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ON SOLUTIONS OF SOME SYSTEM
OF FUNCTIONAL EQUATIONS

Let us denote by R the set of real numbers and let Ro = R\ {0}. In
paper [7] (p. 79), the following system of functional equations

(1) F(pnz1, 1172 + y223 + 421F (31, 12)9(21, 72) +
+6229(v1, y2) F(z1, T2) + 3F (31, 12) F2 (21, 22)) =
yl.F(-'E], 32) + m%F(yl’ y2) ’

(2) 9(ne1, 1122 + 1227 + 421 F(31,92)9(21,22) +

+6239(11, y2) F(%1,22) + 3F(y1, ¥2) F(31,72)) =

¥19(21,%2) + 321 F(y1, 12) F(21, 22) + 239(31, 32)
in the class of functions F : Rg Xx R—R, ¢ : Rg X R—=R was considered
and two solutions F(z1,z2) = g(z1,22) = 0 for any 1, z2, and F(z1,22) =
9(21,72) = 3(z1 — 1), where pointed out.

In the present paper we shall show that the system (1), (2) has also other
solutions in certain classes of functions.

The system (1), (2) appeared when some subsemigroups of the group L}
were determined. The definition of L} one can find in [2]. In papers [1]-[16]
the authors dealt with the determination of subgroups and subsemigroups
by means of functional equations.

First let us consider the system (1), (2) in the case of

(3) F(:vl,:cz) x0

for arbitrary z; and z,. Then the equation (2) takes the form
(4) 9(mz1, 122 + y221) = n1g(e1, 22) + 239(v1, v2) -
Hence, for 22 = y2 = 0 we get

(5) 9(z1%1,0) = 119(21,0) + 239(11,0) .
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In view of Theorem 1 in [2], the general solution of (5) is the set of functions
of the form

(6) 9(21,0) = p(ef — 21)

where p is any real number. If we set z; = y; = 1 in (4), we obtain

(7) 9(1, 22+ y2) = 9(1,2) + 9(1,72) -

Therefore, the function

(8) #(z) := g(1,2)

is additive. If we set z; = 1 and y, = 0 in (4), then due to (6) and (8), we
have

9) 9(y1,z211) = n1d(z2) + P (yi’ - ?/1) :

Hence for z; = £ we get

(10) 9(y1,92) = n¢ (y_z) +p (y% - yl) .
n

Putting (10) into (4), we can write

T111¢ g%}') +P[(z1n)® —zap] =
N1 i—f) +p (2} —z1) i+

+23y10 (2) + 23p (1 — 1) -
Therefore, due to the fact that ¢ is an additive function for rational z,, ¥
one has the equality

y16(22) + 216(y2) = y16(22) + 236(y2) -

becoming ¢(y:) (z4 — 23) = 0 for any y» € R. Hence ¢(y2) = 0 and it follows
from (10) that

(11) 9(u,92) =p (¥ -n) -

We have shown that the general solution of (4) is the family of functions
(11), where p € R.

The system (1), (2) has then infinitely many solutions, namely the set
of pairs of the functions

Fy,92) =0, g(y,92) =p (8§ — 1) ,

where p € R.
Let us consider now the system (1), (2) with F' not depending on the
second variable, i.e.,
(12) F((I)l,(vg) = F(.’Bl,O) .
Then (1) reduces to the equation

(13) F(z1%1,0) = 1 F(21,0) + 23 F(3:,0) .
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In virtue of Theorem 1 in [2], the general solution of (13) is

(14) F(z1,0) = c(z} —z1),
where ¢ € R. Hence, under the assumption (12),
(15) F(:cl,a:z) = c(z% - 1:1) .

Substituting (15) into (2), we get
(16) g (fvlyh 1122 + ¥221 + 4219(21, 22)e(y] — i)+
+6239(y1, 12)e(a? — 21) + 3¢ (2] — 21)*(s} - 1)) =
= 419(21,22) + 3z1c?(23 — 21)(4] — 1) + 239(y1,92) -
If we put first z; = 1 and then y; = 1 in (16), we obtain
(17) ¢ (yl,ywz +y2 + 4eg(1, 22)(yf — yl)) = 119(1,22) + 9(y1,92)
(18) g (-’01, 23+ yp27 + 6239(1, ya)e(z] - 931)) = g(z1,22) + 239(1,%2) -

If we set y; = 1in (17), we have g(1,z2+y2) = g(1,z2) + 9(1, y2). Therefore
the function

(19) ¥(z) 1= 9(1,2)
is additive. Let us consider the cases
(20) c=0,
(21) c#0.

