

Wojciech Ślepak

ON MULTIVALUED INTEGRAL MEAN

Abstract. In the present note we prove that if a set valued function $F : [0, b] \rightarrow n(Y)$, where $n(Y)$ denote all nonempty subsets of Banach space, is convex or starshaped then the multifunction defined by the formula

$$M_F(x) := \frac{1}{x} \int_0^x F(t) dt, \quad x \in (0, b],$$

mapping $(0, b]$ into the family of all convex subsets of Y is, respectively, convex or starshaped. We give conditions under which the subadditivity of F implies the subadditivity of M_F .

Introduction

G. H. Toader in [5] considered an integral mean of the form

$$m_f(x) := \frac{1}{x} \int_0^x f(t) dt, \quad m_f(0) = 0,$$

where $f : [0, b] \rightarrow \mathbb{R}$ is a continuous function such that $f(0) = 0$. He proved that convexity, starshapedness and subadditivity of f imply, respectively, convexity starshapedness and subadditivity of m_f . In [6] G. H. Toader deals with “m-convex” functions.

In this paper we give the set-valued versions some of the results from [5] and [6]. Our main theorem says that the subadditivity of measurable and integrably bounded set-valued function $F : [0, b] \rightarrow cc(Y)$ implies the subadditivity of M_F . Here $cc(Y)$ stands for the family of all nonempty compact and convex subsets of the Banach space Y .

1991 *Mathematics Subject Classification*: 54C60, 26E25, 28B20.

Key words and phrases: set-valued maps, set-valued functions, set valued functions and measures, integration of set-valued functions.

1. Some definitions and auxiliary results

For a Banach space Y we denote by $n(Y)$, $c(Y)$ and $cc(Y)$, respectively, the class of all nonempty subsets of Y , the class of all nonempty convex subsets of Y , and the class of all nonempty convex and compact subsets of Y .

DEFINITION 1. (see [1]). A set-valued function $F : [0, b] \rightarrow n(Y)$ is called Borel measurable, if its graph, i.e. the set $\{(t, x) : x \in F(t)\}$, is a Borel subset of $[0, b] \times Y$.

DEFINITION 2. (see [1]). A set-valued function $F : [0, b] \rightarrow n(Y)$ is said to be integrably bounded, if there exists a single-valued integrable function $h : [0, b] \rightarrow Y$ such that $\|x\| \leq h(t)$ for all x and t such that $x \in F(t)$.

Let us mention that the Aumann integral of F is the set of integrals of all integrable selections of F .

REMARK 1. (see [1]). If a set-valued function $F : [0, b] \rightarrow n(Y)$ is Borel measurable and integrably bounded then the Aumann integral of F is nonempty.

DEFINITION 3. Let $F : [0, b] \rightarrow n(Y)$ be Borel-measurable and integrably bounded set-valued function. We say that F has a property “P” in the mean that the set-valued function $M_F : (0, b] \rightarrow c(Y)$ defined by

$$(1) \quad M_F(x) := \frac{1}{x} \int_0^x F(t) dt, \quad x \in (0, b],$$

has the property “P”. In the sequel for “P” stand “convexity”, “starshapedness” and “subadditivity”.

REMARK 2. Let us note that making the change of variable $t = xu$ in (1) the function M_F defined by (1) can be written as

$$M_F(x) = \int_0^1 F(xu) du.$$

REMARK 3. Let us also note that if $F_1, F_2 : [0, b] \rightarrow n(Y)$ are integrably bounded and Borel-measurable multifunctions then

$$\int_c^d F_1(t) dt + \int_c^d F_2(t) dt \subset \int_c^d (F_1 + F_2)(t) dt$$

for all $c, d \in [0, b]$, $c < d$.

DEFINITION 4. Let Y be a Banach space and $m \in [0, 1]$. A set-valued function $F : [0, b] \rightarrow n(Y)$ is called m -convex if

$$tF(x) + m(1-t)F(y) \subset F(tx + m(1-t)y)$$

for all $x, y \in [0, b]$ and $t \in [0, 1]$.

Note that for $m = 1$ the m -convexity reduces to the convexity of F . For $m = 0$ we have the starshapedness of F i.e.

$$tF(x) \subset F(tx) \quad \text{for all } x \in [0, b], t \in [0, 1].$$

The m -convex single-valued functions were investigated by G. H. Toader in [6].

Denote respectively by K_m and S the sets of multifunction:

$$K_m := \{F \in n(Y)^{[0, b]} : F \text{ is } m\text{-convex and } \{0\} \in F(0)\},$$

$$S := \{F \in n(Y)^{[0, b]} : x, y, x + y \in [0, b] \implies F(x + y) \subset F(x) + F(y)\}.$$

LEMMA 1. *If for an arbitrary m , $0 \leq m \leq 1$, a multifunction $F : [0, b] \rightarrow n(Y)$ is m -convex and $\{0\} \in F(0)$ then F is starshaped.*

Proof. By the m -convexity of F ,

$$\begin{aligned} F(tx) &= F(tx + m(1-t)0) \supset tF(x) + m(1-t)F(0) \\ &\supset tF(x) + m(1-t)\{0\} = tF(x) \end{aligned}$$

for arbitrary $x \in [0, b]$ and $t \in [0, 1]$, which was to be shown.

