

Ömer Gök

CHARACTERIZATION OF THE DUAL CENTER
OF BARRELLED SPACES

Introduction

It is our aim to prove that the center of the continuous dual X' of a barrelled locally convex Hausdorff space X consists precisely of those operators which are the adjoints of the operators belonging to the center of the barrelled locally convex Hausdorff space X . In [1], Y.A.Abramovich, E.L.Arenson and A.K.Kitover asked the following question. Let $C(K)$ be the set of all real or complex valued continuous functions defined on a compact Hausdorff space K , and let X be a Banach $C(K)$ -module or a Banach lattice. Under what conditions on X we have that $Z^*(X) = Z(X')$? where $Z(X')$ is the dual center of X , $Z^*(X)$ is the adjoint operators belonging to the center of X . In [1], they asserted that a Banach lattice X has an order continuous norm if and only if $Z^*(X) = Z(X')$. Therefore, our approach to this question is new. For unexplained notion and terminology we refer to [2],[6] and [7].

We begin with stating some basic conventions, definitions and notation that will be used throughout our work.

We say that a locally convex space X is a locally convex $C(K)$ -module if the following conditions are satisfied :

- (i) $C(K) \times X \rightarrow X, (a, x) \rightarrow a.x$, is a bilinear mapping,
- (ii) $1.x = x$ for all $x \in X, 1 \in C(K)$,
- (iii) $a.(b.x) = (ab).x$, for $a, b \in C(K), x \in X$,
- (iv) Bilinear mapping (i) is separately continuous.

Let X be a barrelled locally convex Hausdorff space and suppose that X is a locally convex $C(K)$ -module. Then we call it as a barrelled locally convex $C(K)$ -module. By X' , we denote the continuous dual of a barrelled locally convex Hausdorff space X , by X'' we denote the second dual of X , i.e., $(X', \beta(X', X))' = X''$. By $L(X)$ we denote the set of all continuous linear

operators with the identity operator I . Then we introduce the following bilinear mappings

- (A) $X \times X' \rightarrow C(K)', (x, x') \rightarrow (x \cdot x')(a) = x'(a \cdot x),$
- (B) $C(K)'' \times X' \rightarrow X', (a, x') \rightarrow (a \cdot x')x = a(x \cdot x').$

On X' , $C(K)'$ and $C(K)''$ we put $\sigma(X', X)$, $\sigma(C(K)', C(K)''')$ and $\sigma(C(K)'', C(K)')$ -topologies, respectively. It is well-known that $C(K)$ is $\sigma(C(K)'', C(K)')$ dense in $C(K)''$, [2]. Then the bilinear mappings (A) and (B) are separately continuous with respect to respective topologies. Multiplication on $C(K)''$ defined by

$$C(K)'' \times C(K)'' \rightarrow C(K)''', (a, b) \rightarrow (a \cdot b)c = b(a \cdot c)$$

is known as Arens product [3], [4], and [5]. It is well-known that $C(K)$ is an *AM*-space with unit and the second dual $C(K)'''$ of $C(K)$ is a Dedekind complete *AM*-space with unit [5]. Hence, $C(K)'''$ is isomorphic to $C(S)$ with S hyperstonian [6]. We now introduce the following lemma which is familiar from [3].

LEMMA 1. *Let X be a barrelled locally convex $C(K)$ -module. Then the following implications are true.*

- (i) *The mapping $m : C(K) \rightarrow L(X)$ defined by $m(a)x = a \cdot x$ is norm to strong operator continuous unital algebra homomorphism.*
- (ii) *The mapping $m^* : C(K)''' \rightarrow L(X')$ defined by $m^*(a)x' = a \cdot x'$ is $\sigma(C(K)''', C(K)')$ to w^* -operator continuous unital algebra homomorphism.*
- (iii) *$m^*(a) = (m(a))^*$ for all $a \in C(K)$, where $(m(a))^*$ is the adjoint of $m(a)$.*

P r o o f. (ii) Let $\{a_\alpha\}$ be a net in $C(K)'''$ which converges to a in $\sigma(C(K)''', C(K)')$, and let $x \in X$, $x' \in X'$ be fixed but arbitrary elements. By the bilinear mapping (A), we have $x \cdot x' \in C(K)'$. Then $a_\alpha(x \cdot x') \rightarrow a(x \cdot x')$. By the bilinear mapping (B), $(a_\alpha \cdot x')x \rightarrow (a \cdot x')x$, i.e., $m^*(a_\alpha)x' \rightarrow m^*(a)x'$. Since X' is a locally convex $C(S)$ -module, it follows that m^* is a unital algebra homomorphism.