If ¢ = 0, then (17) for y, = 0 and (18) for z; = 0 become
(22) 9(y1, 172) = 119(1, z2) + 9(%1,0)
and .
(23) 9(z1,4227) = g(21,0) + z39(1,33) ,
respectively. Setting y; = 21 and z2 = y; in (22), we get
(24) 9(z1,7192) = 219(1, ¥2) + 9(21,0)

and then, from (23) and (24)

239(1,y2)+9(21,0) = g(21,21y2) = 9(21, 21(2392)) = 219(1, 2392)+9(21,0),
implying z3g(1, y2) = z19(1, z3y2). By using the additivity of z—g¢(1,z) for
rational 1, we get from the last equality z3g(1,y2) = z$g(1, y2) and then

(25) 9(1,92) =0
for any y; € R. Hence, by (22) with z; = ¥, one has
(26) 9(y1,92) = 9(31,0)

for any y; € R.
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Consider now the case of ¢ # 0. Let us write (17), (18) in the forms
(27) g(31,92 + n1(2 + 4cg(1, 22)(31 — 1)) = 119(1, 22) + 9(31, 42)
(28) g (31,92 + v3(22v1 + Beg(1,22)(v1 ~ 1))) = 39(1,22) + 9(31, 32) -

Fix z, arbitrarily. The following cases may occur:
(a') 9(1,272) = 07

(b) g(1,22) #0.
In the case (b) we choose y; # 0 such that

(29) z3 +4cg(l,z2)(y1 — 1) =0
or
(30) z2y1 + 6cg(l,22)(31 — 1) = 0.

If g(1,25) # :—z, it suffices to set y; = 1 — in order to get (29).

T2
4cg(1,z2)
While if g(1,z3) = z—z the equality (30) is satisfied for y; = 2. Then (27),
(28) take the forms
(31) 9(¥1,92) = n19(L, z2) + 9(y1,92) »

(32) 9(w1,92) = 979(1,22) + 9(91, 92) -

Hence it follows g(1,z32) = 0 for y; # 0. So, we have obtained a contradiction
in the case (b). Therefore, g(1,z2) = 0 Then (27), will take the form

(33) 9(y1, 92 + 9122) = g(31,%2) -

Since y; # 0 and z7 is an arbitrary real number, we have, by (33) for
T2 = —yﬁ',

(34) 9(¥1,¥2) = 9(%1,0)

for any y2 € R. In the case of ¢ = 0 we have obtained (26). Therefore, the
equality (34) is true for any c. It follows that (16) will have the form

(35)  g(z191,0) = y19(21,0) + 3z1¢%(2? — 21)(y? — 1) + 239(11,0) .
Observe that the left hand side of (35) is symmetric with respect to z1, ¥,
and so the right-hand side must be too. Then we have

19(21,0) + 3z1¢*(2f — 21)(9] — 1) + 239(v1,0) =

219(1,0) + 331 (3f — 11)(af — 1) + ¥79(21,0)
Hence for any fixed z; such that 23 — z; # 0
3c?(z?

= - ) - a0).

_g(wlao) 3 _
g(yl,O)—z?_zl(yl %)+ P

Therefore, there exist constants b, d, e such that
(36) 9(y1,0) = by +dy +ep .
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Putting (36) into (35), we get

bzdy} + dziyf +eaip =
= by} + dyiz? + eyr21 + 3213 (2f — 21)(4f — v+
+bydzd + dadyd + exdys .

Hence b = +3c? — e, d = —3c?, and (36) becomes

(37) 9(y1,0) = (3c* —e)yi — 3¢’y + ey .

So, we have proved the following lemma.

LEMMA 1. The general solution of the equation (35) is the family of
functions of the form (37), where e is an arbitrary real number.

By Lemma 1 and the equality (34) we get the result al follows.
LEMMA 2. The general solution of the equation (16) is the family
(38) 9(31,92) = (3c? — e)yi — 3¢y} + ey ,
where e is any real number.

THEOREM 1. The general solution of the system (1), (2) in the set of
fonctions satysfying (12) is the set of pairs of functions of the form (15) and
(38), where c,e are arbitrary real numbers.

So we have shown that the system (1), (2) possesses infinitely many so-
lutions. Unfortunately, the general solution of this system is still not known.
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