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REMARKS ON A PAPER BY BEG, LATIF
AND MINHAS ABOUT FIXED POINTS

1. Introduction

In their paper [1] Beg, Latif and Minhas established a Meir-Keeler [9]
type fixed point theorem for a pair (f, g) of maps on a locally convex topo-
logical vector space. In Section 2 of this note we show that under the as-
sumptions of their Theorem 2 [1] the maps f and g coincide so, in fact,
Theorem 2 [1] is a theorem for a single map. Further, we discuss the conti-
nuity of maps satisfying Meir-Keeler type conditions in a topological vector
space. In Section 3, using the convergence principle of Leader [6], we improve
Theorem 2 [1] by establishing a necessary and sufficient condition for the
existence of a contractive fixed point for maps on a uniform space. Finally,
in Section 4 we clarify Corollary 4 [1], which appears to deal with the empty
class of maps. We give a reformulation of this corollary obtaining a fixed
point result for some expanding maps on a uniform space.

For a discussion of several variants of a Meir-Keeler condition, see our
paper [4]. We also invite the reader to study our article [5], in which we
present that some fixed point theorems (including the Banach Contraction
Principle) in uniform spaces are subsumed by the Knaster-Tarski ordering
theorem (cf., e.g., [2], p. 14).

The sets of all nonnegative reals and nonnegative integers are denoted
by R4 and Z, respectively. Following Leader [7] we say that a selfmap f of
a topological space E has a contractive fized point if there is a w € E such
that fw = w and lim,, f"2 = w for all z € E, where f" denotes the nth
iterate of f.
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2. Remark on a Theorem of Beg, Latif and Minhas

Throughout this section the letter E denotes a Hausdorff locally convex
topological vector space over the field R with a calibration I', that is, T’ is
a family of continuous seminorms on E inducing the topology of E. The
following Meir-Keeler type fixed point theorem was established in [1].

THEOREM 1 (Beg-Latif-Minhas). Let a space E be sequentially complete.
Let f and g be selfmaps of E such that given an ¢ > 0, there ezists a § > 0
such that for allz,y € X andp €T,

(1) e<plz—y)<e+é implies that p(fz-—gy)<e.

If f is continuous, then f has a fized point. If both f and g have fized points,
then each of them has a unique fized point and these two points coincide.

PROPOSITION 1. Let D be an open subset of E and f,q9: D — E. Assume
that given p € I and ¢,y € D,

(2) p(z—y) >0 implies that p(fz - gy) < p(z - y).
If f is sequentially continuous, then f = g.

Proof. Fix a point 2o € D. Let p € T and p # 0. Then there is
a y, € E such that p(yp) > 0. Define z, := z9 + 2y, for n € N. By
hypothesis, z,, € D for sufficiently large n. Clearly, p(z, —zo) > 0 so by (2),
p(fzn — gzo) < p(z, — o). By continuity of f, letting n — oo we infer that
p(fzo — gzo) = 0. This forces fzg = gzg, since E is a Hausdorff space. m

COROLLARY 1. Under the assumptions of Theorem 1, the maps f and g
coincide.

Proof. By Proposition 1, it suffices to show that (1) implies (2). Let
p €T, 20,90 € X and p(zo — yo) > 0. Define € := p(zo — yo). There is
a 6 > 0 such that (1) holds. Clearly, ¢ < p(zo — y) < €+ 6 so by (1),
p(fzo — gyo) < € = p(zo — Yo)- Therefore, (2) is satisfied. m

So in the sequel we shall consider condition (1) with f = g. Since (1)
implies (2), it can be easily verified that (1) with f = g is equivalent to the
following condition:

given an € > 0, there is a 6 > 0 such that for all z,y € F and p € T,

(3) 0<p(z—y)<e+dé implies that p(fr— gy)<e.
Now if T is a singleton, that is, F is a normed space, then (3) implies that
f is continuous. More generally, we have the following

ProrosITION 2. Let (E,d) be a metric space, D C E and f : D — E.
Assume that given an ¢ > 0 there is a § > 0 such that for all z,y € D,
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0<d(z,y)<e+6 implies that d(fz,fy)<e
Then f is continuous.

Proof. Observe that the above condition easily implies that f is non-
expansive, hence continuous. =

Unfortunately, Proposition 2 cannot be extended to the case, in which E
is a topological vector space as is shown in Example 1 below. So in Corollary
3 [1] the authors should add the assumption that f is continuous if they want
to deduce this result from Theorem 1.

ExAMPLE 1. Let E := R? and T := {p1,p2}, where p1(z,y) := |z] and
p2(z,y) := |yl for z,y € R. Let D := {(0,y) : y € R}. Consider the following
Dirichlet type function:

f(0,y) :=(1,0) if yis rational, and f(0,y) := (0,0) for otherwise.
Then (3) is trivially satisfied since p;((0,¥1) — (0,y2)) = 0 and p2(f(0,91) —

f(0,y2)) = 0 for all 1,y2 € R, but f is discontinuous even at each point
of D.

3. An iff fixed point criterion in uniform spaces

Throughout this section the letter E denotes a sequentially complete
Hausdorff uniform space with a family I' of pseudometrics inducing the
uniform structure of E. So in particular, the results of this section can be
applied in the case, in which E is a nonempty closed subset of a sequentially
complete locally convex Hausdorff topological vector space.

