

Demir N. Kupeli

SEMI-RIEMANNIAN TRANSVERSAL MAPS

Abstract. A generalization of semi-Riemannian submersions to semi-Riemannian transversal maps is given. Also a fundamental equation of a regular, normal semi-Riemannian transversal map is obtained.

1. Introduction

A major flaw in Riemannian and semi-Riemannian geometry (as compared to other subjects) is a shortage of suitable kind of functions from one manifold to another that will compare their geometric properties. A class of such functions in Riemannian geometry was introduced by Fischer [1] and are called Riemannian maps. Later on, this concept was generalized to semi-Riemannian geometry by the author [2] and these functions are called semi-Riemannian maps.

A kind of such functions that compare the geometric properties of semi-Riemannian manifolds are semi-Riemannian submersions [4], [5]. Here we will generalize these functions from semi-Riemannian submersions to semi-Riemannian transversal maps to a semi-Riemannian foliation. Also, we will obtain a fundamental equation of a regular, normal semi-Riemannian transversal map to a semi-Riemannian foliation.

2. Preliminaries

Let E_1 and E_2 be inner product spaces (possibly indefinite) with inner products h_1 and h_2 , respectively, and let $f : E_1 \rightarrow E_2$ be a linear map. The transpose ${}^t f : E_2 \rightarrow E_1$ of f is defined by $h_1({}^t f x, y) = h_2(x, fy)$, where $x \in E_2$ and $y \in E_1$. The *indefinite square norm* $\|f\|^2$ of f with respect to inner products h_1 and h_2 is defined by $\|f\|^2 = \text{tr}({}^t f \circ f)$.

Let (M_2, g_2) be a semi-Riemannian manifold with metric g_2 and let $\phi =$

1991 *Mathematics Subject Classifications.* 53C50, 58C25.

Key words and phrases. Transversal semi-Riemannian map, semi-Riemannian transversal map, generalized transversal eikonal equation, sectional curvature.

$\{N_\alpha\}_{\alpha \in A}$ be a foliation on M_2 such that leaves of ϕ are (immersed) semi-Riemannian submanifolds $(N_\alpha, g_{2_{N_\alpha}})$ with induced metric $g_{2_{N_\alpha}}$ of constant index for all N_α . Then we will call (ϕ, g_{2_ϕ}) a *semi-Riemannian foliation* on (M_2, g_2) . Also let $T(M_2, \phi) = \bigcup_{\alpha \in A} \bigcup_{p \in N_\alpha} T_p N_\alpha$ be the *tangent bundle* of (ϕ, g_{2_ϕ}) and let $T(M_2, \phi)^\perp = \bigcup_{\alpha \in A} \bigcup_{p \in N_\alpha} T_p N_\alpha^\perp$ be the *normal bundle* of (ϕ, g_{2_ϕ}) .

Let (M_1, g_1) be a semi-Riemannian manifold with metric g_1 and let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a smooth function. Also let (ϕ, g_{2_ϕ}) be a semi-Riemannian foliation on (M_2, g_2) . Recall that f is called *transversal* to (ϕ, g_{2_ϕ}) if $f_{*_{p_1}}(T_{p_1} M_1) + T_{f(p_1)}(M_2, \phi) = T_{f(p_1)} M_2$ for every $p_1 \in M_1$. Note that then $f^{-1}(N_\alpha)$, $\alpha \in A$, are the leaves of a foliation on M_1 denoted by $f^*(\phi)$.

3. Transversal semi-Riemannian maps

Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a smooth function and let $p_2 = f(p_1)$. Define a linear function $f_{*_{p_1}}^\perp : T_{p_1} M_1 \rightarrow T_{p_2}(M_2, \phi)^\perp$ by $f_{*_{p_1}}^\perp x = (f_{*_{p_1}} x)^\perp$, where $(f_{*_{p_1}} x)^\perp$ is the component of $f_{*_{p_1}} x$ in $T_{p_2}(M_2, \phi)^\perp$.

Now define

$$\begin{aligned} L_1(p_1) &= (\ker f_{*_{p_1}}^\perp) \cap (\ker f_{*_{p_1}}^\perp)^\perp \subseteq T_{p_1} M_1, \\ L_2(p_2) &= (\text{range } f_{*_{p_1}}^\perp) \cap (\text{range } f_{*_{p_1}}^\perp)^\perp \subseteq T_{p_2} M_2. \end{aligned}$$

Note that $L_1(p_1)$ is the degenerate space of the restrictions of metric $g_{1_{p_1}}$ to $(\ker f_{*_{p_1}}^\perp)$ and $(\ker f_{*_{p_1}}^\perp)^\perp$. Also $L_2(p_2)$ is the degenerate space of the restriction of metric $g_{2_{p_2}}$ to $(\text{range } f_{*_{p_1}}^\perp)$. Also define

$$A_1(p_1) = (\ker f_{*_{p_1}}^\perp) + (\ker f_{*_{p_1}}^\perp)^\perp, \quad A_2(p_2) = (\text{range } f_{*_{p_1}}^\perp).$$

