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ON A SYSTEM OF FUNCTIONAL EQUATIONS

1. Introduction
We study the following system

n m
(1.1) fil®) =) aiiale, £i(Siin(2))] + 9i(2),
j=1k=1
for i = 1,2,...,n and ¢ € I C R, where I is a bounded or unbounded
interval. The given functions g; : I — I,a;jx : I X R — R are continuous,
fi are unknown functions. Using Banach fixed point theorem, we prove the
existence and uniqueness of solution of the system (1). The obtained solution
is also stable with respect to the functions g;.
In [1], the system (1.1) is studied with I = [-b,b}, n = m = 2, Si;k(2)
binomials of first degree and
(1.2) aije(2,y) = @ijry,
where @;;; are real constans. The solution is approximated by a uniformly
convergent recurrent sequence, and it is stable with respect to the functions

gi. In [2], [3], [4] the existence and uniqueness of solution of the functional
equation

(1.3) f(z) = a(z, f(5(2)))
in the functional space BC|a,b] is studied.

In this paper, by using the Banach fixed point theorem, we obtain the
existence, the uniqueness and also the stability of the solution of the system
(1.1) with respect to the functions g;, where I = [a,b] or I is unbounded
interval of R. In the case of a;j like in (1.2) and S;;x(z) being the functions
of first degree and g € C"(I; R"), I = [-b,b], we obtain a Maclaurin expan-
sion of the solution of the system (1.1) until the order r. Furthermore, if
gi(z) are the polynomials of degree r, then the solution of the system (1.1)
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is also the polynomial of degree r. The obtained result is a generalization
the results in [1]. We also give the numerical calculation on some examples.

2. The theorems on existence, uniqueness and stability of solu-
tion

With I = [a,b], we denote by X = C(I; R") the Banach space of the
functions f : I — R™ continuous on I with respect to the norm

(2.1) 1£llx = sup | /(=)
where
1f @)l = Y 15, f=(f,.... fa) €X.
=1

When I C R is an unbounded interval, we denote by X = Cy(I; R™) the
Banach space of the functions f : I — R™ continuous, bounded on I with
respect to the norm (2.1).

We write the system (1.1) in the form of operational equation in X as
follows

(2.2) f=Tf,
where f = (fi,...s fa)s Tf = (T )1, -, (T f)n) with
(2.3)
(THi(e) =D aijele, fi(Siu(e)) + gi(e), i=1,2,...,m,3 €1
i=1k=1

We admit the following hypotheses:
(H1) Sijk : I — I are continuous,
(H2) g€ X,
(Hs) aijx : I X R — R are continuous and satisfy the condition: there exists
@ijx : I — R bounded and nonnegative such that

(2.4) laijk(z, y) — aiju(z, P)| < @ijr(2)ly -9, y,€R, z €,
Denote
(2.5) a:= Z Z(sup aijr(z)) < 1.
ij=1k=1 €I

THEOREM 1. Under hypotheses (Hy)—(H3), there ezists a unique func-
tion f € X such that f = T f. Moreover, f is stable with respect to g in X.

_ Proof. It is evident that T'f € X, for every f € X. Considering f,
f € X, we easily verify, by (Hs) and (2.5), that

(2.6) ITf = Tflx < ellf - fllx.
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Then, using Banach fixed point theorem, we have the existence of unique

f € X such that f =Tf.
Consider f and f from X being two solutions of (2.2) corresponding to
g and g from X, respectively. By the analogous evaluation, we have

(27) 1 = Filx < y=llo - llx.
Hence, f is stable with respect to g.

Remark 1. Theorem 1 gives a consecutive approximate algorithm
(2.8) =70y =1,2,..., FO ¢ X given.

Then the sequence {f(*)} converges in X to the solution f of (2.2) and we
have an evaluation of the error

() — £(0)
(29) 5~ flx < 2Tl

Consider now the case of a;;x(z,y) of form (1.2) and denote

(2.10) Bi= D> faiel < L.

1,j=1k=1

, v=12,...

THEOREM 2. Suppose that (Hy), (Hz) hold. Then there ezists a unique
function f = (fi1,..., fa) € X being the solution of the following system

(211)  fi(®) =YY Gk fi(Sijr(z)) + giz),  i=1,2,...,n, ze€l.

7j=1k=1
Moreover, the solution of (2.11) is stable with respect to ¢ = (g1,-..,9n)
in X.
Proof. We apply Theorem 1 for a;;x(z,y) = @ijzxy. Then &;jx = |Gk
in (2.4) and o = § < 1, by (2.5), (2.10).
Remark 2. Let S;jx(z) be the binomials of first degree

(2.12) Sijk(z) = bijrx + ek
and I = [—b,b]. Suppose that the real num’bers bijk, cijk satisfy the condition
(2.13) |b,'jk|<1, ,7=1,...,n, k:l,...,m,
|eijikl
2.14 ——— < b.
(2.14) 1803%n 1 - |bijk] ~ b
1<k<m

Then (H;) holds.