A set-valued function $G : [0, b] \rightarrow n(Y)$ is called decreasing if for all $x, y \in [0, b]$

$$x < y \implies G(x) \supset G(y).$$

LEMMA 2. *Let Y be a Banach space. A set valued function $F : [0, b] \rightarrow n(Y)$ is starshaped if and only if the multifunction $(0, b] \ni x \rightarrow \frac{F(x)}{x}$ is decreasing.*

Proof. Let F be starshaped. Then $tF(y) \subset F(ty)$ for all $y \in [0, b]$ and $t \in [0, 1]$. Taking arbitrary $x, y \in (0, b]$, $0 < x < y$, we have $t := \frac{x}{y} \in (0, 1)$ and therefore $\frac{x}{y}F(y) \subset F(x)$, which shows that the function $(0, b] \ni x \rightarrow \frac{F(x)}{x}$ is decreasing.

Suppose that $(0, b] \ni x \rightarrow \frac{F(x)}{x}$ is decreasing. Then for every $t \in (0, 1]$ and $x \in (0, b]$; $\frac{F(tx)}{tx} \supset \frac{F(x)}{x}$, i.e. $F(tx) \supset tF(x)$ which shows that F is starshaped.

2. Main results

We begin with showing that the classes K_m , $m \in [0, 1]$, are monotonic with respect to m .

THEOREM 1. *If $0 \leq n \leq m \leq 1$ and $0 \in F(0)$, then*

$$K_1 \subset K_m \subset K_n \subset K_0 \subset S.$$

Proof. Suppose that a set-valued function $F : [0, b] \rightarrow n(Y)$ is m -convex. Then from Lemma 1 we have

$$\begin{aligned} F(tx + n(1-t)y) &= F(tx + m(1-t)\frac{n}{m}y) \\ &\supset tF(x) + m(1-t)F(\frac{n}{m}y) \supset tF(x) + n(1-t)F(y) \end{aligned}$$

for all $x, y \in [0, b]$ and $t \in [0, 1]$ which shows that $K_m \subset K_n$.

It remains to show that $K_0 \subset S$. Take x, y such that $x + y \in [0, b]$ and $F \in K_0$. If either $x = 0$ or $y = 0$ the proof is trivial. Suppose that $x, y > 0$. From Lemma 2 we have

$$\begin{aligned} F(x + y) &= (x + y) \frac{F(x + y)}{x + y} \subset \frac{xF(x + y)}{x + y} + \frac{yF(x + y)}{x + y} \\ &\subset \frac{xF(x)}{x} + \frac{yF(y)}{y} = F(x) + F(y) \end{aligned}$$

which proves that $F \in S$.

Now we prove the following

THEOREM 2. *Let Y be a Banach space and $F : [0, b] \rightarrow n(Y)$ an integrably bounded and measurable set-valued function. Then if F is m -convex then M_F is m -convex.*

Proof. Let $F : [0, b] \rightarrow n(Y)$ be m -convex set-valued function i.e.

$$F(tx + m(1-t)y) \supset tF(x) + m(1-t)F(y),$$

for all $x, y \in [0, b]$ and $t \in [0, 1]$. From Remark 3 we have

$$\begin{aligned} M_F(tx + m(1-t)y) &= \int_0^1 F(txu + m(1-t)yu) du \\ &\supset \int_0^1 [tF(xu) + m(1-t)F(yu)] du \\ &\supset \int_0^1 tF(xu) du + \int_0^1 m(1-t)F(yu) du \\ &= t \int_0^1 F(xu) du + m(1-t) \int_0^1 F(yu) du \\ &= tM_F(x) + m(1-t)M_F(y) \end{aligned}$$

for all $x, y \in [0, b]$, $t \in [0, 1]$, which means that M_F is m -convex.

Putting $m = 0$ in Theorem 2 gives the following

COROLLARY 1. *Let Y be a Banach space. If $F : [0, b] \rightarrow n(Y)$ is star-shaped set-valued function, then so is M_F .*

Putting $m = 1$ in Theorem 2 gives the following

COROLLARY 2. *Let Y be a Banach space. If $F : [0, b] \rightarrow n(Y)$ is convex set-valued function, then so is M_F .*

In the proof of the next theorem we need some remarks.