Next we will define some quotient spaces out of $V(p_1) = (\ker f_{*_{p_1}}^\perp)$, $H(p_1) = (\ker f_{*_{p_1}}^\perp)$, $A_1(p_1)$ and $A_2(p_2)$:

(1) $\overline{V}(p_1) = V(p_1)/L_1(p_1)$ and $\pi_1 : V(p_1) \rightarrow \overline{V}(p_1)$ is the natural projection,

(2) $\overline{H}(p_1) = H(p_1)/L_1(p_1)$ and $\pi_1 : H(p_1) \rightarrow \overline{H}(p_1)$ is the natural projection,

(3) $\overline{A}_1(p_1) = A_1(p_1)/L_1(p_1)$ and $\pi_1 : A_1(p_1) \rightarrow \overline{A}_1(p_1)$ is the natural projection, (note that, π_1 of (1) and (2) is the restriction of π_1 of this case to $V(p_1)$ and $H(p_1)$, respectively),

(4) $\overline{A}_2(p_2) = A_2(p_2)/L_2(p_2)$ and $\pi_2 : A_2(p_2) \rightarrow \overline{A}_2(p_2)$ is the natural projection.

Also we can define (nonsingular) inner products in $\overline{V}(p_1)$, $\overline{H}(p_1)$, $\overline{A}(p_1)$ and $\overline{A}_2(p_1)$ as follows:

(1') in $\overline{V}(p_1)$, let $\overline{g}_{p_1}(\overline{x}, \overline{y}) = g_{1_{p_1}}(x, y)$, where $x, y \in V(p_1)$ with $\pi_1(x) = \overline{x}$, $\pi_1(y) = \overline{y}$;

(2') in $\overline{H}(p_1)$, let $\overline{g}_{1_{p_1}}(\overline{x}, \overline{y}) = g_{1_{p_1}}(x, y)$, where $x, y \in H(p_1)$ with $\pi_1(x) = \overline{x}$, $\pi_1(y) = \overline{y}$;

(3') in $\overline{A}_1(p_1)$, let $\overline{g}_{1_{p_1}}(\overline{x}, \overline{y}) = g_{1_{p_1}}(x, y)$, where $x, y \in A_1(p_1)$ with $\pi_1(x) = \overline{x}$, $\pi_1(y) = \overline{y}$ (note that the inner products $\overline{g}_{1_{p_1}}$ in (1') and (2') are the restrictions of $\overline{g}_{1_{p_1}}$ of this case to $\overline{V}(p_1)$ and $\overline{H}(p_1)$, respectively);

(4') in $\overline{A}_2(p_2)$, let $\overline{g}_{2_{p_2}}(\overline{x}, \overline{y}) = g_{2_{p_2}}(x, y)$, where $x, y \in A_2(p_2)$ with $\pi_2(x) = \overline{x}$, $\pi_2(y) = \overline{y}$.

Finally, if $f : (M_1, g_1) \rightarrow (M_2, g_2)$ is a smooth function, define a map

$$\bar{f}_{*_{p_1}}^\perp : \overline{H}(p_1) \rightarrow \overline{A}_2(p_1) \text{ by } \bar{f}_{*_{p_1}}^\perp \overline{x} = \pi_2(f_{*_{p_1}}^\perp x),$$

where $x \in H(p_1)$ with $\pi_1(x) = \overline{x}$ (it is easy to check that $\bar{f}_{*_{p_1}}^\perp$ is well-defined).

Remarks 3.1. a) Observe that $\overline{A}_1(p_1) = \overline{V}(p_1) \oplus \overline{H}(p_1)$.

b) Note that $\bar{f}_{*_{p_1}}^\perp$ may not be either injective or surjective. In fact,

$$\text{rank } \bar{f}_{*_{p_1}}^\perp \leq \text{rank } f_{*_{p_1}}^\perp - \dim L_1(p_1).$$

DEFINITION 3.2. Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a smooth function and let (ϕ, g_{2_ϕ}) be a semi-Riemannian foliation on (M_2, g_2) . The nondegenerate transversal rank of f with respect to (ϕ, g_{2_ϕ}) at $p_1 \in M_1$ is defined to be $\text{rank } \bar{f}_{*_{p_1}}^\perp$.

Note that $(T_{p_1}M_1, g_{p_1})$ and $(T_{p_2}(M_2, \phi)^\perp, g_{2_{p_2}})$ are possibly indefinite inner product spaces as well as $(\overline{H}(p_1), \overline{g}_{p_1})$ and $(\overline{A}_2(p_2), \overline{g}_{p_2})$. Hence we can talk about indefinite square norms $\|f_{*_{p_1}}^\perp\|^2$ and $\|\bar{f}_{*_{p_1}}^\perp\|^2$.

