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1. Introduction 
In their paper [1] Beg, Latif and Minhas established a Meir-Keeler [9] 

type fixed point theorem for a pair ( / , g) of maps on a locally convex topo-
logical vector space. In Section 2 of this note we show that under the as-
sumptions of their Theorem 2 [1] the maps / and g coincide so, in fact, 
Theorem 2 [1] is a theorem for a single map. Further, we discuss the conti-
nuity of maps satisfying Meir-Keeler type conditions in a topological vector 
space. In Section 3, using the convergence principle of Leader [6], we improve 
Theorem 2 [1] by establishing a necessary and sufficient condition for the 
existence of a contractive fixed point for maps on a uniform space. Finally, 
in Section 4 we clarify Corollary 4 [1], which appears to deal with the empty 
class of maps. We give a reformulation of this corollary obtaining a fixed 
point result for some expanding maps on a uniform space. 

For a discussion of several variants of a Meir-Keeler condition, see our 
paper [4]. We also invite the reader to study our article [5], in which we 
present that some fixed point theorems (including the Banach Contraction 
Principle) in uniform spaces are subsumed by the Knaster-Tarski ordering 
theorem (cf., e.g., [2], p. 14). 

The sets of all nonnegative reals and nonnegative integers are denoted 
by R+ and Z + , respectively. Following Leader [7] we say that a selfmap / of 
a topological space E has a contractive fixed point if there is a w E E such 
that fw = w and linin—KX) fnx = w for all x € E, where fn denotes the nth 
iterate of / . 
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2. Remark on a Theorem of Beg, Latif and Minhas 
Throughout this section the letter E denotes a Hausdorff locally convex 

topological vector space over the field R with a calibration F, that is, F is 
a family of continuous seminorms on E inducing the topology of E. The 
following Meir-Keeler type fixed point theorem was established in [1]. 

T H E O R E M 1 (Beg-Latif-Minhas). Let a space E be sequentially complete. 
Let f and g be selfmaps of E such that given an e > 0, there exists a S > 0 
such that for all x, y G X and p G T, 

(1) e < p(x — y) < e + 6 implies that p ( f x — gy) < c. 

If f is continuous, then f has a fixed point. If both f and g have fixed points, 
then each of them has a unique fixed point and these two points coincide. 

P R O P O S I T I O N 1. Let D be an open subset of E and f,g:D\-^E. Assume 
that given p G T and x,y G D, 

(2) p(x — y) > 0 implies that p ( f x — gy) < p(x — y). 

If f is sequentially continuous, then f = g. 

P r o o f . Fix a point xo G D. Let p G T and p ^ 0. Then there is 
a yp € E such that p(yp) > 0. Define xn := x0 + \yp for n G N. By 
hypothesis, xn G D for sufficiently large n. Clearly, p(xn - x0) > 0 so by (2), 
p(fxn — gxo) < p(xn — £o). By continuity of / , letting n —• oo we infer that 
p(fxo _ gxo) = o. This forces fxo = gxo, since E is a Hausdorff space. • 

COROLLARY 1. Under the assumptions of Theorem 1, the maps f and g 
coincide. 

P r o o f . By Proposition 1, it suffices to show that (1) implies (2). Let 
p G T, x0,yo G X and p(x0 - y0) > 0. Define e := p(x0 - y0). There is 
a S > 0 such that (1) holds. Clearly, e < p(xo — J/o) < e + 6 so by (1), 
p{fxo — gyo) < e = p(xo — yo). Therefore, (2) is satisfied. • 

So in the sequel we shall consider condition (1) with f — g. Since (1) 
implies (2), it can be easily verified that (1) with f = g is equivalent to the 
following condition: 

given an e > 0, there is a 6 > 0 such that for all x, y G E and p G T, 

(3) 0 < p(x — y) < e + S implies that p ( f x — gy) < e. 

Now if T is a singleton, that is, E is a normed space, then (3) implies that 
/ is continuous. More generally, we have the following 

P R O P O S I T I O N 2 . Let (E,d) be a metric space, D C E and f : D E. 
Assume that given an e > 0 there is a 6 > 0 such that for all x,y G D, 
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0 < d(x, y) < e + 6 implies that d(fx, f y ) < e. 

Then f is continuous. 
P r o o f . Observe that the above condition easily implies that / is non-

expansive, hence continuous. • 
Unfortunately, Proposition 2 cannot be extended to the case, in which E 

is a topological vector space as is shown in Example 1 below. So in Corollary 
3 [1] the authors should add the assumption that / is continuous if they want 
to deduce this result from Theorem 1. 

E X A M P L E 1. Let E := R2 and T := {pi,p2}, where pi(x,y) := |x| and 
P2^x, y) := for x, y G R. Let D := {(0, y): y G R}. Consider the following 
Dirichlet type function: 

/(0, y) := (1,0) if y is rational, and / (0, y) := (0,0) for otherwise. 
Then (3) is trivially satisfied since pi((0, j/i) — (0,2/2)) = 0 and P2(/(0, j/i) — 
/(0,2/2)) = 0 for all yi, y2 6 R, but / is discontinuous even at each point 
of D. 

3. An iff fixed point criterion in uniform spaces 
Throughout this section the letter E denotes a sequentially complete 

Hausdorff uniform space with a family T of pseudometrics inducing the 
uniform structure of E. So in particular, the results of this section can be 
applied in the case, in which E is a nonempty closed subset of a sequentially 
complete locally convex Hausdorff topological vector space. 

