
jection,

(2) H(p1) = H(p1)/L1(p) and m : H(p1) —» H(py) is the natural
projection,

(3) Ai(;) = A(p1)/Li(p1) and m; : Ay(p1) — Ai(py) is the natural
projection, (note that, m; of (1) and (2) is the restriction of 7y of this case
to V(p1) and H(p,), respectively),

(4) Aaz(p2) = Aa(p2)/La2(pz) and w3 : Ay(p;) — Aa(ps) is the natural
projection.
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Also we can define (nonsingular) inner products in V(p;), H(p1), A(p)
and A;(p ) as follows:
(1) in V(p1), let §,,(%,7) = 91, (2,9y), where z,y € V(p1) with m(z) =
z, m(y) =75 '
(2)in H(p1),let 7y, (%,7) = g1,, (2, y), where z,y € H(p) with my(z) =
E, 7r1(y) = E .
(3') in Ai(m), let Gy, (Z,7) = g1,,(z,y), where z,y € Ai(p1) with
m1(z) = T, m(y) = T (note that the inner products g;, in (1') and (2)
are the restrictions of 91, of this case to V(p;) and H(p), respectively);
(4") in Az(ps), let §2p2(f,§) = 92,,(2,9), where z,y € As(p2) with
m(z) = T, m2(y) = 7.
Finally, if f : (M1,91) — (M2, g2) is a smooth function, define a map
L = — -1 _
Fo, : H(p1) = As(m) by Fo, 7 = m(fi; o),

where z € H(p;) with 7 (z) = T (it is easy to check that fi'pl is well-
defined).

Remarks 3.1. a) Observe that A;(p) = V(p1) © H(p).
b) Note that fi’m may not be either injective or surjective. In fact,

rank f;Lpl < rank f,f;,l — dim Ly (p1).

DEFINITION 3.2. Let f : (M1,91) — (M2, g2) be a smooth function and
let (¢, g2,) be a semi-Riemannian foliation on (M3, g2). The nondegenerate
transversal rank of f with respect to (¢4, g2,) at p1 € M is defined to be

<L
rank f,, .

Note that (T, M1,9p,) and (Tp,(Mz,#)*, g2, ) are possibly indefinite
inner product spaces as well as (H| (P1),9,,) and (Aa(p2), 3p,)- Hence we can

talk about indefinite square norms || f,,;';,1||2 and ||f,,,p1||2.

THEOREM 3.3. Let f : (M1,01) — (Ma,q2) be a smooth function and

let (¢,92,) be a semi-Riemannian foliation on (Ma,g;). Then ||fs | =

=L
”f*p1”2 at each me M.

Proof. Let {z;1,...,2;} be an orthonormal basis for a (nondegenerate)
complementary space to Li(p;) in V(p1) and {y1,...,ym} be an orthonor-
mal basis for a (nondegenerate) complementary space to Ly(p;) in H(py).
Also let {z1,w1,..., 2k, wx} be an orthonormal basis for (span{z,...,z,
Y1+, Ym})*" such that w; = 2z + w; € Ly(py) for ¢ = I,...,k. Then
{z1,.. ;25,915 +» Ym, 21, W1, - . -, Zk, Wi} is an orthonormal basis for T}, M
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and hence

k
1
IFE 12 = S ou,, (23, 20)02,, (£, 200 Fib. )
=1

k
+ Z 91,, (wy, wi)yz,,2 (f,.f,',l w;, fj;l w;)

=1

k
+Y a1, (v, Y:)92,, (fu; Yir fis, 9i)-
i=1
But since u; = z; + w; € Li(p1) C V(p1), we have 0 = f,f;lu,- = f}plz,- +
f*tl'w,' and 0 = g1, (wi,u;) = g1, (2, 2) + g1, (wi, w;). Hence, f,tlz,- =
—fj;l w; and g1, (%,2) = —g1, (i, w;). Thus

m
IFE 1 =) 01, (i 90)9n,, (Fi5 vir £i5 43)

*Pl
i=1
= -l _ =L -1
= Zyln (yi)yi)yhz(ft,l?i’ f*,,lyi) = ”fur,,,1 ”2,
i=1

where m1(y;) = 7;. =

DEFINITION 3.4. Let f : (My,91) — (Ma2,92) be a smooth function
and (¢, g2,) be a semi-Riemannian foliation on (M3, g;). Then f is said to
satisfy the generalized transversal eikonal equation at p; € M; with respect
to (¢,92,) if |IfL |I* = rank ;. .