THEOREM 3.3. Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a smooth function and let (ϕ, g_{2_ϕ}) be a semi-Riemannian foliation on (M_2, g_2) . Then $\|f_{*_{p_1}}^\perp\|^2 = \|\bar{f}_{*_{p_1}}^\perp\|^2$ at each $p_1 \in M_1$.

Proof. Let $\{x_1, \dots, x_l\}$ be an orthonormal basis for a (nondegenerate) complementary space to $L_1(p_1)$ in $V(p_1)$ and $\{y_1, \dots, y_m\}$ be an orthonormal basis for a (nondegenerate) complementary space to $L_1(p_1)$ in $H(p_1)$. Also let $\{z_1, w_1, \dots, z_k, w_k\}$ be an orthonormal basis for $(\text{span}\{x_1, \dots, x_l, y_1, \dots, y_m\})^\perp$ such that $u_i = z_i + w_i \in L_1(p_1)$ for $i = l, \dots, k$. Then $\{x_1, \dots, x_l, y_1, \dots, y_m, z_1, w_1, \dots, z_k, w_k\}$ is an orthonormal basis for $T_{p_1}M_1$.

and hence

$$\begin{aligned}\|f_{*_{p_1}}^\perp\|^2 &= \sum_{i=1}^k g_{1_{p_1}}(z_i, z_i) g_{2_{p_2}}(f_{*_{p_1}}^\perp z_i, f_{*_{p_1}}^\perp z_i) \\ &\quad + \sum_{i=1}^k g_{1_{p_1}}(w_i, w_i) g_{2_{p_2}}(f_{*_{p_1}}^\perp w_i, f_{*_{p_1}}^\perp w_i) \\ &\quad + \sum_{i=1}^k g_{1_{p_1}}(y_i, y_i) g_{2_{p_2}}(f_{*_{p_1}}^\perp y_i, f_{*_{p_1}}^\perp y_i).\end{aligned}$$

But since $u_i = z_i + w_i \in L_1(p_1) \subseteq V(p_1)$, we have $0 = f_{*_{p_1}}^\perp u_i = f_{*_{p_1}}^\perp z_i + f_{*_{p_1}}^\perp w_i$ and $0 = g_{1_{p_1}}(u_i, u_i) = g_{1_{p_1}}(z_i, z_i) + g_{1_{p_1}}(w_i, w_i)$. Hence, $f_{*_{p_1}}^\perp z_i = -f_{*_{p_1}}^\perp w_i$ and $g_{1_{p_1}}(z_i, z_i) = -g_{1_{p_1}}(w_i, w_i)$. Thus

$$\begin{aligned}\|f_{*_{p_1}}^\perp\|^2 &= \sum_{i=1}^m g_{1_{p_1}}(y_i, y_i) g_{2_{p_2}}(f_{*_{p_1}}^\perp y_i, f_{*_{p_1}}^\perp y_i) \\ &= \sum_{i=1}^m \bar{g}_{1_{p_1}}(\bar{y}_i, \bar{y}_i) \bar{g}_{2_{p_2}}(\bar{f}_{*_{p_1}}^\perp \bar{y}_i, \bar{f}_{*_{p_1}}^\perp \bar{y}_i) = \|\bar{f}_{*_{p_1}}^\perp\|^2,\end{aligned}$$

where $\pi_1(y_i) = \bar{y}_i$. ■

DEFINITION 3.4. Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a smooth function and (ϕ, g_{2_ϕ}) be a semi-Riemannian foliation on (M_2, g_2) . Then f is said to satisfy the generalized transversal eikonal equation at $p_1 \in M_1$ with respect to (ϕ, g_{2_ϕ}) if $\|f_{*_{p_1}}^\perp\|^2 = \text{rank } \bar{f}_{*_{p_1}}^\perp$.

Remark 3.5. Note that, if f satisfies the generalized transversal eikonal equation at each $p_1 \in M_1$ with respect to (ϕ, g_{2_ϕ}) , then, since $\|f_{*_{p_1}}^\perp\|^2$ is continuous on M_1 , $\text{rank } \bar{f}_{*_{p_1}}^\perp$ is constant on the connected components of M_1 .

Next we will define certain kind of functions which are solutions of the generalized transversal eikonal equation.