We start with recalling the following convergence principle of Leader [6]. 
T H E O R E M 2 (Leader). Let q : R + be such that for all k,m,n € Z + , 

(4) q(m,n) < q(m,k) + q(k, k) + q(k,n). 
Then the following conditions are equivalent 

(i) lim r n ,n_0 0 q(m, n) = 0. 
(ii) liven an e > 0, there exist an r £ N and 6 > 0 such that for all 

m,n € Z + , 

q(m, n) < e + 6 implies that q(m + r,n + r) < e. 
As an immediate consequence we obtain the following Meir-Keeler type 

fixed point theorem for maps on a uniform space, which improves Theorem 
2 [1]. Its metric counterpart was established in [7]. 

T H E O R E M 3 . Let f be a sequentially continuous selfmap of E. The fol-
lowing conditions are equivalent 

(i) / has a contractive fixed point. 
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(ii) ^ i v en p G T, e > 0 and x,y G E, there exist 6 > 0 and r G N such 
that for all m,n £ Z+, 

p ( f m x , f n y ) < e + 6 implies that p ( f m + r x , f n + r y ) < <r. 

In particular, condition (ii) holds if given p G F and e > 0, there exist 6 > 0 
and r G N such that for all x,y G E, 

(5) + i implies that p ( f r x , f r y ) < e. 

Proof . Observe that (i) easily implies (ii), since given x,y G E the 
sequences (fnx)^=1 and (fny)c£=\ are equivalent-Cauchy, i.e., 
l i m m , n ^ o o P ( f m x J n y ) = 0 for all p G T. To prove (ii)=>(i) fix x,y G E 
and p e r . For m, n G Z+ define q(m,n) := p ( f m x , f n y ) . Then q sat-
isfies (4) so by hypothesis and Th. 2, ]imm^^oo q(m,n) = 0. In particu-
lar, l im^oo q(n, n) = 0 for each p £ T, which means that ( / " a r ) ^ and 
(/By)SLi are equivalent. Moreover, if we put y := x then l im^n-x^ q(m, n) 
= 0 for each p € T means that (fnx)^=1 is Cauchy. Thus, by completeness 
and Hausdorfness, there is a unique point w e E such that fnx —> w for all 
x G E. Then w = f w , since / is sequentially continuous. • 

R E M A R K 1. We emphasize that condition (5) is weaker than (1) (with 
/ = g) for the following two reasons. Firstly, a real 8 in (5) may depend on 
a pseudometric p e T, whereas in (1) 6 is to be chosen universally for all 
seminorms p G T. Secondly, an integer r in (5) may vary with e, while in (1) 
r = 1 for all c > 0. Moreover, it follows from Theorem 3 that in Theorem 1 a 
map / need not be defined on the whole space E, but on a nonempty closed 
subset of E. 

R E M A R K 2 . Another iff fixed point criterion involving a behaviour of the 
map ( x , y ) h-> d ( f n x , f n y ) (the letter d denotes a metric) is given in [3]. 

As an application of Theorem 3 we give the following result, which is a 
generalization of Matkowski's Theorem 1.2 [8] (cf. also Theorem 3.2 in [2], 
p. 12). We emphasize that this result cannot be deduced from Theorem 1 
even if E is a metric space (see Example 1 in [4]). 

C O R O L L A R Y 2 . For p G T , let <j>p : R + R + be nondecreasing and such 
that limn_K3o <f>p{t) = 0 for t € R+. Let f be a selfmap of E such that 

(6) p ( f x , f y ) < ( f > p ( p ( x , y ) ) , for all x,y € E and p € T. 

Then f has a contractive fixed point. 

Proof . Since <f>p(t) < t for t > 0 (see [2], p. 12), (6) forces the continuity 
of /. We show that (6) implies (5). Fix p € T and e > 0. Choose, e.g., 6 := 1. 
Then by hypothesis, given x,y G E, 

p(x, » ) < € + ! implies that p ( f n x , f n y ) < <f>%(e + 1) < e, 
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for n large enough (such an n depends only on e). So (5) is verified and 
Theorem 3 applies. • 

4. On some expanding maps in uniform spaces 
The letter E denotes here a uniform space with the same properties as 

in the previous section. The following condition was used in Corollary 4 [1]: 

given an e > 0 there exists a ¿ > 0 such that for x,y G E, 
p(x, y) < e implies that e < p ( f x , f y ) < e + 8. 

Unfortunately, there is no map / , which would satisfy the above condition. 
To see it, fix an a; € E, and put e := 1 and y := x. Then p(x,y) < 1, but 
the inequality p ( f x , f y ) > 1 does not hold. We may propose the following 
reformulation of Corollary 4 [1]. 

C O R O L L A R Y 3 . Let f be a surjective selfmap of E such that given p £ T 
and e > 0, there exists 6 > 0 such that for all x,y £ E, 

(7) p(x,y)>e implies that p(fx,fy)>e + S. 

Then f has a unique fixed point. 

P r o o f . We show that / is one-to-one. If x 7̂  y, then by Hausdorfness 
of E, there is a p G T such that p(x, y) > 0. Put e := p(x, y). By (7), there 
is a S > 0 such that p ( f x , f y ) > e + 6 > 0, which implies that f x ^ f y . Let 
f~l be the inverse of / . By hypothesis, / - 1 is a selfmap of E. Moreover, (7) 
easily implies that (5) holds with r = 1 and / - 1 substituted for / . Finally, 
it is easy to observe that (5) with r = 1 implies the continuity of a map 
involved. So by Theorem 3, / - 1 has a unique fixed point w. Clearly, w is 
also a unique fixed point of / . • 
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