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ON A SYSTEM OF FUNCTIONAL EQUATIONS 

1. Introduction 
We study the following system 

71 771 

(i.i) Mx) = a i f i x > / ¿ ( • w * ) ) ] + * ( * ) . 
j=1 k=1 

for i — 1 , 2 , . . . , n and x € I C R, where I is a bounded or unbounded 
interval. The given functions gi : I —• I, a^k : / X R —• R are continuous, 
fi are unknown functions. Using Banach fixed point theorem, we prove the 
existence and uniqueness of solution of the system (1). The obtained solution 
is also stable with respect to the functions gi. 

In [1], the system (1.1) is studied with I = [—6,6], n = m = 2, Sijk(x) 
binomials of first degree and 

(1-2) aijk(x,y) = aijky, 
where aijk are real constans. The solution is approximated by a uniformly 
convergent recurrent sequence, and it is stable with respect to the functions 
gi. In [2], [3], [4] the existence and uniqueness of solution of the functional 
equation 

(1.3) f(x) = a(x,f(S(x))) 
in the functional space BC[a, 6] is studied. 

In this paper, by using the Banach fixed point theorem, we obtain the 
existence, the uniqueness and also the stability of the solution of the system 
(1.1) with respect to the functions gi, where I = [a,6] or I is unbounded 
interval of R. In the case of aijk like in (1.2) and Sijk(x) being the functions 
of first degree and g 6 Cr(I; Rn), I = [—6,6], we obtain a Maclaurin expan-
sion of the solution of the system (1.1) until the order r. Furthermore, if 
gi(x) are the polynomials of degree r, then the solution of the system (1.1) 
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is also the polynomial of degree r. The obtained result is a generalization 
the results in [1]. We also give the numerical calculation on some examples. 

2. The theorems on existence, uniqueness and stability of solu-
tion 

With I = [a, 6], we denote by X = C{I\Rn) the Banach space of the 
functions f : I Rn continuous on I with respect to the norm 

(2-1) \\f\\x = sup||/(®)||, x£l 
where 

n 

!=1 
When I C R is an unbounded interval, we denote by X = Ct(/; Rn) the 

Banach space of the functions f : I Rn continuous, bounded on I with 
respect to the norm (2.1). 

We write the system (1.1) in the form of operational equation in X as 
follows (2.2) / = T f , 

where / = ( / i , . . . , /„), T f = ( ( T f ) i , . . . , ( T f ) n ) with 
(2.3) 

71 771 

( T f ) i ( x ) = f j ( S i j k ( x ) ) ] + gi(x), i = 1,2,..., n, x € I . 

j=l k=i 

We admit the following hypotheses: 
(Hi) Sijk : I —• / are continuous, 
(H2) g ex, 
(H3) ciijk : I x R —• R are continuous and satisfy the condition: there exists 
otijk I R bounded and nonnegative such that 
( 2 . 4 ) \ a i j k ( x , y ) - a i j k ( x , y ) \ < a i j k ( x ) \ y - y \ , y,y £ R, x g I , 

Denote n m 
(2.5) <*••= 5]( S U P < L 

i,j=1 k=l xel 

T H E O R E M 1. Under hypotheses (Hi)—(H3), there exists a unique func-

tion f 6 X such that f — T f . Moreover, f is stable with respect to g in X . 

^ P r o o f . It is evident that Tf 6 X, for every / 6 X. Considering / , 
/ € X, we easily verify, by (H3) and (2.5), that 

(2-6) | | T / - r / | U < a | | / - / | U . 
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Then, using Banach fixed point theorem, we have the existence of unique 
f e X such that / = T f . 

Consider / and / from X being two solutions of (2.2) corresponding to 
g and g from X, respectively. By the analogous evaluation, we have 

(2.7) \ \ f - f \ \ x < Y ^ \ \ g - g \ \ x . 

Hence, / is stable with respect to g. 

R e m a r k 1. Theorem 1 gives a consecutive approximate algorithm 

(2.8) /(") = r / ( " - 1 ) , v = 1 , 2 , . . . , f ^ e x given. 