DEFINITION 3.6. Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a smooth function and (ϕ, g_{2_ϕ}) be a semi-Riemannian foliation on (M_2, g_2) . Then f is called a transversal semi-Riemannian map with respect to (ϕ, g_{2_ϕ}) at $p_1 \in M_1$ if $\bar{f}_{*_{p_1}}^\perp : \bar{H}(p_1) \rightarrow \bar{A}_2(p_2)$ is an (into) isometry. The function f is called a transversal semi-Riemannian map on M_1 with respect to (ϕ, g_{2_ϕ}) , if it is a transversal semi-Riemannian map with respect to (ϕ, g_{2_ϕ}) at each $p_1 \in M_1$.

THEOREM 3.7. If $f : (M_1, g_1) \rightarrow (M_2, g_2)$ is a transversal semi-Riemannian map with respect to (ϕ, g_{2_ϕ}) at $p_1 \in M_1$, then f satisfies the generalized transversal eikonal equation with respect to (ϕ, g_{2_ϕ}) at $p_1 \in M_1$.

Proof. First we will show that $\bar{F}_{p_1} = {}^t\bar{f}_{*_{p_1}}^\perp \circ \bar{f}_{*_{p_1}}^\perp : \bar{H}(p_1) \rightarrow \bar{H}(p_1)$ is the identity map. Indeed, note that for every $\bar{x}, \bar{y} \in \bar{H}(p_1)$ we can write

$$\bar{g}_{1_{p_1}}(\bar{F}_{p_1}\bar{x}, \bar{y}) = \bar{g}_{2_{p_2}}(\bar{f}_{*_{p_1}}^\perp \bar{x}, \bar{f}_{*_{p_1}}^\perp \bar{y}) = \bar{g}_{2_{p_2}}(\bar{x}, \bar{y}).$$

Hence $\bar{F}_{p_1} = \text{id}$ and it follows from Theorem 3.3 that

$$\|f_{*_{p_1}}^\perp\|^2 = \|\bar{f}_{*_{p_1}}^\perp\|^2 = \text{tr } \bar{F}_{p_1} = \dim \bar{H}(p_1) = \text{rank } \bar{f}_{*_{p_1}}^\perp. \quad \blacksquare$$

Remark 3.8. Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a transversal semi-Riemannian map with respect to (ϕ, g_{2_ϕ}) at $p_1 \in M_1$. Then, since $\bar{f}_{*_{p_1}}^\perp$ is injective (yet may not be surjective), $\text{rank } \bar{f}_{*_{p_1}}^\perp = \text{rank } f_{*_{p_1}}^\perp - \dim L_1(p_1)$. Furthermore, if f is transversal semi-Riemannian map on M_1 with respect to (ϕ, g_{2_ϕ}) , then, by Theorem 3.7 and Remark 3.5, since $\text{rank } f_*^\perp$ is constant on connected components of M_1 , $\dim \bar{H}(p_1) = \text{rank } \bar{f}_{*_{p_1}}^\perp$ at each $p_1 \in M_1$, and hence constant on the connected components of M_1 .

5. Semi-Riemannian transversal maps

DEFINITION 4.1. Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a smooth function and (ϕ, g_{2_ϕ}) be a semi-Riemannian foliation on (M_2, g_2) . If

- a) f is transversal to (ϕ, g_{2_ϕ}) ,
- b) f is a transversal semi-Riemannian map on M_1 with respect to (ϕ, g_{2_ϕ}) , then f is called a semi-Riemannian transversal map to (ϕ, g_{2_ϕ}) .

Remark 4.2. Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a semi-Riemannian transversal map to (ϕ, g_{2_ϕ}) , where M_1 is connected and $f(M_1)$ is a submanifold of M_2 . Then, since $\text{rank } f_{*_{p_1}}^\perp = \dim T_{p_2}(M_2, \phi)^\perp$ at each $p_1 \in M_1$, $\dim L_1(p_1) = \text{rank } f_{*_{p_1}}^\perp - \text{rank } \bar{f}_{*_{p_1}}^\perp$ is constant for all $p_1 \in M_1$. Hence, $L_1 = \bigcup_{p_1 \in M_1} L_1(p_1)$ is a smooth vector bundle over M_1 , since $(\ker f_*^\perp)$ and $(\ker f_{*_{p_1}}^\perp)^\perp$ are smooth vector bundles over M_1 . Consequently,

$$V = \bigcup_{p_1 \in M_1} V(p_1), H = \bigcup_{p_1 \in M_1} H(p_1) \text{ and } A_1 = \bigcup_{p_1 \in M_1} A_1(p_1)$$

are smooth vector bundles over M_1 and hence

$$\bar{V} = \bigcup_{p_1 \in M_1} \bar{V}(p_1), \bar{H} = \bigcup_{p_1 \in M_1} \bar{H}(p_1) \text{ and } \bar{A}_1 = \bigcup_{p_1 \in M_1} \bar{A}_1(p_1)$$

are smooth vector bundles over M_1 with $\bar{A}_1 = \bar{H} \oplus \bar{V}$. On the other hand, since

$$\text{range } f_*^\perp = T(M_2, \phi)^\perp \Big|_{\text{image}(f)} = A_2 = \bigcup_{p_2 \in \text{image}(f)} A_2(p_2)$$

is nondegenerate, $\bar{A}_2 = \bigcup_{p_2 \in \text{image}(f)} \bar{A}_2(p_1)$ is canonically isometric to A_2 . Hence, $\text{range } \bar{f}_*^\perp$ is a nondegenerate smooth subbundle of A_2 and let us denote it by $B = \text{range } \bar{f}_*^\perp$.