We start with recalling the following convergence principle of Leader [6].

THEOREM 2 (Leader). Let q : Z% — R be such that for allk,m,n € Z,
(4) q(m,n) < q(m, k) + q(k, k) + g(k,n).
Then the following conditions are equivalent

(1) im, n—oo g(m,n) = 0.
(ii) “iven an € > 0, there exist an r € N and § > 0 such that for all
m,n € Zy,
g(m,n) < e+6 implies that gm+r,n+r)<e
As an immediate consequence we obtain the following Meir-Keeler type

fixed point theorem for maps on a uniform space, which improves Theorem
2 [1]. Its metric counterpart was established in [7].

THEOREM 3. Let f be a sequentially continuous selfmap of E. The fol-
lowing conditions are equivalent

(i) f has a contractive fized point.
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(i) Rivenp €T, € > 0 and z,y € E, there exist § > 0 and r € N such
that for allm,n € Z,

p(f™z, fry) < €+6 implies that p(f™*7z, fM7y) <e.

In particular, condition (ii) holds if given p € ' and € > 0, there exist § > 0
and r € N such that for all z,y € E,

(5) p(z,y) < e+ 8 implies that p(fTz,f'y) <e.

Proof. Observe that (i) easily implies (ii), since given z,y € E the
sequences (f"z)2, and (f"y)S>; are equivalent-Cauchy, i.e.,
limp, pooo P(f™2, f*y) = 0 for all p € T. To prove (ii)=>(i) fix z,y € E
and p € T. For m,n € Z, define g(m,n) := p(f™z, f*y). Then ¢ sat-
isfies (4) so by hypothesis and Th. 2, limp, n—e g(m,n) = 0. In particu-
lar, lim, o g(n,n) = 0 for each p € T, which means that (f"z)3%, and
(f*y)5%, are equivalent. Moreover, if we put y := z then lim,, ,_ g(m,n)
= 0 for each p € I means that (f"z)S2, is Cauchy. Thus, by completeness
and Hausdorfness, there is a unique point w € F such that f?2 — w for all
z € E. Then w = fw, since f is sequentially continuous. =

REMARK 1. We emphasize that condition (5) is weaker than (1) (with
f = g) for the following two reasons. Firstly, a real é in (5) may depend on
a pseudometric p € T', whereas in (1) § is to be chosen universally for all
seminorms p € T'. Secondly, an integer r in (5) may vary with ¢, while in (1)
r = 1 for all € > 0. Moreover, it follows from Theorem 3 that in Theorem 1 a
map f need not be defined on the whole space E, but on a nonempty closed
subset of F.

REMARK 2. Another iff fixed point criterion involving a behaviour of the
map (z,y) — d(f"z, f*y) (the letter d denotes a metric) is given in [3].

As an application of Theorem 3 we give the following result, which is a
generalization of Matkowski’s Theorem 1.2 [8] (cf. also Theorem 3.2 in [2],
p. 12). We emphasize that this result cannot be deduced from Theorem 1
even if E is a metric space (see Example 1 in [4]).

COROLLARY 2. Forp € T, let ¢, : Ry — Ry be nondecreasing and such
that limy—.c #p(t) = 0 for t € Ry. Let f be a selfmap of E such that
(6)  p(fz,fy) < $p(p(z,y)), for all z,y€ E and peT.
Then f has a contractive fized point.

Proof. Since ¢,(t) < t for t > 0 (see [2], p. 12), (6) forces the continuity
of f. We show that (6) implies (5). Fix p € ' and € > 0. Choose, e.g., § := 1.
Then by hypothesis, given z,y € E,

p(z,9) < e+1 implies that p(f"z, f*y) < 1l +1) <,



Remarks on a paper by Beg et al. 337

for n large enough (such an n depends only on ¢€). So (5) is verified and
Theorem 3 applies. =

4. On some expanding maps in uniform spaces
The letter E denotes here a uniform space with the same properties as
in the previous section. The following condition was used in Corollary 4 [1]:

given an € >0 thereexistsa 6> 0 such thatfor z,y€ E,
p(z,y) < € implies that ¢ < p(fz, fy) <e+6.

Unfortunately, there is no map f, which would satisfy the above condition.
To see it, fix an ¢ € F, and put € := 1 and y := z. Then p(z,y) < 1, but
the inequality p(fz, fy) > 1 does not hold. We may propose the following
reformulation of Corollary 4 [1].

COROLLARY 3. Let f be a surjective selfmap of E such that given pe T
and € > 0, there ezists 6 > 0 such that for all z,y € E,

(7) p(a,y) > ¢ implies that p(fz,fy)> e+6.
Then f has a unique fized point.

Proof. We show that f is one-to-one. If # # y, then by Hausdorfness
of E, there is a p € T such that p(z,y) > 0. Put € := p(z, y). By (7), there
is a § > 0 such that p(fz, fy) > € + 6 > 0, which implies that fz # fy. Let
f~! be the inverse of f. By hypothesis, f~! is a selfmap of E. Moreover, (7)
easily implies that (5) holds with 7 = 1 and f~! substituted for f. Finally,
it is easy to observe that (5) with » = 1 implies the continuity of a map
involved. So by Theorem 3, f~! has a unique fixed point w. Clearly, w is
also a unique fixed point of f. =
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