Remark 3.5. Note that, if f satisfies the generalized transversal eikonal
equation at each p; € M; with respect to (¢,gs,), then, since || f;tlllz is

. 1L .
continuous on M, rank f +p, 18 constant on the connected components of M.

Next we will define certain kind of functions which are solutions of the
generalized transversal eikonal equation.

DErFINITION 3.6. Let f : (M1,91) — (M3,92) be a smooth function
and (¢, g2,) be a semi-Riemannian foliation on (M3,g:). Then f is called
a transversal semi-Riemannian map with respect to (4, g9:,) at py € M, if

fi—p, : H(p1) = A3(p;) is an (into) isometry. The function f is called a

transversal semi-Riemannian map on M; with respect to (4, gz,), if it is a
transversal semi-Riemannian map with respect to (¢, g2, ) at each p; € M.

THEOREM 3.7. If f : (M1,51) — (M2, g2) is a transversal semi-RRieman-
nian map with respect to (¢, g2,) at p1 € My, then f satisfies the generalized
transversal eikonal equation with respect to (¢, g2,) at p1 € M;.
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Proof. First we will show that F-pl = tf:'pl ) fi’pl : F(pl) — F(pl) is

the identity map. Indeed, note that for every Z,7 € H(p1) we can write
= o el =L o
91, (Fp%.9) = 03, (1., %, F2, 9) = 02, (T, 9)-
Hence Fp, = id and it follows from Theorem 3.3 that
-1 — R =L
||f,.#,1 I? = ||f,,,"1 I|I? = tr Fp, = dim H(p1) = rank f, . [
Remark3.8.Let f: (My,91) — (Mz, g2) be a transversal semi-Rieman-
. . . -2
nian map with respect to (¢,g2,) at p1 € M. Then, since f,‘ﬂ1 is injec-
tive (yet may not be surjective), rank f;Lpl = rank f"t; — dim Ly(p;). Fur-

thermore, if f is transversal semi-Riemannian map on M; with respect to
(¢, 92,), then, by Theorem 3.7 and Remark 3.5, since rank f is constant on

. = L
connected components of My, dim H(p;) = rank f, at each p; € My, and
hence constant on the connected components of Mj.

5. Semi-Riemannian transversal maps

DEFINITION 4.1. Let f: (My,91) — (Ma,g2) be a smooth function and
(¢, 92,) be a semi-Riemannian foliation on (M3, g3). If

a) f is transversal to (¢, g2, ),

b) f is a transversal semi-Riemannian map on M; with respect to
(¢,92,), then f is called a semi-Riemannian transversal map to (¢, g2, ).

Remark 4.2. Let f: (M, g1) — (M2, g2) be a semi-Riemannian trans-
versal map to (¢, g2, ), where M, is connected and f(M;) is a submanifold of
M,. Then, since rank f,;,t,l = dim T,,(M2, ¢)* at each p; € My,dim Ly(p1) =

=L R
rank fj;l —rank f,,,p1 is constant for all p; € M. Hence, L, = Uplel\/ll Li(p1)

is a smooth vector bundle over M, since (ker f) and (ker ) are smooth
vector bundles over M;. Consequently,

V= U V(pl),H = U H(pl) and A1 = U Al(pl)
P EM,; P1EM; P1EM;
are smooth vector bundles over M; and hence
V= U V(p), H = U H(p1) and 4y = U Ai(py)
P1EM,; P1EM; P1EM;

are smooth vector bundles over M; with 4; = H @ V. On the other hand,
since

range fi- = T(M;, $)* =A; = U As(p2)

image( f) p2Eimage( f)
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is nondegenerate, A; = Upzeimage( ) A3(p1) is canonically isometric to A,.

Hence, range fi' is a nondegenerate smooth subbundle af A; and let us
. =L

denote it by B = range f, .

Remark 4.3. Let f : (My,g1) — (M2, g2) be a semi-Riemannian trans-
versal map to (¢, g3, ), where M, is connected and f(M;) is a submanifold of
M;. Note that, if rank L; # 0 (resp., rank L; = 0), then leaves of f*(¢) are
degenerate submanifolds (resp., (nondegenerate) semi-Riemannian subman-
ifolds) of (M1, ¢1). In particular, if ¢ is the points of M, then f becomes a
semi-Riemannian submersion [4].

DEFINITION 4.4. Let f : (M1,¢1) — (M2, g2) be a smooth function and
(¢, 92,) be a semi-Riemannian foliation on (M3, g;). Then f is called normal

to (¢, 92,), if fep, = f,f;l at each p, € M;.