Then the sequence converges in X to the solution / of (2.2) and we 
have an evaluation of the error 

( 2 . 9 ) H/("> - f\\x < WTf(0) -f(0)Uxa* „ = 1 , 2 , . . . 
1 — a 

Consider now the case of a i j k (x ,y) of form (1.2) and denote 
n m 

(2.10) 0 : = £ 2 > y * | < l . 
i,j=i k=l 

T H E O R E M 2. Suppose that (Hi), (H2) hold. Then there exists a unique 
function f = ( f i , . . . , fn) £ X being the solution of the following system 

71 Tn 
(2.11) Mx) = ^2^/aijkfj(Sijk(x)) + gi(x}, i = l , 2 , . . . , n , x e I. 

j=1 fc=1 
Moreover, the solution of (2.11) is stable with respect to g = (gi,--.,gn) 
in X. 

P r o o f . We apply Theorem 1 for aijk(x,y) = aijky. Then aijk = \aijk\ 
in (2.4) and a = /? < 1, by (2.5), (2.10). 

R e m a r k 2. Let Sijk(x) be the binomials of first degree 

(2.12) Sijk(x) = bijkX + Cijk 

and I = [—6,6]. Suppose that the real numbers bijk, Cijk satisfy the condition 

( 2 . 1 3 ) \bijk\ < 1, i,j = l,...,n, k — 1 , . . . , m , 

(2.14) max n . < b. 
l<i,j<n 1 — \0ijk\ 1 <k<m 

Then (Hi) holds. 

T H E O R E M 3 . Suppose that I — [ - 6 , 6 ] , the real numbers C{jk 

satisfy ( 2 . 1 0 ) , ( 2 . 1 3 ) , ( 2 . 1 4 ) and Sij(x) are of the form ( 2 . 1 2 ) . Then, for each 
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g € X, there exists a unique f G X being the solution of the system (2.11). 
Moreover, this solution is stable with respect to g — (g\,...,gn) in X. 

R e m a r k 3. 
(i) The result in [1] is a special case of Theorem 3 with n = m = 2. 
(ii) Theorem 3 is true for I = R and in this case the terms bijk, c^k need 

not satisfy the conditions (2.13), (2.14). 

3. Maclaurin expansion of the solution 
From here, we consider I = [—6,6] and the numbers ciijk, b^k, Cijk as in 

Theorem 3. 
Suppose that g G C1(I;Rn) and / G C1(I;Rn) is the unique solution of 

the corresponding system (2.11). Differentiating two members of (2.11), we 
obtain 

71 771 
(3.1) //(*) = 5 ^ ^ a i i f c 6 i i f c / i ( 5 i i J b ( ® ) ) + ^(®). *'= l , 2 , . . . , n , x e I. 

j=l fc=1 

Let f[{—b) and //(ft) mean the forward derivative at —b and the backward 
derivative at b of /,•, respectively. Put 

(3.2) a^l = aijkbijk. 

From (2.10), (2.13), we have 
n 77i 

(3.3) /* ( 1 ):= £ £ l « g l l < / J < l . 
i,j=l k=1 

By Theorem 3, there exists a unique function 

being the solution of the system 
n 77i (3.4) i f 1 ( ® ) = E E a 8 i f J 1 1 ( ^ ( ! B ) ) + »i( ! i)' < = l , 2 , . . . , n , « € / . 
j=l k=1 

Moreover, from the uniqueness, this solution is also the deriverative /' = 
( / { , . . . , / ; ) o f / . 

Similarly, we consider the case of / G Cr(I; Rn) being the solution of the 
system (2.11) corresponding to g G Cr(I; Rn). Differentiating r times two 
members of (2.11), we have 
(3.5) 

71 771 

/fr>(«) = yEJ2^biJkf{/)(Sijk(x)) + g\r\x), i = 1 , 2 , . . . , » , x € I. 
j=l k=l 
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From (2.10), (2.13), we denote 
71 771 

(3.6) /3 ( r ) = E E \aijkb;jk\</3<l. 
i,j= 1 k= 1 

Therefore, the following system 
(3.7) 

n m = EE ^ h ^ i S i ^ + g ^ i x ) , i = 1,2 , . . . , n , x € / , 
j=i fc=i 

has a unique solution 

(3.8) FM = ( J P l r l , . . . , ^ ) G C ( / ; i 2 n ) , 

equal to the derivative f ^ = ( f [ r \ . . . , f i ^ ) of the solution / . 
Therefore, we have the following theorem. 

