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ON SOLUTIONS OF SOME SYSTEM 
OF F U N C T I O N A L EQUATIONS 

Let us denote by R the set of real numbers and let Ro = R \ {0}. In 
paper [7] (p. 79), the following system of functional equations 

(1) F{yixuyix2 + y2x$ + 4xiF(y1,y2)g(xux2) + 
+6xlg(y1,y2)F{x1, x2) + 3F(Vl, y2)F2(x ux2)) = 
yiF(xi,x2) + xjF(y1,y2) , 

(2) g{y\X\,y\x2 + y2x\ + 4x1F{yi,y2)g{xi,x2) + 
+Qxlg(y1,y2)F(x1,x2) + 3F(y1,y2)F2(x1,x2)) = 
yig(xi,x2) + 3x\F(yi, y2)F{x i , x2) + x\g(yi,,y2) 

in the class of functions F : Ro x R—t-R, g : Ro x R—>R was considered 
and two solutions F ( X I , X 2 ) = g(xi,x2) = 0 for any x\, x2, and F(xi,x2) = 
g(xi,x2) = | ( x i — xj) , where pointed out. 

In the present paper we shall show that the system (1), (2) has also other 
solutions in certain classes of functions. 

The system (1), (2) appeared when some subsemigroups of the group L\ 
were determined. The definition of L\ one can find in [2]. In papers [1]-[16] 
the authors dealt with the determination of subgroups and subsemigroups 
by means of functional equations. 

First let us consider the system (1), (2) in the case of 

(3) F(xi,x2)*= 0 

for arbitrary x\ and x2. Then the equation (2) takes the form 

(4) g(yixi,yix2 + y2x\) = yig(xi, x2) + x\g{yx, y2) . 

Hence, for x2 = y2 = 0 we get 

(5) g{x\y\,0) = y\g(x\,0) + x\g(yu0). 
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In view of Theorem 1 in [2], the general solution of (5) is the set of functions 
of the form 
(6) ^(®i,0) = p ( s ? - a ; i ) > 

where p is any real number. If we set x\ = y\ = 1 in (4), we obtain 
(7) g(l,x2 + y2) = g(l,x2) + g(l,y2) • 

Therefore, the function 
(8) <ftx):=g(l,x) 

is additive. If we set xi = 1 and y2 = 0 in (4), then due to (6) and (8), we 
have 
(9) g(yi,x2yi) = 2/1<t>(x2) + P (Y? - J/I) . 

Hence for x2 = ^ we get 

(10) <7(2/1, y2) = yi<t> + P (y\ - yi) . 

Putting (10) into (4), we can write 

xm<i>M^) + Pkxiyi)3-xm} = 

y\X\4> ( f ^ ) + p ( i ? - x x ) yi + 

+x\yi<i> ( » ) + X?p {y\ - yx) . 

Therefore, due to the fact that <j> is an additive function for rational x\, y\ 
one has the equality 

VI4>(X2) + x\4>{y2) = y\4>{x2) + x\<J>(y2) . 

becoming <f>(y2) (xf — xf) = 0 for any y2 € R. Hence <j>{y2) = 0 and it follows 
from (10) that 
(11) 9{2/1,2/2) = P (y\ ~ 2/1) • 

We have shown that the general solution of (4) is the family of functions 
(11), where p € R. 

The system (1), (2) has then infinitely many solutions, namely the set 
of pairs of the functions 

F{yi,y2) = 0, g(yi,y2) = p (y? - y i ) , 

where p £ R. 
Let us consider now the system (1), (2) with F not depending on the 

second variable, i.e., 
(12) F(x1,x2) = F(x1,0). 

Then (1) reduces to the equation 
(13) F(xIJ/1,0) = yiF(xu0) + X ? F ( Y I , 0 ) . 
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In virtue of Theorem 1 in [2], the general solution of (13) is 

(14) ^ (®i ,0 ) = c ( a ! ? - ® i ) , 

where c g R . Hence, under the assumption (12), 

(15 ) F(x!,x2) = c(xl~ xi) . 

Substituting (15) into (2), we get 

(16 ) g (xiyi, 1/1X2 + V2x\ + Ax-ig(xux2)c(y\ - 2/1)+ 

+Qxjg(yi, y2)c{xl - x i ) + 3c3(xj - X l ) \ y \ - 2/1)) = 

= yig(xi,x2) + 3 x x c 2 ( x ? - X l ) { y \ - 1/1) + x\g{yx, y2) . 

If we put first xi = 1 and then yi = 1 in (16), we obtain 

(17) g (yi,2/1X2 + y2 + 4cfif(l,x2)(i/i - yi)) = y ig ( l , x 2 ) + g ( y i , y 2 ) , 

(18) g (x i , x2 + y2x\ + 6 x ^ ( 1 , y2)c{x\ - x x)) = g(xu x2) + x\g(l, y2) . 

If we set y\ = 1 in (17), we have g{l,x2 + y2) — g(l,x2) + g(l,y2). Therefore 
the function 
(19 ) 1>(x):=g(l,x) 

is additive. Let us consider the cases 

(20) c = 0 , 

(21) c ji 0 . 

