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ON MULTIVALUED INTEGRAL MEAN 

A b s t r a c t . In the present note we prove that if a set valued function F : [0,6] —<• n(Y"), 
where n(Y) denote all nonempty subsets of Banach space, is convex or starshaped then 
the multifunction defined by the formula 

X 

MF(x):=±\F(t)dt, » 6 ( 0 , 6 ] , 
o 

mapping (0, 6] into the family of all convex subsets of V is, respectively, convex or star-
shaped. We give conditions under which the subadditivity of F implies the subadditivity 
of Mp. 

Introduction 
G. H. Toader in [5] considered an integral mean of the form 

1 x 

mf(x) :=-\f(t)dt, mf(0) = 0, 
x o 

where / : [0,&] —> R is a continuous function such that /(0) = 0. He proved 
that convexity, starshapedness and subadditivity of / imply, respectively, 
convexity starshapedness and subadditivity of m/. In [6] G. H. Toader deals 
with "m-convex" functions. 

In this paper we give the set-valued versions some of the results from 
[5] and [6]. Our main theorem says that the subadditivity of measurable 
and integrably bounded set-valued function F : [0,6] —> cc (Y) implies the 
subadditivity of Mp- Here cc(Y) stands for the family of all nonempty 
compact and convex subsets of the Banach space Y. 
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1. Some definitions and auxiliary results 
For a Banach space Y we denote by n(Y), c (F ) and cc (y) , respectively, 

the class of all nonempty subsets of Y, the class of all nonempty convex sub-
sets of y , and the class of all nonempty convex and compact subsets of Y. 

DEFINITION 1 . (see [1 ] ) . A set-valued function F : [ 0 , 6 ] -»• n(Y) is called 
Borel measurable, if its graph, i.e. the set { ( í ,x ) : x € is a Borel 
subset of [0,6] x Y . 

DEFINITION 2 . (see [ 1 ] ) . A set-valued function F : [ 0 , 6 ] —»• n(Y) is said 
to be integrably bounded, if there exists a single-valued integrable function 
h : [0,6] —• Y such that ||z|| < h(t) for all x and t such that x 6 F(t). 

Let us mention that the Aumann integral of F is the set of integrals of 
all integrable selections of F. 

R E M A R K 1. (see [1]). If a set-valued function F : [0,6] n(Y) is 
Borel measurable and integrably bounded then the Aumann integral of F 
is nonempty. 

DEFINITION 3 . Let F : [ 0 , 6 ] —• n(Y) be Borel-measurable and integrably 
bounded set-valued function. We say that F has a property "P" in the mean 
that the set-valued function MF (0,6] —> c (F) defined by 

(1) MF(x):=-\F(t)dt, x e (0,6], 
x o 

has the property "P". In the sequel for "P" stand "convexity", "starshaped-
ness" and "subadditivity". 

R E M A R K 2 . Let us note that making the change of variable t = xu in 
(1) the function Mp defined by (1) can be written as 

i 
Mp{x) = J F(xu) du. 

o 
R E M A R K 3 . Let us also note that if F\,F2 : [ 0 , 6 ] —• n(Y) are integrably 

bounded and Borel-measurable multifunctions then 
d d d 
J Fx(i) dt + J F2{t) dt C \{FX + F2)(t) dt 
c c c 

for all c, d 6 [0,6], c < d. 

DEFINITION 4 . Let Y be a Banach space and m € [ 0 , 1 ] . A set-valued 
function F : [0,6] —• n(Y) is called m-convex if 

tF(x) + m( 1 - t)F(y) C F(tx + m( 1 - t)y) 

for all x, y G [0,6] and t G [0,1]. 
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Note that for m = 1 the m-convexity reduces to the convexity of F. For 
m = 0 we have the starshapedness of F i.e. 

tF(x) C F(tx) for aH x G [0,6], t G [0,1]. 

The m-convex single-valued functions were investigated by G. H. Toader in 
[6], 

Denote respectively by Km and S the sets of multifunction: 

Km := {F G n(y)[0,i '1 : F is m-convex and {0} G ^(0)}, 
S := {F e n(y)t°-b] : x,y, x + y € [0,6] F(x + y) C F(x) + F(y)}. 

LEMMA 1. If for an arbitrary m , 0 ^ m < 1, a multifunction F : [ 0 ,6 ] —• 
n(Y) is m-convex and {0} € .F(O) then F is starshaped. 

P r o o f . By the m-convexity of F, 

F(tx) = F(tx + m(l - i)0) D tF(x) + m( 1 - t)F(0) 

D tF(x) + m(l - i){0} = tF(x) 

for arbitrary x € [0,6] and t 6 [0,1], which was to be shown. 

A set-valued function G : [0,6] —> n(Y) is called decreasing if for all 
x , y € [0,6] 

x < y ^ G(x) D G(y). 
LEMMA 2 . Let Y be a Banach space. A set valued function F : [ 0 , 6 ] — 

n(Y) is starshaped if and only if the multifunction (0,6] 9 x —> ^ ^ is 
decreasing. 

P r o o f . Let F be starshaped. Then tF(y) C F(ty) for all y e [0,6] and 
t e [0,1]. Taking arbitrary x, y £ (0,6], 0 < x < y, we have t := | G (0,1) 
and therefore | F ( y ) C F(a;), which shows that the function (0,6] 9 x —> 
^ ^ is decreasing. 

Suppose that (0,6] 9 x -»• is decreasing. Then for every t 6 (0,1] 
and x e (0,6]; ^ ^ D i.e. F{tx) D tF(x) which shows that F is 
starshaped. 

2. Main results 
We begin with showing that the classes K m , m G [0,1], are monotonic 

with respect to m. 