DEFINITION 2. (i) Let X be a barrelled locally convex $C(K)$ -module, and let $x \in X$ be fixed. Then $\Delta(x)$ is defined by

$$\Delta(x) = \{ax : \|a\| \leq 1, a \in C(K)\}$$

where the closure is taken with respect to the given topology in X .

(ii) Let X be a barrelled locally convex $C(K)$ -module and let $Y \subset X$ be a subspace. We say that Y is an ideal in X if for all $x \in Y$, $\Delta(x) \in Y$.

(iii) Let X be a barrelled locally convex $C(K)$ -module. Then the center

$Z(X)$ of X is defined by

$$Z(X) = \{T : X \rightarrow X \mid (\exists \lambda > 0)(\forall x \in X), (Tx \in \lambda \Delta(x))\}.$$

Similar definitions, by using bilinear mapping (B), can be done as follows.

$$\Delta(x') = \{a \cdot x' : \|a\| \leq 1\}$$

where the closure is taken with respect to $\sigma(X', X)$ and $x' \in X'$. The center of X' , $Z(X')$, is defined by

$$Z(X') = \{T : X' \rightarrow X' \mid (\exists \lambda > 0)(\forall x' \in X')(Tx' \in \lambda \Delta(x'))\}$$

By $Z^*(X)$ we denote the adjoints of the operators belonging to $Z(X)$. Similar concepts were introduced in [1].

PROPOSITION 3. *Let X be a barrelled locally convex $C(K)$ -module. Then*

$$(i) \quad \overline{m(C(K))} = Z(X)$$

where the closure is taken with respect to the strong operator topology.

$$(ii) \quad \overline{m^*(C(K))} = \overline{m^*(C(K)''')} = Z(X')$$

where the closure is taken with respect to the w^ -operator topology.*

Our principal result is the following theorem.

THEOREM 4. *Let X be a barrelled locally convex $C(K)$ -module. Then*

$$Z(X') = Z^*(X).$$

P r o o f. Assume that $T' \in Z^*(X)$ for $T \in Z(X) = \overline{m(C(K))}$. There exists a net $\{a_\alpha\}$ in $C(K)$ such that $m(a_\alpha)x \rightarrow Tx$ for all $x \in X$. Then $x'(a_\alpha \cdot x) \rightarrow x'(Tx)$ or $m^*(a_\alpha)x'(x) \rightarrow T'x'(x)$. Since $m^*(a_\alpha)$ belongs to $\overline{m^*(C(K))}$, we have that $T' \in Z(X')$.

For the converse, let $T \in Z(X')$. Then there exists a net $\{a_\alpha\}$ in $C(K)$ such that $m^*(a_\alpha)x' \rightarrow Tx'$ in X' . Hence for all $x \in X$ $(a_\alpha \cdot x')x \rightarrow Tx'(x)$. Since $m(a_\alpha)$ in $\overline{m(C(K))}$, it follows that $T' \in Z(X)$. Therefore, $T \in Z^*(X)$.

References

- [1] Y. A. Abramovich, E. L. Aronson and A.K . Kitover, *Banach $C(K)$ -modules and operators preserving disjointness*, Pitman Res. Notes in Math. Ser., England, 1992.
- [2] C. D. Aliprantis and O. Burkinshaw, *Positive Operators*, Academic Press, London, 1985.
- [3] Ö. Gök, *On a Bade type reflexive algebra*, Ph.D.Thesis, Metu, 1990.
- [4] D. Hadwin and M. Orhon, *Reflexivity and approximate reflexivity for Boolean algebras of projections*, J. Funct. Anal. 87(2) (1989), 348–358.

- [5] C. B. Huijsmans and B. de Pagter, *The order bidual of lattice ordered algebras*, J. Funct. Anal. 59 (1984), 41–64.
- [6] H. H. Schaefer, *Banach Lattices and Positive Operators*, New York, Springer Verlag 1974.
- [7] H. H. Schaefer, *Topological Vector Space*, Mc. Millan 1966.

YILDIZ TECHNICAL UNIVERSITY
FACULTY OF ARTS AND SCIENCES
DEPARTMENT OF MATHEMATICS
80270 ŞİŞLİ, ISTANBUL, TURKEY

Received January 2, 1997.