

A. K. Gaur, Mursaleen

DIFFERENCE SEQUENCE SPACES
DEFINED BY A SEQUENCE OF MODULI

Abstract. The idea of difference sequences was introduced by H. Kizmaz [1]. In this paper we define difference sequence spaces by a sequence of moduli and establish some inclusion relations.

1. Introduction

Let l_∞ , c , and c_0 be the sequence spaces of bounded, convergent and null sequences $x = (x_k)$ respectively. Recently, Kizmaz [1] has defined the following sequence spaces

$$\begin{aligned}l_\infty(\Delta) &:= \{x = (x_k) : \Delta x \in l_\infty\}, \\c(\Delta) &:= \{x = (x_k) : \Delta x \in c\}, \\c_0(\Delta) &:= \{x = (x_k) : \Delta x \in c_0\},\end{aligned}$$

where $\Delta x = (\Delta x_k)_{k=1}^\infty = (x_k - x_{k+1})_{k=1}^\infty$.

DEFINITION 1.1. A function $f : [0, \infty) \rightarrow [0, \infty)$ is called a *modulus* if

- 1° $f(t) = 0$ if and only if $t = 0$,
- 2° $f(t+u) \leq f(t) + f(u)$ for all $t, u \geq 0$,
- 3° f is increasing, and
- 4° f is continuous from the right of 0.

DEFINITION 1.2. Let X be a sequence space. Then we define the sequence space for a modulus f as follows [4], [5]

$$X(f) := \{x = (x_k) : (f(|x_k|)) \in X\}.$$

Research of this was supported by UGC (India) under grant # F. 8-14/94.

Key words and phrases: Sequence spaces define by a sequence of moduli, difference sequence spaces.

1991 *Mathematics Subject Classification:* Primary 40C05, Secondary 40H05.

Recently, Kolk [2, 3] gave an extension of $X(f)$ by considering a sequence of moduli $F = (f_k)$, i.e.

$$X(F) := \{x = (x_k) : (f_k(|x_k|)) \in X\}.$$

Define the following sequence spaces for a sequence of modulus $F = (f_k)$,

$$l_\infty(F, \Delta) := \{x = (x_k) : \Delta x \in l_\infty(F)\},$$

$$c_0(F, \Delta) := \{x = (x_k) : \Delta x \in c_0(F)\}$$

for a sequence of moduli $F = (f_k)$. We determine a necessary and a sufficient condition for the inclusions between $X(\Delta)$ and $Y(F, \Delta)$, where $X, Y \neq l_\infty$ or $X, Y \neq c_0$. We will use the following lemmas by Kolk [2].

LEMMA 1.1. *The condition $\sup_k f_k(t) < \infty$, $t > 0$ holds if and only if there is a point $t_0 > 0$ such that $\sup_k f_k(t_0) < \infty$.*

LEMMA 1.2. *The condition $\inf_k f_k(t) > 0$ holds if and only if there exists a point $t_0 > 0$ such that $\inf_k f_k(t_0) > 0$.*

2. Main results

THEOREM 2.1. *Let $F = (f_k)$ be a sequence of moduli. Then the following statements are equivalent:*

- (1) $l_\infty(\Delta) \subseteq l_\infty(F, \Delta)$;
- (2) $c_0(\Delta) \subseteq l_\infty(F, \Delta)$;
- (3) $\sup_k f_k(t) < \infty$ ($t > 0$).

P r o o f. (1) implies (2) is obvious.

(2) implies (3): Let $c_0(\Delta) \subset l_\infty(F, \Delta)$. Suppose that (3) is not true. Then, by Lemma 1.1, $\sup_k f_k(t) = \infty$ for all $t > 0$, and, therefore, there is an index sequence (k_i) such that

$$(2.1) \quad f_{k_i}(1 + \frac{1}{2} + \cdots + \frac{1}{i-1}) > i \quad \text{for } i = 1, 2, \dots$$

Define $x = (x_k)$ as follows

$$x_k := \begin{cases} 1 + \frac{1}{2} + \cdots + \frac{1}{i-1}, & \text{if } k = k_i, i = 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$$

Then $x \in c_0(\Delta)$ but by (2.1), $x \notin l_\infty(F, \Delta)$ which contradicts (2). Hence (3) must hold.

(3) implies (1): Let (3) be satisfied and $x \in l_\infty(\Delta)$. If we suppose that $x \notin l_\infty(F, \Delta)$, then

$$\sup_k f_k(|\Delta x_k|) = \infty \quad \text{for } \Delta x \in l_\infty.$$

Let $t = |\Delta x|$. Then $\sup_k f_k(t) = \infty$ which contradicts (3). Hence $l_\infty(\Delta) \subseteq l_\infty(F, \Delta)$.

THEOREM 2.2. *The following statements are equivalent for a sequence of moduli $F = (f_k)$:*

- (1) $c_0(F, \Delta) \subseteq c_0(\Delta)$;
- (2) $c_0(F, \Delta) \subseteq l_\infty(\Delta)$;
- (3) $\inf_k f_k(t) > 0$, ($t > 0$).

P r o o f. (1) implies (2) is obvious.