ProprosiTiON 4.5. Let f : (My,91) — (M2,g92) be a normal semi-
Riemannian transversal map to (¢, g2,), where M, is connected and f(M,)
is a submanifold of My. If Ay = (ker f) + (ker f1)1 is integrable, then

B = range fi' is integrable.

Proof. First note that f.(A;) = B. Now let X,Y € TB and let X,Y €
T'A; be lifts of X,Y to A;. Then, since f.([X, Y]) = [X,Y]o f and [X,Y] €
T'A,, it follows that [X,Y] € I'B. That is B is integrable.

5. Regular normal semi-Riemannian transversal maps

DEFINITION 5.1. A semi-Riemannian transversal map f : (My,g1) —
(M3, g2) to (¢4,92,), where M is connected, is called regular, if A; is a
totally geodesic distribution.

Let f be a semi-Riemannian transversal map to (¢, g2,). Then leaves
of f*(¢) may be degenerate submanifolds of (M, g1). In particular, if f is
regular, then these submanifolds are stationary and irrotational degenerate
submanifolds of (Mj,g1) which give rise of Gaus—Codazzi equations (see
[3]). In fact, we have the following result.

ProprosITION 5.2. Let f : (My,91) — (Ma,92) be a semi-Riemannian
transversal map to (¢, g2,), where M, is connected. If f is regular, then A,
is integrable and leaves of f*(¢) are stationary, irrotational submanifolds of
M,, provided that they are degenerate.

Proof. Note that, if A; is totally geodesic, then clearly A; is integrable,

1 1
and V.Z € TA; for every X € TV, Z € T'A,, where V is the Levi-Civita .
connection of M;. Hence, it also follows from [3, Prop. 4.1.15] that leaves of
f*(¢) are stationary, irrotational submanifolds of (My,¢:). =
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Now we will obtain an equation relating the geometric properties of

(M1, 91) and (M2, g2).
Let f : (M1,01) — (M2,g92) be a regular normal semi-Riemannian
transversal map to (¢, gs,), where M; is connected and f(M;) is a sub-

manifold of M;. Let % be the Levi-Civita connection of (M, g;) and 5 be
the collection of the Levi-Civita connections of the integral manifolds N,
of B, induced by the semi-Riemannian structure of (Mz,gs). Also let H'
be a geometric realization of H, that is, H' is a complement of L in H.
(Hence my : H' — H is an isometry. Note also that f;"(= f,): H' — Bis
an isometry too). Also let V' be a geometric realization of V, that is, V' is
a complement of L; in V. Hence A; = H'® L, ® V' is an orthogonal direct
sum decomposition of A;. Thus, if U € TA;, then U = U+ + U° 4+ UT,
where UL, U° and U7 are the unique components of U in H’, L; and V',
respectlvely Finally note that, since f is normal, if X € I‘B then there
exists a unique lift X € TH' of X, that is, f X( f*X) of.

LEMMA 5.3. Let f: (M1,91) — (Ma,g92) be a regular semi-Riemannian
transversal map to (4, g2,), where M, is connected and f(M,) is a submani-

fold of M. Also let X € TH' andY € TH' be lifts of X € B and Y € T'B,
respectively. Then

(@) (X,Y) = g2(X,Y) o f,
(b) [X Y]t = [X Y]®,

(¢) (V )t = (DxY),
(d) (V;Y)T = §X.Y]".

Proof. (a) Obvious.
(b). Since [X,Y]is f-related to [X,Y], so [X,¥]! is f-related to [X,Y].

1 o~ 2 ~
(c). It suffices to show that ¢1(V3Y,Z) = g1((DxY)~, Z) for every

7Z eTH' being f-related to Z € I'B. This follows by expanding both sides
in the Koszul formula. In fact, using (a) and (b), we have

1 ~ ~ 1 ~ ~ o~ ~ ~ o~ ~ ~ ~
gl(v e d Z) = §[Xgl(Y7Z)+Ygl(X7Z)_Zgl(X’Y)

+ gl([j’?L Z) - gl([)?, Z]’i}) - gl([i;’ Z]’X)]
- %[ng(y, Z)+ Ygu(X, Z) - Zgy(X,Y)
+ 92([X,Y], Z) — g2([X, Z1,Y) - go([Y, Z), X))o f