T H E O R E M 4. Let g £ C r ( I ; R n ) . Then there exist f € C r ( I ; R n ) and 
F[r] 

6 C( / ; Rn) being the unique solutions of the systems (2.11) and (3.7), 
respectively. Moreover, Jrfr] is the r-order derivative of f . 

R e m a r k 4. In the case of I = R, we suppose additionally that the real 
numbers a ^ , bijk, Cijk satisfy the condition 

n 77i 
( 3 . 9 ) m a * £ £ \aijkbs

ijk\ < 1 . 
-S"r i,j=1 fc=l 

Then, if 

(3.10) <7 € Cf t I ; £ " ) = { 5 € Ct(/ ; R n ) /gW,gW, . . . , 5 « G C t(J; iin)}, 

the conclusion of Theorem 4 is still true, where the functional spaces 
C(I; Rn) and C r ( / ; Rn) appearing in Theorem 4 are replaced by Cfc(J; Rn) 
and Cl(I\ Rn), respectively. The proof of this result is the same as that of 
Theorem 4. 

Now we return to the same case of I = [—6,6]. Suppose that / £ 
C p ( I ; R n ) is the unique solution of (2.11) corresponding to g € C p ( I ; R n ) . 
For each r = 1 , 2 , . . . , p, we have i^7"' as in Theorem 4. Then, from Maclaurin 
formula we have 
(3.11) 

/»(*) = E + TTZTv h ~ *)P"1/iP)(*)<*', * = 1 ,2 , . . . , » . 
r=0 ' W ' ' 0 

On the other hand, we have 

(3.12) F M = / M r = 1,2, . . 
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Put FW = f . From (3.11), (3.12) we have 
(3-13) 

m = £ + \(* - ' R 1 * ? 1 m , ¿ = 1,2,...,». 

Inversely, suppose that a function / = ( f i , . . . , f n ) G C{I\Rn) is given 
by the formula 

= E + (^TT)T h - ty~lF?{t)dt, ¿ = 1,2,...,«,. 

Then, from (3.12), (3.14) we have 

v-1 1 1 , s 
(3.15) f i (x ) = £ ^ J ! i l x r + J ( x _ t y - i f ^ m = £ ( * ) , 

r-0 ' ^ >' 0 

i = 1 , 2 , . . . , n, x G I. 

Therefore / is a solution of (2.11). 
Then, we have the following theorem. 

THEOREM 5. Let g £ Cp{I\Rn). Then, the solution f € Cp(I;Rn) O/ 
(2.11) is represented by (3 .13) , where . F ^ G C(I;Rn) ¿s i/ie unique solution 
of (3.7). Inversely, every function f 6 Cp{I\Rn) represented by (3.13) ¿s a 
solution o/ (2 .11) . 

R e m a r k 5. We consider the case I = R and the real numbers aijk, 
bijki cijk satisfying the condition (3.9). If <7 G CP(I; Rn), the conclusion of 
Theorem 5 is still true, where the functional spaces C(I; Rn) and CP(I; Rn) 
appearing in Theorem 5 are replaced by Cb(I\Rn) and Rn), respec-
tively. 

Returning to the case of I — [—6,6] we have the following corollary. 

COROLLARY 1. If gi,.. .,gn are polynomials of degree not greater than 
r — 1, the solution f of (2.11) is also a sequence of such polynomials. 

P r o o f . We have 

(3.16) g\r\x) = 0, i = 1 , 2 , . . . , n, x € [ - 6 , b}. 

Then 
F[r] = 0 is the unique solution of the system (3.7). Applying (3.13) 

with p = r, we have 
(3.17) = 
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THEOREM 6. Suppose that f € Cp(I\Rn) is the solution of the system, 
(2.11) corresponding to g G Cp(I;Rn) and that f is the sequence of poly-
nomials of degree not greater than p — 1 and satisfies the system (2.11) 
corresponding tog = (gi,.. .,gn), where 

P-1 J r ) , m 

(3.18) gi{x) = E *' = 1.2, • • •, n. 
r=0 

Then, we have 

(3-19) | | / _ 7 | | x < T i _ ^ ( p ) | | j r . 