Remark 4.3. Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a semi-Riemannian transversal map to $(\phi, g_{2\phi})$, where M_1 is connected and $f(M_1)$ is a submanifold of M_2 . Note that, if $\text{rank } L_1 \neq 0$ (resp., $\text{rank } L_1 = 0$), then leaves of $f^*(\phi)$ are degenerate submanifolds (resp., (nondegenerate) semi-Riemannian submanifolds) of (M_1, g_1) . In particular, if ϕ is the points of M_2 , then f becomes a semi-Riemannian submersion [4].

DEFINITION 4.4. Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a smooth function and $(\phi, g_{2\phi})$ be a semi-Riemannian foliation on (M_2, g_2) . Then f is called normal to $(\phi, g_{2\phi})$, if $f_{*p_1} = f_{*p_1}^\perp$ at each $p_1 \in M_1$.

PROPOSITION 4.5. Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a normal semi-Riemannian transversal map to $(\phi, g_{2\phi})$, where M_1 is connected and $f(M_1)$ is a submanifold of M_2 . If $A_1 = (\ker f_*^\perp) + (\ker f_*^\perp)^\perp$ is integrable, then $B = \text{range } \bar{f}_*^\perp$ is integrable.

Proof. First note that $f_*(A_1) = B$. Now let $X, Y \in \Gamma B$ and let $\tilde{X}, \tilde{Y} \in \Gamma A_1$ be lifts of X, Y to A_1 . Then, since $f_*([\tilde{X}, \tilde{Y}]) = [X, Y] \circ f$ and $[\tilde{X}, \tilde{Y}] \in \Gamma A_1$, it follows that $[X, Y] \in \Gamma B$. That is B is integrable.

5. Regular normal semi-Riemannian transversal maps

DEFINITION 5.1. A semi-Riemannian transversal map $f : (M_1, g_1) \rightarrow (M_2, g_2)$ to $(\phi, g_{2\phi})$, where M_1 is connected, is called regular, if A_1 is a totally geodesic distribution.

Let f be a semi-Riemannian transversal map to $(\phi, g_{2\phi})$. Then leaves of $f^*(\phi)$ may be degenerate submanifolds of (M_1, g_1) . In particular, if f is regular, then these submanifolds are stationary and irrotational degenerate submanifolds of (M_1, g_1) which give rise of Gaus–Codazzi equations (see [3]). In fact, we have the following result.

PROPOSITION 5.2. Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a semi-Riemannian transversal map to $(\phi, g_{2\phi})$, where M_1 is connected. If f is regular, then A_1 is integrable and leaves of $f^*(\phi)$ are stationary, irrotational submanifolds of M_1 , provided that they are degenerate.

Proof. Note that, if A_1 is totally geodesic, then clearly A_1 is integrable, and $\overset{1}{\nabla}_x Z \in \Gamma A_1$ for every $X \in \Gamma V$, $Z \in \Gamma A_1$, where $\overset{1}{\nabla}$ is the Levi-Civita connection of M_1 . Hence, it also follows from [3, Prop. 4.1.15] that leaves of $f^*(\phi)$ are stationary, irrotational submanifolds of (M_1, g_1) . ■

Now we will obtain an equation relating the geometric properties of (M_1, g_1) and (M_2, g_2) .

Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a regular normal semi-Riemannian transversal map to $(\phi, g_{2\phi})$, where M_1 is connected and $f(M_1)$ is a submanifold of M_2 . Let $\overset{1}{\nabla}$ be the Levi-Civita connection of (M_1, g_1) and $\overset{2}{D}$ be the collection of the Levi-Civita connections of the integral manifolds N_2 of B , induced by the semi-Riemannian structure of (M_2, g_2) . Also let H' be a geometric realization of \bar{H} , that is, H' is a complement of L_1 in H . (Hence $\pi_1 : H' \rightarrow \bar{H}$ is an isometry. Note also that $f_*^1 (= f_*) : H' \rightarrow B$ is an isometry too). Also let V' be a geometric realization of V , that is, V' is a complement of L_1 in V . Hence $A_1 = H' \oplus L_1 \oplus V'$ is an orthogonal direct sum decomposition of A_1 . Thus, if $U \in \Gamma A_1$, then $U = U^\perp + U^\circ + U^T$, where U^\perp , U° and U^T are the unique components of U in H' , L_1 and V' , respectively. Finally note that, since f is normal, if $X \in \Gamma B$, then there exists a unique lift $\tilde{X} \in \Gamma H'$ of X , that is, $f_*^1 \tilde{X} (= f_* \tilde{X}) = X \circ f$.