(2) implies (3): Let $c_0(F, \Delta) \subseteq l_\infty(\Delta)$. Suppose that (3) does not hold. Then, by Lemma 1.2,

$$(2.2) \quad \inf_k f_k(t) = 0 \quad (t > 0).$$

For an index sequence (k_i) with

$$f_{k_i}(i^2) < \frac{1}{i} \quad \text{for } i = 1, 2, \dots$$

define the sequence $x = (x_k)$ by

$$x_k := \begin{cases} i^2, & \text{if } k = k_i \text{ for } i = 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$$

By (2.2), $x \in c_0(F, \Delta)$ but $x \notin l_\infty(\Delta)$ which contradicts (2). Hence (3) must hold.

(3) implies (1): Let (3) hold and $x \in c_0(F, \Delta)$, i.e.

$$\lim_k f_k(|\Delta x_k|) = 0.$$

Suppose that $x \notin c_0(\Delta)$. Then for some number $\epsilon_0 > 0$ and index k_0 we have $|\Delta x_k| \geq \epsilon_0$ for $k \geq k_0$. Therefore $f_k(\epsilon_0) \leq f_k(|\Delta x_k|)$ for $k \geq k_0$ and consequently $\lim_k f_k(\epsilon_0) = 0$ which contradicts (3). Hence $c_0(F, \Delta) \subseteq c_0(\Delta)$.

THEOREM 2.3. *The inclusion $l_\infty(F, \Delta) \subseteq c_0(\Delta)$ holds if and only if*

$$(2.3) \quad \lim_k f_k(t) = \infty \quad \text{for } t > 0.$$

P r o o f. Let $l_\infty(F, \Delta) \subseteq c_0(\Delta)$ such that (2.3) does not hold. Then there is a number $t_0 > 0$ and an index sequence (k_i) such that

$$(2.4) \quad f_{k_i}(t_0) \leq M < \infty.$$

Define the sequence $x = (x_k)$ by

$$x_k := \begin{cases} -t_0 i, & \text{if } k = k_i \text{ for } i = 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$$

Thus $x \in l_\infty(F, \Delta)$, by (2.4). But $x \notin c_0(\Delta)$, so that (2.3) must hold for $l_\infty(F, \Delta) \subseteq c_0(\Delta)$. Conversely, let (2.3) hold. If $x \in l_\infty(F, \Delta)$, then

$f_k(|\Delta x_k|) \leq M < \infty$ for $k = 1, 2, \dots$. Suppose that $x \notin c_0(\Delta)$. Then for some number $\epsilon_0 > 0$ and index $k \leq k_0$ we have $|\Delta x_k| \geq \epsilon_0$ for $k \geq k_0$. Therefore $f_k(\epsilon_0) \leq f_k(|\Delta x_k|) \leq M$ for $k \geq k_0$ which contradicts (2.3). Hence $x \in c_0(\Delta)$.

THEOREM 2.4. *The inclusion $l_\infty(\Delta) \subseteq c_0(F, \Delta)$ holds, if*

$$(2.5) \quad \lim_k f_k(t) = 0 \quad \text{for } t > 0.$$

P r o o f. Let $l_\infty(\Delta) \subseteq c_0(F, \Delta)$. Suppose that (2.5) does not hold.

Then for some $t_0 > 0$

$$(2.6) \quad \lim_k f_k(t_0) = l \neq 0.$$

Define $x = (x_k)$ by $x_k = -t_0 k$ for $k = 1, 2, \dots$. Then $x \notin c_0(F, \Delta)$ by (2.6). Hence, (2.5) must hold.

Conversely, suppose that (2.5) holds and $x \in l_\infty$. Then $|\Delta x_k| \leq M < \infty$ for $k = 1, 2, \dots$. Therefore $f_k(|\Delta x_k|) \leq f_k(M)$ for $k = 1, 2, \dots$ and $\lim_k f_k(|\Delta x_k|) \leq \lim_k f_k(M) = 0$, by (2.5). Hence $x \in c_0(F, \Delta)$.

References

- [1] H. Kizmaz, *On certain sequence spaces*, Canad. Math. Bull. 24 (1981), 169–176.
- [2] E. Kolk, *On Strong boundedness and summability with respect to a sequence of moduli*, Acta Comment. Univ. Tartu. 960 (1993), 41–50.
- [3] E. Kolk, *Inclusion theorems for some sequence spaces define by a sequence of moduli*, Acta Comment. Univ. Tartu. 970 (1994), 65–72.
- [4] I. J. Maddox, *Sequence spaces defined by a modulus*, Math. Camb. Phil. Soc. 100 (1986), 161–166.
- [5] W. H. Ruckle, *FK spaces in which the sequence of coordinate vectors is bounded*, Canad. J. Math. 25 (1973) 973–978.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES

DQUESNE UNIVERSITY

440 COLLEGE HALL

PITTSBURGH, PA 15282 U.S.A.

e-mail: gaur@mathcs.duq.edu

DEPARTMENT OF MATHEMATICS

ALIGARH MUSLIM UNIVERSITY

ALIGARH 202002, INDIA

Received February 22, 1996; revised version February 26, 1998.