REMARK 4. Because Lebesgue measure is complete, the Borel measurability of the set valued function F is equivalent to the following condition: for every Borel set B ,

$$F^-(B) := \{x \in [0, b] : F(x) \cap B \neq \emptyset\} \in \mathcal{L}$$

where \mathcal{L} denotes the σ -algebra of all subsets of interval $[0, b]$ which are measurable in the Lebesgue sense (cf. [2]). It is easy to verify that if F is of the form $F(x) := [f(x), g(x)]$, where $f, g : [0, b] \rightarrow \mathbb{R}$, $f \leq g$, the measurability of F implies measurability of f and g . Moreover if F is integrably bounded function then f and g are integrable (in the Lebesgue sense).

REMARK 5. If a multifunction $F : [0, b] \rightarrow cc(\mathbb{R})$ has the form $F(x) := [f(x), g(x)]$, $f, g : [0, b] \rightarrow \mathbb{R}$, $f \leq g$, and f and g are integrable functions, then it is easy to check that subadditivity of F implies subadditivity of M_F .

Now we prove the following

THEOREM 3. *Let Y be a Banach space and suppose that $F : [0, b] \rightarrow cc(Y)$ is an integrably bounded and Borel-measurable set-valued function. Then the subadditivity of F implies the subadditivity of M_F .*

P r o o f. Let us take an arbitrary continuous linear functional $y^* : Y \rightarrow \mathbb{R}$ and consider a set-valued function $y^* \circ F : [0, b] \rightarrow cc(\mathbb{R})$ defined by

$$(y^* \circ F)(x) := y^*(F(x)), \quad x \in [0, b].$$

Since for every $x \in [0, b]$, $F(x)$ is convex and compact, the continuity of y^* implies that

$$(y^* \circ F)(x) := [\varphi_{y^*}(x), \psi_{y^*}(x)],$$

where $\varphi_{y^*}, \psi_{y^*} : [0, b] \rightarrow \mathbb{R}$ and $\varphi_{y^*} \leq \psi_{y^*}$.

The Borel measurability and bounded integrability of F imply that so is $y^* \circ F$. From Remark 4, φ_{y^*} and ψ_{y^*} are integrable functions. From Remark 5 the function

$$(y^* \circ M_F)(x) = y^* \left(\int_0^1 F(xu) du \right) = \int_0^1 y^*(F(xu)) du$$

is subadditive i.e.

$$(2) \quad x, y, x+y \in (0, b] \implies$$

$$(y^* \circ M_F)(x+y) \subset (y^* \circ M_F)(x) + (y^* \circ M_F)(y).$$

Since F is integrably bounded function and its values are compact subsets of Y , it follows that the sets $M_F(x)$, $x \in (0, b]$, are compact (see [1], Theorem 4). Hence the sets $(y^* \circ M_F)(x)$, $x \in (0, b]$, are also compact.

From (2) and the linearity of y^* we have

$$(3) \quad (y^* \circ M_F)(x+y) \subset (y^* \circ M_F)(x) + (y^* \circ M_F)(y) \subset y^*(M_F(x) + M_F(y)).$$

for all $x, y \in [0, b]$ and $x+y \in (0, b]$.

We shall show that the function M_F must be subadditive. For an indirect proof suppose that there are $x, y \in (0, b]$ such that $x+y \in (0, b]$ and

$$M_F(x+y) \not\subset M_F(y) + M_F(x).$$

Then we could find a point $p \in M_F(x+y)$ such that $p \notin M_F(x) + M_F(y)$. The set $\{p\}$ is compact and convex, and the set $M_F(x) + M_F(y)$, being the algebraic sum of two compact and convex sets, is closed and convex.

Now by the separation theorem (c.f. Rolewicz [4], p. 98, Corollary 2.5.11) there exist $c \in \mathbb{R}$ and $\varepsilon > 0$ such that

$$y^*(p) \geq c + \varepsilon \quad \text{and} \quad \sup_{q \in M_F(x) + M_F(y)} y^*(q) \leq c,$$

but this contradicts to the inclusion (3), and the proof is completed.

References

- [1] R. J. Aumann, *Integrals of set-valued functions*, J. Math. Anal. Appl., 12, 1–2 (1965), 1–11.
- [2] C. Castaing, M. Valadier, *Convex analysis and measurable multifunctions*, Springer, Berlin, 1977.
- [3] J. Matkowski, K. Nikodem, *An Integral Jensen Inequality For Convex Miltifunctions*, Results in Mathematics Vol. 26 (1994), 348–353.
- [4] S. Rolewicz, *Functional Analysis and Control Theory, Linear Systems*, PWN and D. Reidel Publishing Company, Dordrecht–Boston–Lancaster–Tokyo, 1987.
- [5] G. H. Toader, *On the Hierarchy of Convexity of Functions*, L’Analyse Numerique et la Theorie de l’Approximation, Tome 15, No 2, (1986), 167–172.
- [6] G. H. Toader, *On a Generalization of the Convexity*, Mathematica – Revue D’analyse Numerique et de Theorie de L’Aproximation, Mathematica, Tome 30, No. 1, (53) (1988), 83–87.

DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY
Willowa 2
43-309 BIELSKO-BIAŁA, POLAND

Received March 5, 1997.