

Jarosław Górnicki, Thakur B. Singh

ON SOME GENERALIZATION OF UNIFORMLY LIPSCHITZIAN MAPPINGS AND ITS FIXED POINTS

1. Introduction

Let (E, d) be a metric space. A mapping $T : E \rightarrow E$ is called *uniformly k -Lipschitzian* if there exists a constant $k > 0$ such that

$$d(T^n x, T^n y) \leq k \cdot d(x, y)$$

for any points x, y in E and any positive integer n .

The first fixed point theorem for uniformly Lipschitzian mappings in Banach spaces was given by Goebel and Kirk [3] who states a relationships between the existence fixed point for these mappings and the Clarkson modulus of convexity. The existence of a fixed point of uniformly k -Lipschitzian mappings have been investigated by many authors, cf. [1]. Recently, Tan and Xu [8] presented new fixed point theorem for uniformly k -Lipschitzian mappings in uniformly convex Banach spaces.

A more general approach is proposed by Lifschitz [5], who defines the following coefficient in metric space (E, d) :

$\kappa(E)$ is the supremum of all positive numbers b such that there exists $a > 1$ such that for every x, y in E and $r > 0$ with $d(x, y) > 0$ there exists z in E satisfying $\bar{B}(x, br) \cap \bar{B}(y, ar) \subset \bar{B}(z, r)$.

It is clear that $\kappa(E) \geq 1$ and $\kappa(E) > 1$ for strictly convex spaces. Lifshitz proved the following Theorem:

THEOREM 1. *Let (E, d) be a complete metric space and $T : E \rightarrow E$ a uniformly k -Lipschitzian mapping with constant $k < \kappa(E)$. If there exists $x \in E$ such that the sequence $\{T^n x\}$ is bounded, then T has a fixed point in E .*

1991 *Mathematics Subject Classification:* 47H10, 47H09.

Key words and phrases: fixed point, uniformly Lipschitzian mappings.

In a Banach space E we denote by $\kappa_0(E)$ the infimum of the numbers $\kappa(M)$ when M is a nonempty closed convex bounded subset of E . The direct computation of $\kappa_0(E)$ is a difficult problem, because we can consider many different convex subsets of E with arbitrary shape. The value of $\kappa_0(E)$ is only known when E is a Hilbert space H (cf. [5,1]), $\kappa_0(H) = \sqrt{2}$, or for some classes of Banach spaces which are isomorphic to l^2 (cf. [2]): for James's spaces $E_\lambda = (l^2, \|x\|_\lambda = \max\{\|x\|_2, \lambda \cdot \|x\|_\infty\}), \lambda \geq 1$,

$$\kappa_0(E_\lambda) = \sqrt{1 + \lambda^{-2} - 2 \cdot \lambda^{-2} \cdot \sqrt{\lambda^2 - 1}} \quad \text{if } 1 \leq \lambda \leq \frac{1}{2} \cdot \sqrt{5},$$

$$\kappa_0(E_\lambda) = 1 \quad \text{if } \lambda > \frac{1}{2} \cdot \sqrt{5}.$$

Recently, Dominguez Benavides [2] using Bynum's normal structure coefficient $N(E)$ extended Lifshitz's Theorem.

We recall,

$$N(E) = \left\{ \frac{\text{diam}(M)}{\inf_{y \in M} (\sup_{x \in M} \|x - y\|)} : M \subset E \text{ convex closed bounded with } \text{diam}(M) > 0 \right\}.$$

A different form of this coefficient was given by Lim [6]:

$$N(E) = \left\{ \frac{\text{diam}_a\{x_n\}}{r_a\{x_n\}} : \{x_n\} \text{ is a bounded sequence which is not norm convergent} \right\},$$

where

$$\text{diam}_a\{x_n\} = \lim_{k \rightarrow \infty} (\sup\{\|x_n - x_m\| : n, m \geq k\}),$$

$$r_a\{x_n\} = \inf\{\overline{\lim}_{n \rightarrow \infty} \|x_n - y\| : y \in \text{conv}\{x_n\}\}.$$

It is known that [1]:

- 1) for a Hilbert space H , $N(H) = \sqrt{2}$;
- 2) for James's space E_λ , $N(E_\lambda) = \frac{1}{\lambda} \cdot \sqrt{2}$ if $1 \leq \lambda \leq \sqrt{2}$;
- 3) $N(l^p) = N(L^p) = \min\{2^{1/p}, 2^{1-1/p}\}$, $1 < p < +\infty$;
- 4) $\kappa_0(E) \leq N(E)$.

