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ON SOME GENERALIZATION OF UNIFORMLY
LIPSCHITZIAN MAPPINGS AND ITS FIXED POINTS

1. Introduction
Let (E,d) be a metric space. A mapping T : E — E is called uniformly
k-Lipschitzian if there exists a constant k£ > 0 such that

d(Tn:v,Tny) < k- d(:l:, y)

for any points z,y in E and any positive integer n.

The first fixed point theorem for uniformly Lipschitzian mappings in
Banach spaces was given by Goebel and Kirk [3] who states a relationships
between the existence fixed point for these mappings and the Clarkson mod-
ulus of convexity. The existence of a fixed point of uniformly k-Lipschitzian
mappings have been investigated by many authors, cf. [1]. Recently, Tan
and Xu (8] presented new fixed point theoren for uniformly k-Lipschitzian
mappings in uniformly convex Banach spaces.

A more general approach is proposed by Lifschitz [5] , who defines the
following coefficient in metric space (E,d):

k(E) is the supremum of all positive numbers b such that there exists
a > 1 such that for every z,y in E and r > 0 with d(z,y) > 0 there
exists zin F satisfying B(z,br)N B(y,ar) C B(z,7).

It is clear that x(E) > 1 and x(E) > 1 for strictly convex spaces. Lifshitz
proved the following Theorem:

THEOREM 1. Let (E,d) be a complete metric space and T : E — FE a
uniformly k-Lipschitzian mapping with constant k < k(E). If there ezists
z € E such that the sequence {T"z} is bounded, then T has a fized point
in E.
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In a Banach space E we denote by k¢(E) the infimum of the numbers
k(M) when M is a nonempty closed convex bounded subsed of E. The direct
computation of Ko(E) is a difficult problem, because we can consider many
different convex subsets of E with arbitrary shape. The value of xo(FE) is
only known when E'is a Hilbert space H (cf. [5,1]), ko(H) = v/2, or for some
classes of Banach spaces which are isomorphic to /2 (cf. [2]): for James’s
spaces Ey = (12, ||z|lx = maz{||z||i2, A - |z]lc0}), A > 1,

no(E}‘)z\/1+,\—2_2.,\-2.,/)‘2_1 iflS/\S%-\/g,
KO(E)\)=1 if/\)%-\/g.

Recently, Dominguez Benavides [2] using Bynum’s normal structure co-
efficient N(F) extended Lifshitz’s Theorem.

We recall,
diam(M)

N(FE)=<: :

R o s )

M C E convex closed bounded with diam(M) > 0}.

A different form of this coefficient was given by Lim [6]:

_ [diamg{z,}
N(E)= {—Ta{zn} :

{zn} is a bounded sequence which is not norm convergent},

where
diamg{z,} = klim (sup{||zn — Tm|l : m, m > k}),

ro{2Zn} = inf{nli_*_n;o lzn — 9|l : y € CoRD{z,}}.
It is known that [1]:
1) for a Hilbert space H, N(H) = /2;
2) for James’s space Ey, N(E,) = % V2 1< ALV
3) N(I?) = N(LP) = min{21/7,21-1/7} 1 < p < +o0;
4) ko(E) < N(E).
Dominguez Benavides proved the following Theorem:

THEOREM 2. Let E be a Banach space, M a nonempty closed convez

bounded subset of E and T : M — M uniformly k-Lipschitzian mapping. If
1
k< 5-(1+ V1+4:-N(E)-(ro(E) - 1)),

then T has a fized point in M.
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2. Main result

In the present paper we extend Theorem 2 to more general class of
mappings (not necessarily continuous) T' : M — M whose n-th iterate
(n = 1,2,...) satisfying the following condition:

(x) |IT"z - Ty
< A-lz—yll+B-{llz —T"z|| +|ly-T"yll}+ C{llz = Tyl + |ly—T"=||}
for all z,y in M, where the nonnegative constants A, B, C satisfy B4+ C < 1.

The mappings T satisfying (*) are called generalized uniformly Lips-
chitzian mappings.

Recently, Singh and Jung [7] have given the following generalization of
Lifshitz’s Theorem:

THEOREM 3. Let (E,d) be a complete metric space, If T : E — E is a
generalized uniformly Lipschitzian mapping with % < k(E), and for
some z € E the sequence {T"z} is bounded, then T has a fized point in M.

We follow an idea of [2] and prove the following fixed point theorem for
generalized uniformly Lipschitzian mappings:

THEOREM 4. Let E be a Banach space, M a nonempty closed convez

bounded subsed of E and T : M — M be a mapping satisfying for all z,y in
M,n =1,2,... the condition (*). If
A+ 3(B + C)
(570 < (1+\f1+4 N(E)- (KO(E)_U)

then T has a fized point in M.

