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ON MULTIVALUED INTEGRAL MEAN

Abstract. In the present note we prove that if a set valued function F : [0,5] — n(Y),
where n(Y) denote all nonempty subsets of Banach space, is convex or starshaped then
the multifunction defined by the formula

Mp(z):=

8| =

SF(t) dt, z€(0,b)
0

mapping (0, b] into the family of all convex subsets of Y is, respectively, convex or star-
shaped. We give conditions under which the subadditivity of F implies the subadditivity
of Mp.

Introduction
G. H. Toader in [5] considered an integral mean of the form

myg(z) :=

8|

{f@dt, my(0)=0,
0

where f :[0,b] — R is a continuous function such that f(0) = 0. He proved
that convexity, starshapedness and subadditivity of f imply, respectively,
convexity starshapedness and subadditivity of my. In [6] G. H. Toader deals
with “m-convex” functions.

In this paper we give the set-valued versions some of the results from
[5] and [6]. Our main theorem says that the subadditivity of measurable
and integrably bounded set-valued function F : [0,8] — cc(Y) implies the
subadditivity of Mp. Here cc(Y) stands for the family of all nonempty
compact and convex subsets of the Banach space Y.
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1. Some definitions and auxiliary results

For a Banach space Y we denote by n(Y), ¢(Y) and cc(Y'), respectively,
the class of all nonempty subsets of Y, the class of all nonempty convex sub-
sets of Y, and the class of all nonempty convex and compact subsets of Y.

DEFINITION 1. (see [1]). A set-valued function F : [0,b] — n(Y') is called
Borel measurable, if its graph, i.e. the set {(t,z) : ¢ € F(t)}, is a Borel
subset of [0,0] xY.

DEFINITION 2. (see [1]). A set-valued function F': [0,5] — n(Y) is said
to be integrably bounded, if there exists a single-valued integrable function
h: [0,b] = Y such that ||z|| < h(t) for all z and t such that z € F(¢).

Let us mention that the Aumann integral of F is the set of integrals of
all integrable selections of F.

REMARK 1. (see [1]). If a set-valued function F : [0,8] — n(Y) is
Borel measurable and integrably bounded then the Aumann integral of F
is nonempty.

DEFINITION 3. Let F : {0,b] — n(Y) be Borel-measurable and integrably

bounded set-valued function. We say that F' has a property “P” in the mean
that the set-valued function Mp : (0,5] — ¢(Y') defined by

(1) Mr(z) = % §F(t) dt, z€(0,b],
0

N«

has the property “P”. In the sequel for “P” stand “convexity”, “starshaped-
ness” and “subadditivity”.

REMARK 2. Let us note that making the change of variable ¢ = zu in
(1) the function Mp defined by (1) can be written as

1
Mp(z) = | F(zu) du.
0

REMARK 3. Let us also note that if Fy, F; : [0,b] — n(Y') are integrably
bounded and Borel-measurable multifunctions then
d

d d
VR dt+ | R@ydt c (A + F)() dt

for all ¢,d € [0,b], ¢ < d.

DEFINITION 4. Let Y be a Banach space and m € [0,1]. A set-valued
function F: [0,b] — n(Y) is called m-convez if

tF(z) + m(1-1)F(y) C F(tz + m(1 - t)y)
for all z,y € [0,b] and ¢ € [0, 1].
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Note that for m = 1 the m-convezity reduces to the convexity of F. For
m = 0 we have the starshapedness of F i.e.

tF(z) C F(tz) forall z €[0,b], t € [0,1].

The m-convez single-valued functions were investigated by G. H. Toader in

[6].

Denote respectively by K,, and S the sets of multifunction:

Ko = {F € n(Y) : F is m-convez and {0} € F(0)},
S:={Fen)0 2,y z4+yec[0,b)= F(z+y) C F(z)+ F(y)}.
LEMMA 1. If for an arbitrary m, 0 < m < 1, @ multifunction F : [0,b] —

n(Y) is m-convez and {0} € F(0) then F is starshaped.
Proof. By the m-convezity of F,
F(tz) = F(tz + m(1 —t)0) D tF(z) + m(1 - t)F(0)
D tF(z) 4+ m(1 —t){0} = tF(z)
for arbitrary = € [0,b] and ¢ € [0, 1], which was to be shown.
A set-valued function G : [0,b] — n(Y) is called decreasing if for all
z,y € [0, b]
z <y = G(z) D G(y).
LEMMA 2. Let Y be a Banach space. A set valued function F : [0,b] —

n(Y') is starshaped if and only if the multifunction (0,0) 5> z — ﬁzﬂ is
decreasing.

Proof. Let F be starshaped. Then tF(y) C F(ty) for all y € [0,b] and
t € [0,1]. Taking arbitrary z,y € (0,5], 0 < z < y, we have ¢ := % € (0,1)
and therefore £F(y) C F(z), which shows that the function (0,5] 5 z —
ﬂzﬂ is decreasing.

Suppose that (0,0] 5 z — F—Sfl is decreasing. Then for every ¢ € (0, 1]
and z € (0,b]; ﬂt;—’”l ) ﬂ:’—), i.e. F(tz) D tF(z) which shows that F is
starshaped.