P r o o f . We have Maclaurin expansion of gi(x) in the form 

(3.20) g i ( X ) = u * ) + ! ( * - ty-'a^m. 

Applying the estimate (2.7) with a = ¡3, we have 

(3-21) \ \ f - f \ \ x < J — y - g \ \ x . 

From (3.20) we have 
n 

(3.22) \\g-g\\x= suP £ > 0 0 - £ 0 0 1 

KP | a ; | < 6 i = 1 0 

where 

(3.23) ¿ | J ( x - t y ^ g ^ \ t ) d t \ < \(x - O ^ I I ^ W I I d i 
¿=1 o o 

< \\9{p)\\xj < \\g(p)\\xj 

for 0 < x < b. Similarly, for -b < x < 0 the inequality (3.23) is still true. 
Therefore, from (3.22), (3.23) we have 

up 
(3-24) 

pi 
and, by (3.21), we get (3.19). 

COROLLARY 2. If for g E C°°(I; Rn) there exists d > 0 such that 

(3-25) \\g{p)\\x<dr, p = 0 , 1 , 2 , . . . 
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and f is a solution of the system (2.11) corresponding to g and /tpl being the 
sequence of polynomials of degree not greater than p — 1 satisfies the system 
(2.11) corresponding to g as in Theorem 6, then 

lim | | / -7 I p ] | |A: = 0. 
p-+oo 

Moreover, we have the estimates 

(3.26) p = 1 ,2 , . . . 

P r o o f . The estimates (3.19) and (3.25) imply (3.26). 
COROLLARY 3 . Let g € C{I\ Rn) and f be the solution of the system 

{2.11) corresponding to g. Then, there exists a sequence of polynomials of 
degree non greater than p— 1: f ^ = (f\p\ ..., ffl) such that 
(3.27) lim ll/M - f\\x = 0. 

p—• oo 

P r o o f . According to Weierstrass theorem, each function gi is approxi-
mated by a sequence of polynomials converging uniformly to when the 
degree p— 1 —» -f-oo. Therefore, = . . . ,Pn') converges in C(I; Rn) to 
g when p —• +oo. Let be a polynomial solution of (2.11) corresponding 
to g — pW. According to the estimate (3.21) we have 

(3.28) IÎ IpI _ f\\x < _ l -_ | |pb] _ g\\x _». o. 

as p —>• +oo. 

4. Numerical results 
In this part, we consider the algorithm (2.8) with I = [-6,6]. More 

concretely, for x € [—6, b] and 1 < i < n, we put 
n TO 

(4.1) f!"\X) = 
j-1 k=l 

(4.2) /¡°>(x) = 0, 

Basting on (4.1), we calculate the values /¿"^(a^) at some discrete points 
(4.3) xfl = -b + /uAx, Ax = 2b/N, fi = 0 , 1 , . . . , N. 

Afterwards, we interpolate the values /¿"^(a;M) by spline functions of first 
degree on [—6,6], basing on the knot points xo, ®i , . . . , 

(4.4) JS"\*) = Y , } i ' ' ) M W > ( z ) , 
n=0 
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where the functions W 0 (x) , W\(x),..., are defined as follows 

{( x - x M _ i ) / A a ; for < x < x^, 
(a^+i - x)/Ax for < x < Xp+i, 
0 for x g [a^-i ja^+i] , 1 < n < N - 1, 

(4.6) * ( , ) - { £ > - ) / A * -

(x — xn-i)/Ax, xn-i < x < b, 
—b < x < Xpf—i. (4.7) WN(x) = { £ 

Put 

(4.8) ni=WM-
From there, we define f j ^ by recurrence according to repeat steps u = 

1 , 2 , , 

N 

(4-9) = £ £ a i j k [ x „ £ f j v ~ 1 ) w v ( S i M ^ ) ) ) + S i M , 
j=1 k=l v=0 

0 <fi<N, 1 <i<n, v> 1, 

(4.10) 4 0 ) = 0. 

Numerical application is effectuated on the two following examples 
EXAMPLE 1. Case of nonlinearity. Consider the following system with 

n = 2, m = 1, b = 1, x 6 [—1,1]. 