THEOREM 3. Suppose that I = [—b,b], the real numbers G;ji, b;jk, cijx
satisfy (2.10), (2.13), (2.14) and S;;(z) are of the form (2.12). Then, for each
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g € X, there exists a unique f € X being the solution of the system (2.11)'.
Moreover, this solution is stable with respect to g = (g1,...,9,) in X.

Remark 3.

(i) The result in [1] is a special case of Theorem 3 with n = m = 2.

(ii) Theorem 3 is true for I = R and in this case the terms b;;, ¢;jx need
not satisfy the conditions (2.13), (2.14).

3. Maclaurin expansion of the solution

From here, we consider I = [—b,b] and the numbers @;;i, b;jx, cijk as in
Theorem 3.

Suppose that g € C(I; R™) and f € C1(I; R") is the unique solution of
the corresponding system (2.11). Differentiating two members of (2.11), we
obtain

(3.1) fi(2) =3 Gijabijefi(Sije(z)) + gi(z),  i=1,2,...,m, z €L

i=1k=1

Let f{(—b) and f/(b) mean the forward derivative at —b and the backward
derivative at b of f;, respectively. Put

(3.2) aﬁ,{ = @ijrbijk.
From (2.10), (2.13), we have
(3.3) AV =3 Yl << 1.
1,j=1 k=1

By Theorem 3, there exists a unique function
Fil = (FM . Fl e oI, RM)

being the solution of the system

n m
(34) F2) =3 3 allF(Sija(2) + 6lfz), i=1,2,..,m, z € L.
i=1k=1

Moreover, from the uniqueness, this solution is also the deriverative f' =
(fls-os fr) of £.

Similarly, we consider the case of f € C"(I; R") being the solution of the
system (2.11) corresponding to g € C™(I; R™). Differentiating r times two
members of (2.11), we have
(3.5)

()= 30 S @bl £ (Sin(@)) + ¢7(),  i=1,2,...,m, s €L

=1 k=1
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From (2.10), (2.13), we denote

(3.6) p = Z Z |dijkdije] < B < 1.
i,7=1k=1
Therefore, the following system
(3.7
F(z) = 33 @b FY (Sin(@) + 9(@),  i=1,2,..,n, 2 €1,

j=1 k=1
has a unique solution
(3.8) Fii = (F Py e c(1; R™),

equal to the derivative f(") = ( fl(r), <., F$7Y of the solution f.
Therefore, we have the following theorem.

THEOREM 4. Let g € C"(I; R™). Then there exist f € C"(I; R™) and
Fll € C(I; R™) being the unique solutions of the systems (2.11) and (3.7),
respectively. Moreover, FU"l is the r-order derivative of f.

Remark 4. In the case of I = R, we suppose additionally that the real
numbers @;jk, bijk, cijk satisfy the condition

n m
Giinbls
(3.9) JBax 21; [Gisxb3xl < 1.
4,J= =

Then, if
(3.10) ge CI(I;R*) = {g € Cs(I; R™)/¢M,¢?,...,¢" € Cy(I; R™)},
the conclusion of Theorem 4 is still true, where the functional spaces
C(I; R™) and C"(I; R") appearing in Theorem 4 are replaced by C,(I; R")
and Cj(I; R™), respectively. The proof of this result is the same as that of
Theorem 4.

Now we return to the same case of I = [-b,b]. Suppose that f €
CP(I; R™) is the unique solution of (2.11) corresponding to g € C?(I; R™).

Foreach r = 1,2,...,p, we have FI"] as in Theorem 4. Then, from Maclaurin
formula we have
(3.11)
p—1 4(7) z
() — () 1 p—1 ¢(p) P —
filz) = go a1 o) é(z - P P (dt,  i=1,2,..,n

On the other hand, we have
(3.12) Fil=fm  r=12 ... p
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Put Fl% = f. From (3.11), (3.12) we have
(3.13)

[r]
f,-(:z:)_ZF ©)pr 4 (p 1),§(z P LEP()d,  i=1,2,...,n.

!
—0 r.

Inversely, suppose that a function f = (fl, .. ,fn) € C(I; R") is given
by the formula
(3.14)

p—1 nr] T

~ F(0 1 .

fi(z) = E : '( )a:r + o S(:v - t)”_lFi[p](t)dt, i=1,2,...,n,.
r=0 (p=-Di3

Then, from (3.12), (3.14) we have

(r)
(3.15) f,(z)—Zf Opry

o x(w 1y~ fP) (8)dt = fi(=),

1=1,2,...,n, z €1.