LEMMA 5.3. *Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a regular semi-Riemannian transversal map to $(\phi, g_{2\phi})$, where M_1 is connected and $f(M_1)$ is a submanifold of M_2 . Also let $\tilde{X} \in \Gamma H'$ and $\tilde{Y} \in \Gamma H'$ be lifts of $X \in \Gamma B$ and $Y \in \Gamma B$, respectively. Then*

- (a) $g_1(\tilde{X}, \tilde{Y}) = g_2(X, Y) \circ f$,
- (b) $[\tilde{X}, \tilde{Y}]^\perp = [X, Y]^\sim$,
- (c) $(\overset{1}{\nabla}_{\tilde{X}} \tilde{Y})^\perp = (\overset{2}{D}_X Y)^\sim$,
- (d) $(\overset{1}{\nabla}_{\tilde{X}} \tilde{Y})^T = \frac{1}{2}[\tilde{X}, \tilde{Y}]^T$.

Proof. (a) Obvious.

(b). Since $[\tilde{X}, \tilde{Y}]$ is f -related to $[X, Y]$, so $[\tilde{X}, \tilde{Y}]^\perp$ is f -related to $[X, Y]$.

(c). It suffices to show that $g_1(\overset{1}{\nabla}_{\tilde{X}} \tilde{Y}, \tilde{Z}) = g_1((\overset{2}{D}_X Y)^\sim, \tilde{Z})$ for every $\tilde{Z} \in \Gamma H'$ being f -related to $Z \in \Gamma B$. This follows by expanding both sides in the Koszul formula. In fact, using (a) and (b), we have

$$\begin{aligned}
 g_1(\overset{1}{\nabla}_{\tilde{X}} \tilde{Y}, \tilde{Z}) &= \frac{1}{2}[\tilde{X}g_1(\tilde{Y}, \tilde{Z}) + \tilde{Y}g_1(\tilde{X}, \tilde{Z}) - \tilde{Z}g_1(\tilde{X}, \tilde{Y}) \\
 &\quad + g_1([\tilde{X}, \tilde{Y}], \tilde{Z}) - g_1([\tilde{X}, \tilde{Z}], \tilde{Y}) - g_1([\tilde{Y}, \tilde{Z}], \tilde{X})] \\
 &= \frac{1}{2}[Xg_2(Y, Z) + Yg_2(X, Z) - Zg_2(X, Y) \\
 &\quad + g_2([X, Y], Z) - g_2([X, Z], Y) - g_2([Y, Z], X)] \circ f \\
 &= g_2(\overset{2}{D}_X Y, Z) \circ f = g_1((\overset{2}{D}_X Y)^\sim, \tilde{Z}).
 \end{aligned}$$

Hence, since $g_1|_{H'}$ is nondegenerate, the claim follows.

(d). Again from the Koszul formula, for $U \in \Gamma V'$, we have

$$\begin{aligned} g_1(\overset{1}{\nabla}_{\tilde{X}}\tilde{Y}, U) &= \frac{1}{2}[\tilde{X}g_1(\tilde{Y}, U) + \tilde{Y}g_1(\tilde{X}, U) - Ug_1(\tilde{X}, \tilde{Y}) \\ &\quad + g_1([\tilde{X}, \tilde{Y}], U) - g_1([\tilde{X}, U], \tilde{Y}) - g_1([\tilde{Y}, U], \tilde{X})] \\ &= \frac{1}{2}g_1([\tilde{X}, \tilde{Y}], U), \end{aligned}$$

since $g_1(\tilde{X}, \tilde{Y}) = g_2(X, Y) \circ f$ and U is f -related to zero vector field, so $Ug_1(\tilde{X}, \tilde{Y}) = 0$, and since $U \perp \tilde{X}$, $U \perp \tilde{Y}$ and U is f -related to zero vector field, so first and last two terms vanish. Thus, (d) holds. ■