(4.11) 

where 

(4.12) 

f l { x ) = s i n / l ( I + I ) + ¿ 0 \h ( I + Ì) 

. M x ) = ( I + ì ) + W o c o s f 2 ( f + 0 + 5 2 ( x ) ' 

= * - 260 ( I + è ) - ièo s i n ( i + i ) ' 

. = x 2 - 250 ( I + è ) - I M c o s ( I + è ) • 
The exact solution of the system (4.11), (4.12) is 

(4.13) / r o o = * . / r ( * ) = * a -

We calculate with algorithm (4.9), (4.10) until vth repeat step satisfying 

(4-14) max i f l Ì - f f i - V l O - « . 
0 <ii<N ' ttl 1 

l<t'<2 
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Afterwards, let N increase respectively with N = 5,10,15,20,100. The 
result given by the tables 1, 2 as follows indicate the calculating values f j ^ 
comparing to the exact values f f x ( x a t knot-points 0 < \x < N = 5. 
The tables 3 and 4 give the result of variation of error when N increase 
gradually. 

M 7t") 
f?(*)M E i ß 

0 -1.000 -1.000 0.000061 
1 -0.600 -0.600 0.000149 
2 -0.200 -0.200 0.000193 
3 0.200 0.200 0.000060 
4 0.600 0.600 0.000149 
5 1.000 1.000 0.000194 

Table UN = 5, Elß = - f?(xß)\ 

P J2u Ein 
0 1.000 1.000 0.000004 
1 0.360 0.360 0.000071 
2 0.040 0.040 0.000239 
3 0.040 0.040 0.000372 
4 0.359 0.360 0.000525 
5 1.000 1.000 0.000251 

Table 2: N = 5, E2ß = - /2
e*(s/0| 

Table 3. Table 4. 
N e\ = max E\a 0 <ß<N * e2 max E2u 

5 0.000194 0.000525 
10 0.000049 0.000429 
15 0.000020 0.000415 
20 0.000010 0.000406 

100 0.000002 0.000397 

E X A M P L E 2 . Case of linearity : aijk(x, y) = aijkV- Consider the following 
system with n = m = 2, b = 1, — 1 < x < 1, 
(4.15) 

^ /l(x) = Woh ( I + 1) + Woh (I+ i) + (I+ k) + 9l{x)' 
/»(*) = 2 ^ / i ( § + \ ) + ( § + I ) + ( f + i ) + 
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where 

(4.16) 
' f f i ( z ) - 1 0 0 z 1 2 0 0> 

. , 7171 23 
9 2 { X ) = 1200* " 1200-

The numbers a ^ , bijk, Cijk, with i, j , k equal to 1 or 2 satisfy (2.10), 
(2.13), (2.14). The exact solution of (4.15), (4.16) is 

ft*(x) = a, f ? ( x ) = 6®. 

We calculate by algorithm (4.9), (4.10) with repeat steps v = 1,2,3,. . . 
such that 

(4.17) ^ a x I ^ - ^ K I O " 8 . 

0 <n<N 

The result given by the tables 5 and 6 as follows indicate the calcu-
lating values f j ^ comparing to the exact values f f x { x a t knot-points 
/¿0,Mi> • • •, A*5 for N = 5. 

M 
Ì W 
J In E\n 

0 -1.000 -1.000 0.000000 
1 -0.600 -0.600 0.000000 
2 -0.200 -0.200 0.000000 
3 0.200 0.200 0.000000 
4 0.600 0.600 0.000000 
5 1.000 1.000 0.000000 

Table 5: N = 5, Elfi = \f[vJ - /r (zM )| , max0<^<5 E^ = 3.035150.10"11. 

M Ì W 
J 2u frM E2fl 

0 -6.000 -6.000 0.000000 
1 -3.600 -3.600 0.000000 
2 -1.200 -1.200 0.000000 
3 1.200 1.200 0.000000 
4 3.600 3.600 0.000000 
5 6.000 6.000 0.000000 

Table 6: N = 5, E2fi = - / f * ^ ) ! , m a x o ^ s E2fl = 3.035150.10"11. 
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