(p

Therefore f is a solution of (2.11).
Then, we have the following theorem.

THEOREM 5. Let ¢ € CP(I; R"™). Then, the solution f € CP(I; R") of
(2.11) is represented by (3.13), where FI"l ¢ C(I; R™) is the unique solution
of (3.7). Inversely, every function f € CP(I; R"™) represented by (3.13) is a
solution of (2.11).

Remark 5. We consider the case I = R and the real numbers @y,
bijk, cijk satisfying the condition (3.9). If ¢ € CP(I; R™), the conclusion of
Theorem 5 is still true, where the functional spaces C(I; R") and C?(I; R")
appearing in Theorem 5 are replaced by Cy(I; R™) and CP(I; R™), respec-
tively.

Returning to the case of I = [—b,b] we have the following corollary.

COROLLARY 1. If g;,...,9n are polynomials of degree not greater than
r — 1, the solution f of (2.11) is also a sequence of such polynomials.

Proof. We have
(3.16) d(@)=0,i=1,2,...,n,z € [-b,b].

Then Fl"! = 0 is the unique solution of the system (3.7). Applymg (3.13)
with p = r, we have

[s]
(3.17) fw =3 EO0,

!
S.
s=0
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THEOREM 6. Suppose that f € CP(I; R") is the solution of the system
(2.11) corresponding to g € CP(I; R™) and that f is the sequence of poly-
nomials of degree not greater than p — 1 and satisfies the system (2.11)
corresponding to ¢ = (q1,...,9n), where

p=1 (r)
~ _ 9; (0) .
(3.18) g,'(:z:) = 2_:0 _T 7',2 = 1, 2, ,
Then, we have
1
(3.19) If - fllx < Hg(”’llx

Proof. We have Maclaurin expansion of gi(z) in the form

T

~ 1 -
(3.20) 9:(2) = 5ie) + =gy o = 0Pl ().
‘0
Applying the estimate (2.7) with a = 3, we have
- 1 5
(3.21) If = fllx < 1—glo—dllx.
From (3.20) we have
n
(3.22) lg —§llx = sup Y lgi(z) — G(2)|
Iz1<b 5251

L aup 31 - 1710 P 0yl

T -1 |:c|<b ~

where
(3.23) | §(@ — 1P gP()at] < {(2 - 0)P~1)1gP)(2))|at
i=1 0 0

z? bP
llg**ll x » lg*”’ 1l x -

for 0 < z < b. Similarly, for —b < & < 0 the inequality (3.23) is still true.
Therefore, from (3.22), (3.23) we have

~ @y, .
(3.24) llg —3gllx < llg*”|x - o

and, by (3.21), we get (3.19).
COROLLARY 2. If for g € C*(I; R™) there exists d > 0 such that
(3.25) lePlx <d?, p=0,1,2,...
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and f is a solution of the system (2.11) corresponding to g and f[”] being the
sequence of polynomials of degree not greater than p — 1 satisfies the system
(2.11) corresponding to g as in Theorem 6, then

lim |1f - 7]x =0.

Moreover, we have the estimates
1 (bd)?
— Ry < -2 =1,2,...
(326) ”f f “X =1 _ﬂ p' ’ p y2,
Proof. The estimates (3.19) and (3.25) imply (3.26).
COROLLARY 3. Let g € C(I; R™) and f be the solution of the system
(2.11) corresponding to g. Then, there ezists a sequence of polynomials of

degree non greater than p — 1: flPl = (AIP ] ces Ip]) such that
(3.27) lim || 7 - fllx = 0.
p—oo
Proof. According to Weierstrass theorem, each function g; is approxi-
mated by a sequence of polynomials converging uniformly to p[p ] when the

degree p—1 — +o00. Therefore, plP! = (p[p L. Lf]) converges in C(I; R™) to

g when p — +00. Let f[”] be a polynomial solution of (2.11) corresponding
to g = plPl. According to the estimate (3.21) we have

(3.28) 7% - fllx < ——||pl"1 ~ gllx — 0.
as p — +o00.
4. Numerical results

In this part, we consider the algorithm (2.8) with I = [-b,b]. More
concretely, for z € [-b,b] and 1 < i < n, we put

(4.1) ) = Z Z aijklz, f,("_l)(S'ijk(Z))] + gi(z),

3=1k=1
(4.2) 0@ =0,
Basting on (4.1), we calculate the values f,-(")(a: ) at some discrete points
(4.3) z, = -b+pAz, Az=2b/N, p=0,1,...,N.