= 0(DxY, Z)o f = (DxY)™, B).
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Hence, since g;|g is nondegenerate, the claim follows.
(d). Again from the Koszul formula, for U € I'V’, we have

gl(égi;,U) = %[5591(17, U)+Yq(X,0)-Ugi(X,Y)
+ gl([‘i:v ?]’ U)- gl([X7 U]’?) - gl([?’ ULX')]
= %gl([i”?]’v)’

since gl(jZ ,f’) = g(X,Y)o f and U is f-related to zero vector field, so
Ugi(X,Y)=0,and since U L X,U LY and U is f-related to zero vector
field, so first and last two terms vanish. Thus, (d) holds. m

THEOREM 5.4. Let f : (My,g1) — (M3, g2) be a regular, semi-Rieman-
nian transversal map to (¢,g2,), where My is connected and f(M;) is a

submanifold of M,. If X ,17 € TH' are lifts from B spanning nondegenerate
planes, then

K (1%, 17) = K (X, 9) + 50X, 717,18, 91)/0(X,9),

where Ky, is the sectional curvature in the induced structure of integral
manifolds Ny of B, K, is the sectional curvature in the structure of
(Ml’gl) and

n()?, }7) = gl(-i:’jz)gl(?’ i;) - 91(5(:,}7)2'
Proof. Let X,Y € TH' be lifts of X,Y € I'B. Then by Lemma 5.3,
1~ 2 1l =~
VY = (DxY)~ + -2—[X,Y]T + U,
where U’ € I'L,. Again by Lemma 5.3, for U € T'V', since U is f-related to
zero vector field,

1 ~ ~ 1 ~ ~ o~
(*) 91(VuX,Y) =gl(VfU7Y)+gl([U’X]’Y)

L L AT 1 ¥ vIT
= -0, V5Y) = -q(U,(VgY)") = —5a(X, Y], U).

1~ ~
Also, in particular, if U’ € TL,, then ¢;(Vy X,Y) = 0.
Now, by Lemma 5.3, since
~ 1 o 2
(V3 Z,W) = (Xg2(Dy 2,W))o f,
where Z,W € T'H' are the lifts of Z, W € I'B, we have

1 1 ~ ~ ~ 1 o o~ 1 .1 o
0(VV5Z, W) = (V4 Z, W) - 1(V3Z, VW)
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2 2 o lo ~nr , 2 N
= (Xg2(DyZ,W))o f — 1((DyX)™ + 5[V, Z]" + U, (DxW)
+5[%, W +U)
2 2 1l & 7T 1% GAT
= g2(DxDyZ,W)o f - Zgl([YaZ] [ X, W),

where U',U" € TL,.
Similarly,

1 1~ ~ 2 2 1 o g o= =
9(VgVzZ,W) = g(DyDx2,W)o f — 20i(IX, 2", [Y, W]").
1 o~
Also, since ¢;(Vyr Z,W) = 0 for U’ € TL; and by (%),
1 ~ ~ 1 o~
gl(vlf,?lz ) I(V[X Y]J.Z W) + gl(V[X y]TZ1 W) + gl(VU’Z7 W)
= 92(D[X,Y]Z’ W) of- '2'91([Z’ W]Ta [5(:, i;]T)v

where U’ € I‘L1

Thus, if R is the curvature tensor of M; and R is the curvature tensor
of the inducted structure on Nj, then

n(RX,Y)Z,W) = (V5V3Z,W) - (VV 32, W) - 91(V[x 72 W)

2 2 1 m o~ o~
=g (DxDyZ,W)o f — Z.‘h([Y’ Z7,[x,w]T) - gz(D}'DxZ, W)o f
1 o . 2 1 e o~ o~
+ Zgl([X’ Z]T7[Y7 W]T) - 92(D[X,Y]Z, W) Of + '2'91([Z, W]T,[X7Y]T)
2 l & 5T 1% 5T
=92(R(X’Y)Z,W)°f_ Zgl[Ya Z] ’[X’W] )
1 = =~ ~ o~ 1 ~ = -
+ Zgl([xvz]T’ [Y’ W]T) + 'é'gl([z’ W]T7[X’ Y]T)'

Hence, by setting Z=Y,X=W and dividing both sides by n()? , }7), the
Theorem follows.

Remark 5.5. Notice that the choice of V' is dummy. Indeed, since
1rl([Z W]T) (r1({Z,W1))T, where (7r1([Z W]))T is the component of
71([Z,W]) in V (and similarly for [X,Y]T), so we have

9112, W%, [X,Y)7) = 51 (m([Z, W), (m(IX, Y])T).
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Hence, Theorem 5.4 states that
KNz(f-X,f*i;)
~ ~ 3_ ~ ~ ~ ~ ~ ~
= K (X,Y) + Zgl((ﬂ'l([x’ Y]))T7 (m([X, Y]))T)/Q(Xa Y).
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