THEOREM 5.4. *Let $f : (M_1, g_1) \rightarrow (M_2, g_2)$ be a regular, semi-Riemannian transversal map to $(\phi, g_{2\phi})$, where M_1 is connected and $f(M_1)$ is a submanifold of M_2 . If $\tilde{X}, \tilde{Y} \in \Gamma H'$ are lifts from B spanning nondegenerate planes, then*

$$K_{N_2}(f_*\tilde{X}, f_*\tilde{Y}) = K_{M_1}(\tilde{X}, \tilde{Y}) + \frac{3}{4}g_1([\tilde{X}, \tilde{Y}]^T, [\tilde{X}, \tilde{Y}]^T)/\mathcal{Q}(\tilde{X}, \tilde{Y}),$$

where K_{N_2} is the sectional curvature in the induced structure of integral manifolds N_2 of B , K_{M_1} is the sectional curvature in the structure of (M_1, g_1) and

$$\mathcal{Q}(\tilde{X}, \tilde{Y}) = g_1(\tilde{X}, \tilde{X})g_1(\tilde{Y}, \tilde{Y}) - g_1(\tilde{X}, \tilde{Y})^2.$$

Proof. Let $\tilde{X}, \tilde{Y} \in \Gamma H'$ be lifts of $X, Y \in \Gamma B$. Then by Lemma 5.3,

$$\overset{1}{\nabla}_{\tilde{X}}\tilde{Y} = (\overset{2}{D}_X Y)^\sim + \frac{1}{2}[\tilde{X}, \tilde{Y}]^T + U',$$

where $U' \in \Gamma L_1$. Again by Lemma 5.3, for $U \in \Gamma V'$, since U is f -related to zero vector field,

$$\begin{aligned} (*) \quad g_1(\overset{1}{\nabla}_U\tilde{X}, \tilde{Y}) &= g_1(\overset{1}{\nabla}_{\tilde{X}}U, \tilde{Y}) + g_1([U, \tilde{X}], \tilde{Y}) \\ &= -g_1(U, \overset{1}{\nabla}_{\tilde{X}}\tilde{Y}) = -g_1(U, (\overset{1}{\nabla}_{\tilde{X}}\tilde{Y})^T) = -\frac{1}{2}g_1([\tilde{X}, \tilde{Y}]^T, U). \end{aligned}$$

Also, in particular, if $U' \in \Gamma L_1$, then $g_1(\overset{1}{\nabla}_{U'}\tilde{X}, \tilde{Y}) = 0$.

Now, by Lemma 5.3, since

$$\tilde{X}g_1(\overset{1}{\nabla}_{\tilde{Y}}\tilde{Z}, \tilde{W}) = (Xg_2(\overset{2}{D}_Y Z, W)) \circ f,$$

where $\tilde{Z}, \tilde{W} \in \Gamma H'$ are the lifts of $Z, W \in \Gamma B$, we have

$$g_1(\overset{1}{\nabla}_{\tilde{X}}\overset{1}{\nabla}_{\tilde{Y}}\tilde{Z}, \tilde{W}) = \tilde{X}g_1(\overset{1}{\nabla}_{\tilde{Y}}\tilde{Z}, \tilde{W}) - g_1(\overset{1}{\nabla}_{\tilde{Y}}\tilde{Z}, \overset{1}{\nabla}_{\tilde{X}}\tilde{W})$$

$$\begin{aligned}
&= (Xg_2(\overset{2}{D}_YZ, W)) \circ f - g_1((\overset{2}{D}_YX)^\sim + \frac{1}{2}[\tilde{Y}, \tilde{Z}]^T + U', (\overset{2}{D}_XW)^\sim \\
&\quad + \frac{1}{2}[\tilde{X}, \tilde{W}]^T + U'') \\
&= g_2(\overset{2}{D}_X\overset{2}{D}_YZ, W) \circ f - \frac{1}{4}g_1([\tilde{Y}, \tilde{Z}]^T, [\tilde{X}, \tilde{W}]^T),
\end{aligned}$$

where $U', U'' \in \Gamma L_1$.

Similarly,

$$g_1(\overset{1}{\nabla}_{\tilde{Y}}\overset{1}{\nabla}_{\tilde{X}}\tilde{Z}, \tilde{W}) = g_2(\overset{2}{D}_Y\overset{2}{D}_XZ, W) \circ f - \frac{1}{4}g_1([\tilde{X}, \tilde{Z}]^T, [\tilde{Y}, \tilde{W}]^T).$$

Also, since $g_1(\overset{1}{\nabla}_{U'}\tilde{Z}, \tilde{W}) = 0$ for $U' \in \Gamma L_1$ and by (*),

$$\begin{aligned}
g_1(\overset{1}{\nabla}_{[\tilde{X}, \tilde{Y}]}\tilde{Z}, \tilde{W}) &= g_1(\overset{1}{\nabla}_{[\tilde{X}, \tilde{Y}]^\perp}\tilde{Z}, \tilde{W}) + g_1(\overset{1}{\nabla}_{[\tilde{X}, \tilde{Y}]^T}\tilde{Z}, \tilde{W}) + g_1(\overset{1}{\nabla}_{U'}\tilde{Z}, \tilde{W}) \\
&= g_2(\overset{2}{D}_{[X, Y]}Z, W) \circ f - \frac{1}{2}g_1([\tilde{Z}, \tilde{W}]^T, [\tilde{X}, \tilde{Y}]^T),
\end{aligned}$$

where $U' \in \Gamma L_1$.