Afterwards, we interpolate the values f,-(")(:v ) by spline functions of first
degree on [—b,b], basing on the knot points z¢,z1,...,ZnN,

N
(4.4) ) =Y F ()W),

u=0
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where the functions Wy(z), Wi(z), ..., Wn(z) are defined as follows

(z—zu-1)/Az forz, s <z<z)Y,
(4.5) Wy(z)=( (zu41 —z)/Az forz, <z < zpias

0 forz & [zp—1,2u41), 1 Sp<N -1,
_ f(z1 —2)/Az, -b<z <1,
(4.6) Wo(z)= {0, 5 <z <b
_ (:D—.’I}N_l)/AiL', IN-1 S-’BSb,
(4.7) Wn(z)= {0’ _b<z<zny.
Put
(4.8) £ = F ().

From there, we define fi ., by recurrence according to repeat steps v =
1,2,..

@y F=% Za,,k[xmz By W Siju(za))] + gi(z.),
j=1 k=1
0<p<N,1<i<n, v21,
0
(4100 9 =o.
Numerical application is effectuated on the two following examples
ExaMPLE 1. Case of nonlinearity. Consider the following system with

n=2,m=10b=1, :z:E[—l,l].
fi(z) = msmfl (;+3)+§f)—6 fz( 1>‘+91(1”),

(4.11) .1 .
fa(z) = mfl ( + 2) + mcosfz ( ) + g2(%),
where
1 fz 1\ 1, [z 1

2
1 (z 1 1 z | 1\?
g2(z) = 2* _M(3+§) —Wcos(§+§) .
The exact solution of the system (4.11), (4.12) is
(4.13) £ (z) = =, f§%(z) = z.
We calculate with algorithm (4.9), (4.10) until v** repeat step satisfying

(4.14) JlaX, ax |f - V) < 1078
1<t<2
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Afterwards, let N increase respectively with N = 5,10, 15,20,100. The
result given by the tables 1, 2 as follows indicate the calculating values f(")
comparing to the exact values f{*(z,) at knot-points z,,0 < p < N = 5
The tables 3 and 4 give the result of variation of error when N increase
gradually.

v |7 @ By,
0 —1.000 —1.000 0.000061
1 —0.600 —0.600 0.000149
2 —0.200 -0.200 0.000193
3 0.200 0.200 0.000060
4 0.600 0.600 0.000149
5 1.000 1.000 0.000194

Table 1: N =5, By, = |f}Z) = fi7(zu)l

g | B () By,
0 1.000 1.000 0.000004
1 0.360 0.360 0.000071
2 0.040 0.040 0.000239
3 0.040 0.040 0.000372
4 0.359 0.360 0.000525
5 1.000 1.000 0.000251

Table 2: N =5, E,, = |f2 — 55 (zp)|

Table 3. Table 4.

N €1 = oé‘%v Ery €2 oinaixN Eap
5 0.000194 0.000525
10 0.000049 0.000429
15 0.000020 0.000415
20 0.000010 0.000406
100 0.000002 0.000397

EXAMPLE 2. Case of linearity : a;;x(z,y) = @;;xy. Consider the following
system withn=m=2,b=1,-1<z<1,
(4.15)

fl(w)=if1(f )Wﬁfz( +1)+ash (5+3) + o)

7@ = gshCG+ )+ gh (5+3) + 1 (5+7) + o)
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where
(&) = 97 31
1 = Jann)
700~ 1200
(4.16) 0= 7L, 23
92\%) = 19200° ~ 1200°

The numbers @;;k, bijk, Cijk, With ¢, j, k equal to 1 or 2 satisfy (2.10),
(2.13), (2.14). The exact solution of (4.15), (4.16) is

() =1z, f3%(z)=6z.

We calculate by algorithm (4.9), (4.10) with repeat steps v = 1,2,3,...
such that

(4.17) IF9 ~ D) < 1078

1< <2
0Su<N

The result given by the tables 5 and 6 as follows indicate the calcu-
lating values f,(:) comparing to the exact values ff“(z,) at knot-points

Hoy M1y« -5 M5 for N = 5.
14 fl(:) fit(zy) Ey,
0 —1.000 —1.000 0.000000
1 —0.600 —0.600 0.000000
2 —0.200 —0.200 0.000000
3 0.200 0.200 0.000000
4 0.600 0.600 0.000000
b) 1.000 1.000 0.000000
Table 5: N = 5, E1, = |f{2) ~ f£5(z,)], maxocucs E1, = 3.035150.10711,
o }? fzez(zn) Eqy
0 —6.000 —6.000 0.000000
1 —3.600 -3.600 0.000000
2 —-1.200 —1.200 0.000000
3 1.200 1.200 0.000000
4 3.600 3.600 0.000000
5 6.000 6.000 0.000000
Table 6: N =5, E;, = |f2 — f§%(z )|, maxo<u<s Eap = 3.035150.10712,
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