2. Main results
We begin with showing that the classes K,,, m € [0, 1], are monotonic
with respect to m.

THEOREM 1. If0 < n < m <1 and 0 € F(0), then
K1CIfmCKnCI(0CS.
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Proof. Suppose that a set-valued function F' : [0, b] — n(Y') is m-convex.

Then from Lemma 1 we have
F(tz + n(1 - t)y) = F(tz + m(1 - t)%y)
> tF(®) + m(1 - )F(—y) D tF(z) + n(1 - )F(y)
for all z, y € [0,b] and t € [0, 1] which shows that K, C K.

It remains to show that Ko C S. Take z, y such that z + y € [0, 5] and
F € Ky. If either z = 0 or y = 0 the proof is trivial. Suppose that z,y > 0.
From Lemma 2 we have '

Flz+y zF(z+y yFlz+y
Fz+y)=(z+v) i+y)c z(+y)+ x(+y)

c oF@) | uF y(y) = F(z) + F(y)

T
which proves that F € S.

Now we prove the following

THEOREM 2. LetY be a Banach space and F : [0,b] — n(Y') an integrably
bounded and measurable set-valued function. Then if F is m-convez then Mg
is m-convez.

Proof. Let F :[0,b] » n(Y) be m—convex set-valued function i.e..
F(to +m(1 - t)y) > tF(z) + m(1 - )F(y),
for all z, y € [0,b] and ¢ € [0,1]. From Remark 3 we have

1

Mr(tz + m(1-t)y) = SF(tzu + m(1 - t)yu) du
0

D \[tF(zu) + m(1 — t)F(yu)] du

1

(= i = I

D \tF(zu)du + S m(1 — t)F(yu) du
1 1

=1 S F(zu)du+ m(1-1t) S F(yu)du
0 0

= tMp(z) + m(1 - t)MF(y)
for all z, y € [0,b], t € [0,1], which means that Mg is m—convex.

Putting m = 0 in Theorem 2 gives the following
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COROLLARY 1. Let Y be a Banach space. If F : [0,b] — n(Y') is star-
shaped set-valued function, then so is Mp.

Putting m = 1 in Theorem 2 gives the following

COROLLARY 2. Let Y be a Banach space. If F : [0,b] — n(Y) is convex
set-valued function, then so is Mp.

In the proof of the next theorem we need some remarks.

REMARK 4. Because Lebesgue measure is complete, the Borel measura-
bility of the set valued function F is equivalent to the following condition:
for every Borel set B,

F~(B):={z€[0,b]: F(z)NB#£0} € L
where £ denotes the o—algebra of all subsets of interval [0, b] which are mea-
surable in the Lebesgue sense (cf. [2]). It is easy to verify that if F is of the
form F(z) := [f(z),g(z)], where f,g:[0,b] — R, f < g, the measurability
of F implies measurability of f and g. Moreover if F is integrably bounded
function then f and g are integrable (in the Lebesgue sense).

REMARK 5. If a multifunction F : [0,5] — cc(R) has the form F(z) :=
[f(z),9(2)], f,9:[0,0) = R, f < g, and f and g are integrable functions,
then it is easy to check that subadditivity of F implies subadditivity of M.

Now we prove the following

THEOREM 3. LetY be a Banach space and suppose that F' : [0,b] — cc(Y)
is an integrably bounded and Borel-measurable set-valued function. Then the
subadditivity of F' implies the subadditivity of Mp.

Proof. Let us take an arbitrary continuous linear functional y* : ¥ — R
and consider a set-valued function y* o F : [0,b] — cc(R) defined by

("o F)(z) := y*(F(2)), <« €][0,d].
Since for every z € [0,b], F(z) is convex and compact, the continuity of y*
implies that
(y* ° F)(.’D) = [(Py‘(m), ¢y‘($)],
where gy, ¥y : [0,5] > R and ¢, < 9y,
The Borel measurability and bounded integrability of F' imply that so is

y* o F. From Remark 4, ¢~ and 1y~ are integrable functions. From Remark

5 the function
1

1
(y* o Mp)(z) = y* ( S F(zu) du) = Sy*(F(xu)) du
0 0
is subadditive i.e.
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(2 =zyr+ye (0=

(y" o MFp)(z +y) C (y" o Mp)(z) + (3" o MF)(y)-
Since F is integrably bounded function and its values are compact subsets of
Y, it follows that the sets Mp(z), z € (0,d], are compact (see {1], Theorem

4). Hence the sets (y* o Mp)(z), z € (0, b], are also compact.
From (2) and the linearity of y* we have

(3) (y"oMF)(z+y) C (¥* o MF)(z)+(y" o MF)(y) C y*(MF(z)+ MFr(y))-

for all z,y € [0,b] and z + y € (0,5).
We shall show that the function M must be subadditive. For an indirect
proof suppose that there are z,y € (0,b] such that z + y € (0,b] and

Mr(z +y) ¢ Mr(y) + MFp(z).

Then we could find a point p € Mp(z + y) such that p € Mp(z) + Mr(y).
The set {p} is compact and convex, and the set Mp(z)+ Mp(y), being the
algebraic sum of two compact and convex sets, is closed and convex.

Now by the separation theorem (c.f. Rolewicz [4], p. 98, Corollary 2.5.11)
there exist ¢ € R and ¢ > 0 such that

y*(p) > c+¢ and sup ¥ (g) <c
9EMp(z)+Mr(y)

but this contradicts to the inclusion (3), and the proof is completed.
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