Dominguez Benavides proved the following Theorem:

THEOREM 2. *Let E be a Banach space, M a nonempty closed convex bounded subset of E and $T : M \rightarrow M$ uniformly k -Lipschitzian mapping. If*

$$k < \frac{1}{2} \cdot (1 + \sqrt{1 + 4 \cdot N(E) \cdot (\kappa_0(E) - 1)}),$$

then T has a fixed point in M .

2. Main result

In the present paper we extend Theorem 2 to more general class of mappings (not necessarily continuous) $T : M \rightarrow M$ whose n -th iterate ($n = 1, 2, \dots$) satisfying the following condition:

$$(*) \quad \|T^n x - T^n y\| \leq A \cdot \|x - y\| + B \cdot \{\|x - T^n x\| + \|y - T^n y\|\} + C \cdot \{\|x - T^n y\| + \|y - T^n x\|\}$$

for all x, y in M , where the nonnegative constants A, B, C satisfy $B + C < 1$.

The mappings T satisfying $(*)$ are called *generalized uniformly Lipschitzian mappings*.

Recently, Singh and Jung [7] have given the following generalization of Lifshitz's Theorem:

THEOREM 3. *Let (E, d) be a complete metric space. If $T : E \rightarrow E$ is a generalized uniformly Lipschitzian mapping with $\frac{A+3(B+C)}{1-(B+C)} < \kappa(E)$, and for some $x \in E$ the sequence $\{T^n x\}$ is bounded, then T has a fixed point in M .*

We follow an idea of [2] and prove the following fixed point theorem for generalized uniformly Lipschitzian mappings:

THEOREM 4. *Let E be a Banach space, M a nonempty closed convex bounded subspace of E and $T : M \rightarrow M$ be a mapping satisfying for all x, y in $M, n = 1, 2, \dots$ the condition $(*)$. If*

$$\frac{A+3(B+C)}{1-(B+C)} < \frac{1}{2} \cdot \left(1 + \sqrt{1 + 4 \cdot N(E) \cdot (\kappa_0(E) - 1)} \right),$$

then T has a fixed point in M .

Proof. If $\frac{1}{2} \cdot (1 + \sqrt{1 + 4 \cdot N(E) \cdot (\kappa_0(E) - 1)}) = 1$, then $\kappa_0(E) = 1$. In this case the existence of fixed points follows from Hardy-Rogers's Theorem [4]. We prove our result if

$$\frac{1}{2} \cdot (1 + \sqrt{1 + 4 \cdot N(E) \cdot (\kappa_0(E) - 1)}) > 1.$$

Denote $N = N(E)$ and $\kappa_0 = \kappa_0(E)$. We can assume $k = \frac{A+3(B+C)}{1-(B+C)} > 1$ and observe that the condition $\kappa_0 \leq N$ implies

$$\frac{1}{2} \cdot (1 + \sqrt{1 + 4 \cdot N \cdot (\kappa_0 - 1)}) \leq N,$$

and hence $k < N$. Next note that the condition

$$k < \frac{1}{2} \cdot (1 + \sqrt{1 + 4 \cdot N \cdot (\kappa_0 - 1)})$$

is equivalent to

$$\frac{k}{N} < \frac{\kappa_0 - 1}{k - 1}.$$

Choose $b < \kappa_0$ such that

$$\frac{k}{N} < \frac{b-1}{k-1}.$$

Let $a > 1$ be the corresponding number to b in definition of $\kappa(M)$. We can assume

$$\frac{k}{N} < \frac{\frac{b}{a}-1}{k-1}.$$

Choose $\varepsilon > 0$ such that $\frac{1}{a} \cdot (1 + 2\varepsilon) = \alpha < 1$.

For every $x \in M$ define

$$R(x) = \inf\{r > 0 : \text{there exists } y \in M \text{ satisfy } \overline{\lim}_{n \rightarrow \infty} \|x - T^n y\| \leq r\}.$$

We shall prove that $R(x) = 0$ for some $x \in M$. Let x be an arbitrary point in M . If $R(x) > 0$ choose $y \in M$ such that

$$\overline{\lim}_{n \rightarrow \infty} \|x - T^n y\| < R(x) \cdot (1 + \varepsilon).$$

There are two cases:

CASE I.

$$\sup\{\|x - T^n x\| : n \geq 1\} \leq \frac{N \cdot R(x) \cdot (1 + \varepsilon)}{k \cdot a}.$$