Proof. If1-(1++/1+4-N(E)-(so(E)-1)) =1, then ko(E) = 1. In
this case the existence of fixed points follows from Hardy-Rogers’s Theorem
[4]. We prove our result if

S VITTFE) ((B) - D) > 1

Denote N = N(FE) and ko = ko(E). We can assume k = %13%%052 > 1 and
observe that the condition k¢ < N implies
1
:2--(1+\/1+4-N-(n0—1)) <N,
and hence k < N. Next note that the condition

k<%-(1+\/1+4-N-(n0—1))

is equivalent to

N k-1
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Choose b < kg such that
E_b-1
N k-1
Let @ > 1 be the corresponding number to b in definition of K(M). We can
assume
koazl
N k-1
Choose £ > 0 such that 1 - (1+2e) = a < 1.
For every ¢ € M define

R(z) = inf{r > 0: there exists y € M satisfy im,_,o0||z — T"y|| < 7}.

We shall prove that R(z) = 0 for some z € M. Let z be an arbitrary point
in M. If R(z) > 0 choose y € M such that

T ||z — Ty < R(z)- (1 +¢).
There are two cases:

CasE 1.
N-R(z)-(l-{—e).

~T"z||:n>1} <
sup{lle ~ T"a]| :n > 1} € =

In this case, since

A+B+C||a:
1-(B+C)

if n > m we know that

|[T"z — T™z|| <

g %B+C%M—T%H

1-(B+C

N-R(z)-(1+¢)
. .
Since diamo{T™z} > ro{T"z} - N, we obtain

N-R(z)-(1+¢€)

diam, {T"z} <

> N . r {T"z},

which implies

ro{T"z} < (1 4E),

Then there exists 2 € M such that

Be) U+2%) _ 4. R(a).

lim ||T"z — 2| <
=00

Thus R(z) < a- R(z). Furthermore ||z —z|| < ||z—T"z|| +||T"z — z|| which
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implies
I - all < Tale - Tl + Fm 7"z -
co- N
Sa.R(m).'.N—ak}z_(_x_) :a.(l.'.%.).R(m).
Casek II.
‘R 1
sup{llc = T"z|| : n > 1} > (z) a( i 6)
In this case there exists = € N such that
. 1
o i > 2 RE)-Ue)

Choose j € N such that |l — T"y|| < R(z)- (1 +¢) for n > j. Hence for
n > j, we have

; A+B+C
i+n 1

747y - Thal < S22 o
<k-R(z)-(1+¢).

2(B + C)

_e\r rrJ _ mitn
—@royle =Tl

- Ty +

Choose A € (0,1) such that ﬁ <A< %_;11-. Then for n > 7 + j, we get
IT™ - X-Tio + (1 X)-al| <
SA Ty =Tzl + (1-2)- 1Ty — =l <
<A k-R(z)-(1+e)+(1-X)-R(z)-(14+¢) <
<A (k-1)+1]-R(z)-(14+e) <
b
< E-R(z)-(1+e).
Furthermore
lz=ATiz+(1-A)-2z| =X ||T'z —z| >
N-R(z)-(1+¢) > R(z)- 1H€ 1+e
k-a
By the definition of b there exists z € M such that
R(z)-(1+¢)
a

2 A

IT™y - 2l < < a-R(a)
forn > 4 j. Thus R(2) < a- R(z), and
iz —zll < ll2 = T"yll + IT"y - 2|| < R(z)- (1 + £ + a).

Define f(z) = =z, z choosen as in the case I or II. By induction, take z,
arbitrary in M and put z, = f(zn-1),n = 1,2,.... Then

R(zn) L a-R(zp_1) <...< a” - R(z).
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We shall prove that {z,} is a Cauchy sequence. Indeed, if S= max {1+¢+
a,a-(1+ ]—,:’-}, we have
|Zn41 — Zn]| £ S - R(Zp-1) <...L S a™ 1. R(zo).

Thus {z,} converges to some z in M. It is clear that R(z) = 0. We shall
prove that z is a fixed point of 7. Indeed, for any «y > 0 there exists y €¢ M
such that ||z — T"y|| < v if » > P = P(«). Thus for n > P, we have

() Tz - 2| < IT"2 = T*"y|| + IT*"y — 2| <

< o e Tyl T e sl =TTyl < b4y
and by (*x*)
77412~ Tal| < AE2E Do - sl 4 2P o - 7ng
<(k-y+7)-k.
Hence
T2 — 2 < [T = T all + T2 2 < (k-7 47) -k + k-7 +7 =
(k+1)>-y -0

as 7 | 0. This completes the proof.

3. Final remarks
1. Since ko(E) < N(FE) it is easy to prove that

%o(E) < 3 (14 VIF4-N(B) (ra(B) - D) < N(E)

and the first equality only holds if ko(F) = 1 or ko(E) = N(E).
Note that for James’s spaces Ey, A > 1,
1 < ko(Ex) < N(Ey).
Hence, for these Banach spaces Theorem 4 is strictly more general that the
Singh-Jung’s Theorem [7].
2. Since 1- (1+\/1 +4-N(E)): (ko(Ey) — 1)) converges to v/2 as A — 1
it is clear that for A close to 1 the constant which appears in Theorem 4 is

strictly bigger than the constant /N (E)) which appears in Casini-Maluta’s
Theorem, cf. [1].
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