Thus, if $\overset{1}{R}$ is the curvature tensor of M_1 and $\overset{2}{R}$ is the curvature tensor of the inducted structure on N_2 , then

$$\begin{aligned}
g_1(\overset{1}{R}(\tilde{X}, \tilde{Y})\tilde{Z}, \tilde{W}) &= g_1(\overset{1}{\nabla}_{\tilde{X}}\overset{1}{\nabla}_{\tilde{Y}}\tilde{Z}, \tilde{W}) - g_1(\overset{1}{\nabla}_{\tilde{Y}}\overset{1}{\nabla}_{\tilde{X}}\tilde{Z}, \tilde{W}) - g_1(\overset{1}{\nabla}_{[\tilde{X}, \tilde{Y}]}\tilde{Z}, \tilde{W}) \\
&= g_2(\overset{2}{D}_X\overset{2}{D}_YZ, W) \circ f - \frac{1}{4}g_1([\tilde{Y}, \tilde{Z}]^T, [\tilde{X}, \tilde{W}]^T) - g_2(\overset{2}{D}_Y\overset{2}{D}_XZ, W) \circ f \\
&\quad + \frac{1}{4}g_1([\tilde{X}, \tilde{Z}]^T, [\tilde{Y}, \tilde{W}]^T) - g_2(\overset{2}{D}_{[X, Y]}Z, W) \circ f + \frac{1}{2}g_1([\tilde{Z}, \tilde{W}]^T, [\tilde{X}, \tilde{Y}]^T) \\
&= g_2(\overset{2}{R}(X, Y)Z, W) \circ f - \frac{1}{4}g_1([\tilde{Y}, \tilde{Z}]^T, [\tilde{X}, \tilde{W}]^T) \\
&\quad + \frac{1}{4}g_1([\tilde{X}, \tilde{Z}]^T, [\tilde{Y}, \tilde{W}]^T) + \frac{1}{2}g_1([\tilde{Z}, \tilde{W}]^T, [\tilde{X}, \tilde{Y}]^T).
\end{aligned}$$

Hence, by setting $\tilde{Z} = \tilde{Y}$, $\tilde{X} = \tilde{W}$ and dividing both sides by $\mathcal{Q}(\tilde{X}, \tilde{Y})$, the Theorem follows.

Remark 5.5. Notice that the choice of V' is dummy. Indeed, since $\pi_1([\tilde{Z}, \tilde{W}]^T) = (\pi_1([\tilde{Z}, \tilde{W}]))^T$, where $(\pi_1([\tilde{Z}, \tilde{W}]))^T$ is the component of $\pi_1([\tilde{Z}, \tilde{W}])$ in \tilde{V} (and similarly for $[\tilde{X}, \tilde{Y}]^T$), so we have

$$g_1([\tilde{Z}, \tilde{W}]^T, [\tilde{X}, \tilde{Y}]^T) = \bar{g}_1((\pi_1([\tilde{Z}, \tilde{W}]))^T, (\pi_1([\tilde{X}, \tilde{Y}]))^T).$$

Hence, Theorem 5.4 states that

$$\begin{aligned} K_{N_2}(f_*\tilde{X}, f_*\tilde{Y}) \\ = K_{M_1}(\tilde{X}, \tilde{Y}) + \frac{3}{4}\bar{g}_1((\pi_1([\tilde{X}, \tilde{Y}]))^T, (\pi_1([\tilde{X}, \tilde{Y}]))^T)/Q(\tilde{X}, \tilde{Y}). \end{aligned}$$

References

- [1] A. E. Fisher: *Riemannian maps between Riemannian manifolds*, Contemp. Math., 132 (1992), 331–366.
- [2] D. N. Kupeli: *The eikonal equation of an indefinite metric*, Acta Appl. Math., 40 (1995), 245–253.
- [3] D. N. Kupeli: *Singular Semi-Riemannian Geometry*, Kluwer Academic Publishers, Dordrecht, 1996.
- [4] D. N. Kupeli: *On semi-Riemannian submersions*, New Developments in Differential Geometry, Budapest 1996. J. Szente (Ed), Kluwer Academic Publishers, Dordrecht 1998, 203–212.
- [5] B. O’Neill: *Semi-Riemannian Geometry with Applications to Relativity*, Academic Press, New York, 1983.

Demir N. Kupeli

DEPARTMENT OF MATHEMATICS
MIDDLE EAST TECHNICAL UNIVERSITY
06531 ANKARA, TURKEY
E-mail: dnk@rorqual.cc.metu.edu.tr

Received March 18, 1997.