THEOREM 1. 7 / 0 < n < m < l and 0 6 F( 0 ) , then 

Kx c Km C Kn C K0 C S. 
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P r o o f . Suppose that a set-valued function F : [0, 6] —> n(Y) is m-convex. 
Then from Lemma 1 we have 

F(tx + n ( l - t)y) = F(tx + m ( 1 - t)—y) 
Til 

D tF(x) + m( I - o^C—Y) ^ tfX*) + "(i -m 
for all x, y £ [0,6] and t G [0,1] which shows that Km C Kn. 

It remains to show that KQ C S. Take x, y such that x + y G [0,6] and 
F G KQ. If either x = 0 or y = 0 the proof is trivial. Suppose that x, y > 0. 
From Lemma 2 we have 

x / Fix + y) xFix + y) yFix + y) f(X + y ) = (x + y) y Y> c — \ - L i i + Y Y 
x + y x + y x + y 

xFix) yFiy) . . 
C — ^ + = F I + F(Y) 

® y 
which proves that F £ S. 

Now we prove the following 

THEOREM 2. LetY be a Banach space andF : [0,6] —• n(Y) an integrably 
bounded and measurable set-valued function. Then if F is m-convex then Mp 
is m-convex. 

P r o o f . Let F : [0,6] —• n(Y) be m-convex set-valued function i.e. 

F(tx + m( 1 - t)y) D tF{x) + m(l - t)F(y), 

for all x, y G [0,6] and t G [0,1]. From Remark 3 we have 
l 

Mp(tx + m( 1 - t)y) = ^ F(txu + m( 1 - t)yu) du 
0 
1 

D \[tF(xu) + m( 1 - t)F(yu)] du 
0 
1 l 

D \ tF(xu) du + \ M( 1 - t)F(yu) du 
o 

l 
= t \ F{xu) du + m( 1 - t) \ F(yu) du 

0 0 
= tMF(x) + m( 1 - t)MF(y) 

for all x, y G [0,6], t G [0,1], which means that Mp is m-convex. 

Putting m = 0 in Theorem 2 gives the following 
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C O R O L L A R Y 1. Let Y be a Banach space. If F : [ 0 , 6 ] n(Y) is star-
shaped set-valued function, then so is MF-

Putting m = 1 in Theorem 2 gives the following 

C O R O L L A R Y 2 . Let Y be a Banach space. If F : [0, b] n(Y) is convex 
set-valued function, then so is MF-

In the proof of the next theorem we need some remarks. 

R E M A R K 4. Because Lebesgue measure is complete, the Borel measura-
bility of the set valued function F is equivalent to the following condition: 
for every Borel set B, 

F~(B) := {x e [0,6] : F(x) n B ± 0} € C 

where C denotes the er-algebra of all subsets of interval [0,6] which are mea-
surable in the Lebesgue sense (cf. [2]). It is easy to verify that if F is of the 
form F(x) := [f(x),g(x)], where f,g : [0,6] —> R, / < g, the measurability 
of F implies measurability of / and g. Moreover if F is integrably bounded 
function then / and g are integrable (in the Lebesgue sense). 

R E M A R K 5 . If a multifunction F : [ 0 , 6 ] cc(R) has the form F(x) 
[f(x)i9(x)]i fi9 '• [0,6] —̂• R, / < g, and / and g are integrable functions, 
then it is easy to check that subadditivity of F implies subadditivity of MF-

Now we prove the following 

T H E O R E M 3 . Let Y be a Banach space and suppose that F : [ 0 , 6 ] — c c ( Y ) 
is an integrably bounded and Borel-measurable set-valued function. Then the 
subadditivity of F implies the subadditivity of MF-

P r o o f . Let us take an arbitrary continuous linear functional y* : Y —> R 
and consider a set-valued function y* o F : [0,6] cc(R) defined by 

(y*oF)(x):=y*(F(x)), xe[0,b}. 

Since for every x £ [0,6], F(x) is convex and compact, the continuity of y* 
implies that 

(y* o F)(x) := [yy*(x), Vy (a:)], 
where <py», : [0,6] —>• R and <py- < ipy*. 

The Borel measurability and bounded integrability of F imply that so is 
y* o F. From Remark 4, (py- and ipy* are integrable functions. From Remark 
5 the function 

i i 
(y* o MF){x) = y*(\> F(xu) du^j = J y*(F(xu)) du 

0 0 
is subadditive i.e. 
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(2) x,y,x + y<E(0,b]^ 
(y* o Mf)(X + y)C (y* o MF)(x) + (y* o MF){y). 

Since F is integrably bounded function and its values are compact subsets of 
Y, it follows that the sets MF(x), X € (0,6], are compact (see [1], Theorem 
4). Hence the sets (y* o MF)(x), x 6 (0,6], are also compact. 

From (2) and the linearity of y* we have 

(3) (y* o Mf){X + y)C (y* o MF){x) + (y* o MF){y) C y*(MF(x) + MF(y)). 
for all x, y € [0,6] and x + y € (0,6]. 

We shall show that the function MF must be subadditive. For an indirect 
proof suppose that there are x, y G (0,6] such that x + y £ (0,6] and 

MF(x + y)<jL MF(y) + MF(x). 

Then we could find a point p 6 MF(x + y) such that p ^ MF(x) + MF(y). 
The set {p} is compact and convex, and the set MF(x) + MF(y), being the 
algebraic sum of two compact and convex sets, is closed and convex. 

Now by the separation theorem (c.f. Rolewicz [4], p. 98, Corollary 2.5.11) 
there exist c € R and e > 0 such that 

V*(P) >c + £ and sup y*(q) ^ c, 
q€MF(x)+MF(y) 

but this contradicts to the inclusion (3), and the proof is completed. 
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