If c = 0, then (17) for y2 = 0 and (18) for X2 = 0 become 
(22) g(yi,yix2) = 2/15(1, x 2 ) + $(2/1,0) 

and 

( 2 3 ) g{x!,y2x\) = g(xu0) + x\g{l,y2) , 

respectively. Setting 2/1 = Xi and x2 = y2 in (22), we get 

(24) g(x 1, xi2/2) = xxg{l, y2) + g(xu 0) 

and then, from (23) and (24) 
®i0(l»ife)+0(®i,O) = g{x\,x\y2) = 5(x i ,x i (x?2/2) ) = ®iff( l , x\y2)+g{xu 0) , 
implying x\g{l,y2) = x\g(l, x\y2). By using the additivity of x—>g(l,x) for 
rational x i , we get from the last equality x\g(\,y2) = x f g ( l , y 2 ) and then 

(25 ) g( 1,2/2) = 0 

for any y2 € R . Hence, by (22) with x2 — one has 

(26) g(yi,V2) = g(yi,0) 

for any 2/2 € R . 
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Consider now the case of c ^ 0. Let us write (17), (18) in the forms 
(27) g (y i , y2 + yi(x2 + 4 c < / ( l , x 2 ) ( y x - 1))) = yig(l,x2) + g(y\, y2), 

(28) g (y\,y2 + j/i(x2i/i + 6c</(l,x2)(j/i - 1))) = yfg( 1, x2) + g{yi, ife) • 

Fix x2 arbitrarily. The following cases may occur: 
(a) fir(l,x2) = 0, 
(b) g(l,x2)?0. 

In the case (b) we choose yi ^ 0 such that 
(29) x2 + 4cjf(l,x2)(j/i — 1) = 0 
or 
(30) x2Vl + 6C 5(1, x2)(Vl - 1) = 0 . 

If <7(1, x2) it suffices to set 2/1 = 1 — - — r r — r in order to get (29). 
4 c 4 c 0 ( 1 , x 2 ) 

While if 5(1, x2) = the equality (30) is satisfied for yx = f . Then (27), 
(28) take the forms 

(31) 5(2/1, y2) = 2/15(1, X2) + g(yu y2), 
(32) 5(2/1,2/2) = y\g(l,x2) + 5(2/1,2/2). 

Hence it follows 5(1, x2) = 0 for y\ ^ 0. So, we have obtained a contradiction 
in the case (b). Therefore, <7(1, x2) = 0 Then (27), will take the form 
(33) 5(2/1,2/2+ 2/IX2) = 5(2/1,2/2) • 

Since yi ^ 0 and x2 is an arbitrary real number, we have, by (33) for 
xo -X2 w ' 
(34) 2/2) = 

for any y2 € R. In the case of c = 0 we have obtained (26). Therefore, the 
equality (34) is true for any c. It follows that (16) will have the form 

(35) <7(xiyi,0) = 2/I0(X!,O) + 3xic2(X? - xi)(y? - yi) + xlg(yi, 0 ) . 
Observe that the left hand side of (35) is symmetric with respect to xi, j/i, 
and so the right-hand side must be too. Then we have 

J/ifif(xi,0) + 3 x x c 2 ( x ? - xi)(j/? — 2/1) + x l g ( y u 0 ) = 

Xig{yi,0) + 3 j / ic 2 (y? - yx)(x\ - x x ) + y\g{xx,0) 

Hence for any fixed x\ such that x\ — x\ ^ 0 

5(2/1,0) = - 2/1) + * c y ~ X ' \ y l - 2/1X2/1 - x l } . •2/| »C J \ 1 
Therefore, there exist constants b, d, e such that 

(36) g(yi,0) = byl + dyl + e y i . 
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P u t t i n g ( 3 6 ) into (35 ) , we get 

bx^yf + d x\y\ + e x i j / i = 

= bt/ix? + Ayxx\ + ej/ixi + Zxxc2(x\ - - j/i)+ 

+ d x f y\ + e x f j/x . 

Hence b = + 3 c 2 - e , d = - 3 c 2 , and (36) becomes 

(37) g(yu 0 ) = ( 3 c 2 - e)yf - 3 c 2 y \ + eVl . 

So, we have proved t h e fol lowing l e m m a . 

LEMMA 1. The general solution of the equation (35) is the family of 
functions of the form ( 37 ) , where e is an arbitrary real number. 

B y L e m m a 1 and the equality (34) we get the result al fol lows. 

LEMMA 2. The general solution of the equation (16) is the family 

( 3 8 ) 5(2/1, i/2) = ( 3 c 2 - e)y* - 3 c 2 y \ + eVl , 

where e is any real number. 

THEOREM 1. The general solution of the system (1 ) , (2) in the set of 
fonctions satysfying (12 ) is the set of pairs of functions of the form (15 ) and 
( 3 8 ) , where c , e are arbitrary real numbers. 

So we have shown that the s y s t e m (1) , (2) possesses infinitely m a n y so-
lut ions . Unfortunate ly , the general solut ion of this s y s t e m is still not known. 
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