In this case, since

$$\|T^n x - T^m x\| \leq \frac{A + B + C}{1 - (B + C)} \|x - T^{n-m} x\| + \frac{2(B + C)}{1 - (B + C)} \|x - T^n x\|$$

if $n > m$ we know that

$$\text{diam}_a\{T^n x\} \leq \frac{N \cdot R(x) \cdot (1 + \varepsilon)}{a}.$$

Since $\text{diam}_a\{T^n x\} \geq r_a\{T^n x\} \cdot N$, we obtain

$$\frac{N \cdot R(x) \cdot (1 + \varepsilon)}{a} \geq N \cdot r_a\{T^n x\},$$

which implies

$$r_a\{T^n x\} \leq \frac{R(x) \cdot (1 + \varepsilon)}{a}.$$

Then there exists $z \in M$ such that

$$\overline{\lim}_{n \rightarrow \infty} \|T^n x - z\| < \frac{R(x) \cdot (1 + 2\varepsilon)}{a} = \alpha \cdot R(x).$$

Thus $R(z) < \alpha \cdot R(x)$. Furthermore $\|z - x\| \leq \|z - T^n x\| + \|T^n x - x\|$ which

implies

$$\begin{aligned}\|z - x\| &\leq \overline{\lim_{n \rightarrow \infty}} \|z - T^n x\| + \overline{\lim_{n \rightarrow \infty}} \|T^n x - x\| \\ &\leq \alpha \cdot R(x) + \frac{N \cdot \alpha \cdot R(x)}{k} = \alpha \cdot \left(1 + \frac{N}{k}\right) \cdot R(x).\end{aligned}$$

CASE II.

$$\sup\{\|x - T^n x\| : n \geq 1\} > \frac{N \cdot R(x) \cdot (1 + \varepsilon)}{k \cdot a}.$$

In this case there exists $i \in \mathbb{N}$ such that

$$\|x - T^i x\| > \frac{N \cdot R(x) \cdot (1 + \varepsilon)}{k \cdot a}.$$

Choose $j \in \mathbb{N}$ such that $\|x - T^n y\| < R(x) \cdot (1 + \varepsilon)$ for $n \geq j$. Hence for $n \geq j$, we have

$$\begin{aligned}\|T^{i+n} y - T^i x\| &\leq \frac{A + B + C}{1 - (B + C)} \|x - T^n y\| + \frac{2(B + C)}{1 - (B + C)} \|x - T^{i+n} y\| \\ &\leq k \cdot R(x) \cdot (1 + \varepsilon).\end{aligned}$$

Choose $\lambda \in (0, 1)$ such that $\frac{k}{N} < \lambda < \frac{\frac{b}{a} - 1}{k - 1}$. Then for $n \geq i + j$, we get

$$\begin{aligned}\|T^n y - \lambda \cdot T^i x + (1 - \lambda) \cdot x\| &\leq \\ &\leq \lambda \cdot \|T^n y - T^i x\| + (1 - \lambda) \cdot \|T^n y - x\| \leq \\ &\leq \lambda \cdot k \cdot R(x) \cdot (1 + \varepsilon) + (1 - \lambda) \cdot R(x) \cdot (1 + \varepsilon) \leq \\ &\leq [\lambda \cdot (k - 1) + 1] \cdot R(x) \cdot (1 + \varepsilon) < \\ &< \frac{b}{a} \cdot R(x) \cdot (1 + \varepsilon).\end{aligned}$$

Furthermore

$$\begin{aligned}\|x - \lambda \cdot T^i x + (1 - \lambda) \cdot x\| &= \lambda \cdot \|T^i x - x\| \geq \\ &\geq \lambda \cdot \frac{N \cdot R(x) \cdot (1 + \varepsilon)}{k \cdot a} \geq R(x) \cdot \frac{1 + \varepsilon}{a}.\end{aligned}$$

By the definition of b there exists $z \in M$ such that

$$\|T^n y - z\| \leq \frac{R(x) \cdot (1 + \varepsilon)}{a} \leq \alpha \cdot R(x)$$

for $n \geq i + j$. Thus $R(z) \leq \alpha \cdot R(x)$, and

$$\|z - x\| \leq \|z - T^n y\| + \|T^n y - x\| \leq R(x) \cdot (1 + \varepsilon + \alpha).$$

Define $f(x) = z$, z choosen as in the case I or II. By induction, take x_0 arbitrary in M and put $x_n = f(x_{n-1})$, $n = 1, 2, \dots$. Then

$$R(x_n) \leq \alpha \cdot R(x_{n-1}) \leq \dots \leq \alpha^n \cdot R(x_0).$$

We shall prove that $\{x_n\}$ is a Cauchy sequence. Indeed, if $S = \max \{1 + \varepsilon + \alpha, \alpha \cdot (1 + \frac{N}{k})\}$, we have

$$\|x_{n+1} - x_n\| \leq S \cdot R(x_{n-1}) \leq \dots \leq S \cdot \alpha^{n-1} \cdot R(x_0).$$

Thus $\{x_n\}$ converges to some x in M . It is clear that $R(x) = 0$. We shall prove that x is a fixed point of T . Indeed, for any $\gamma > 0$ there exists $y \in M$ such that $\|x - T^n y\| < \gamma$ if $n \geq P = P(\gamma)$. Thus for $n \geq P$, we have

$$\begin{aligned} (**) \quad \|T^n x - x\| &\leq \|T^n x - T^{2n} y\| + \|T^{2n} y - x\| \leq \\ &\leq \frac{A + B + C}{1 - (B + C)} \|x - T^n y\| + \frac{2(B + C)}{1 - (B + C)} \|x - T^{2n} y\| + \|T^{2n} y - x\| < k \cdot \gamma + \gamma \end{aligned}$$

and by $(**)$

$$\begin{aligned} \|T^{n+1} x - T x\| &\leq \frac{A + B + C}{1 - (B + C)} \|x - T^n x\| + \frac{2(B + C)}{1 - (B + C)} \|x - T^{n+1} x\| \\ &< (k \cdot \gamma + \gamma) \cdot k. \end{aligned}$$

Hence

$$\begin{aligned} \|T x - x\| &\leq \|T x - T^{n+1} x\| + \|T^{n+1} x - x\| < (k \cdot \gamma + \gamma) \cdot k + k \cdot \gamma + \gamma = \\ &= (k + 1)^2 \cdot \gamma \rightarrow 0 \end{aligned}$$

as $\gamma \downarrow 0$. This completes the proof.

3. Final remarks

1. Since $\kappa_0(E) \leq N(E)$ it is easy to prove that

$$\kappa_0(E) \leq \frac{1}{2} \cdot (1 + \sqrt{1 + 4 \cdot N(E) \cdot (\kappa_0(E) - 1)}) \leq N(E)$$

and the first equality only holds if $\kappa_0(E) = 1$ or $\kappa_0(E) = N(E)$.

Note that for James's spaces E_λ , $\lambda > 1$,

$$1 < \kappa_0(E_\lambda) < N(E_\lambda).$$

Hence, for these Banach spaces Theorem 4 is strictly more general than the Singh-Jung's Theorem [7].

2. Since $\frac{1}{2} \cdot (1 + \sqrt{1 + 4 \cdot N(E_\lambda) \cdot (\kappa_0(E_\lambda) - 1)})$ converges to $\sqrt{2}$ as $\lambda \rightarrow 1$ it is clear that for λ close to 1 the constant which appears in Theorem 4 is strictly bigger than the constant $\sqrt{N(E_\lambda)}$ which appears in Casini-Maluta's Theorem, cf. [1].

References

[1] J. M. Ayerbe Toledano, T. Dominguez Benavides, G. Lopez Acedo, *Compactness Conditions in Metric Fixed Point Theory*, University of Sevilla, Sevilla 1995.

- [2] T. Dominguez Benavides, *Fixed point theorems for uniformly Lipschitzian mappings and asymptotically regular mappings*, Nonlinear Anal. 32 (1998), 15–27.
- [3] K. Goebel, W. A. Kirk, *A fixed point theorem for transformations whose iterates have uniform Lipschitz constant*, Studia Math. 47 (1973), 135–140.
- [4] G. E. Hardy, T. D. Rogers, *A generalization of a fixed point theorem of Reich*, Canad. Math. Bull. 16 (1973), 201–206.
- [5] E. A. Lifshitz, *Fixed point theorems for operators in strongly convex spaces*, Voronez. Gos. Univ. Trudy Mat. Fak. 16 (1975), 23–28 (in Russian).
- [6] T. C. Lim, *On the normal structure coefficient and the bounded sequence coefficient*, Proc. Amer. Math. Soc. 88 (1983), 263–264.
- [7] T. B. Singh, J. S. Jung, *A fixed point theorem for generalized uniformly Lipschitzian mappings*, Panamer. Math. J. (to appear).
- [8] K. K. Tan, H. K. Xu, *Fixed point theorems for Lipschitzian semigroups in Banach spaces*, Nonlinear Anal. 20 (1993), 395–404.

Jarosław Górnicki

DEPARTMENT OF MATHEMATICS
RZESZÓW INSTITUTE OF TECHNOLOGY
P.O. Box 85
35-959 RZESZÓW, POLAND
e-mail: gornicki@prz.rzeszow.pl

Thakur B. Singh
GOTV. B. H. S. S. GARIABAND
DIST. RAIPUR (M. P.), 493889, INDIA

Received February 6, 1997.

