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SOME VARIATIONAL FORMULAS IN THE CLASS Kn(E) 
A N D THEIR APPLICATIONS 

Introduction 
If for each function F(z) from a class V we succeed in isolating a family 

F(z,e) of functions uniformly difFerentiable with respect to e within the 
domain D as e = 0, then the expansion of the type 

F(z,e) = F(z) + eQ(z) + o(\e\,D) 

is called a variational formula in the class V (written for F). The develop-
ment of a variational formula is usually a difficult and separate task. The 
variational method is one of the fundamental tools in the geometric theory 
of functions of complex variable. This method allows to solve a series of ex-
tremal problems particularly in the theory of univalent functions. Applying 
the variational-geometric method, Lavrent'yev achieved significant results 
in applied problems [5]. The method of solwing extremal problems in the 
class of univalent functions proposed by an American mathematician Schif-
fer leads to differential equations for extremal function [6]. G.M. Goluzin [7] 
suggested his own variational method which led him to the same differential 
equations as that of Schiffer. Goluzin's method often leads to a final solution 
of various extremal problems of geometrical theory of analytical functions. 
Using the automorphism of a unit circle, French mathematican F. Marti 
arrived at variational formula in the class of univalent functions and solwed 
a few significant extremal problems [1]. 

In this work, we show the variational formulas for a class of analytical 
functions. Some extremal problems can be solved applying these variational 
formulas. 

1. Let E be the unit circle, i.e. \z\ < 1. Following [2] denote by Kn(E) a 
class of analytic on E functions F(z) such that the n-devided difference 
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[F(z)-,z0,...,zn\ = 

Y EM 0 

for any pairwise different points ZQ, . . . , zn € E. 
When n = 1 we have a class K\(E) of univalent functions in E whose 

important role as means for realisation of conformal mapping is well known. 
Note, that if F(z) € Kn(E), then F^(z) / 0 for any z £ E (see [2]). Let 
us note the following property of the class Kn(E), n > 1. In order that 
F(z) G Kn(E), for n > 1, it is necessary and sufficient, that functions 

u= 1, ui = z,..., un_i =zn~1, un = F(z) 

form the Chebyshev system in E or that the equation 

a0 + a1z + --- + an-\zn~l + F(z) = 0 

have no more than n roots in E for any oo, a i , . . . , a„_i. 
We will call the analytical function F(z) in E to be n-normed in E, if 

its expansion in power series of z is of the form 
oo 

F(z) = zn + J2a^zn+k~1-
k=2 

The numbers ak,n are called the ^-coefficient of function F(z). Let us intro-
duce a normalization operator Nn[F(z)] for the class Kn(E) according to 
the formula 

v ' x m=0 ' 

Such an operator transforms any function F(z) from the class Kn(E) into an 
7i-normed function which due to the elementary properties of the n-divided 
difference, belongs to the class Kn(E) as well (see [2]). 

Let us denote by Kn(E) the set of all n-normed functions from the class 
Kn(E). When n = 1, the class K\(E) consists of univalent and normed in 
E functions. 

Note that the class Kn(E),n > 1 is compact with respect to uniform 
convergence inside E. 

The properties of functions from the class Kn(E), for n > 1, have been 
studied in [2]-[4] and in other works of the author of this paper. 
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2. Let A be a set of all univalent mappings u> from E into itself having 
form 

It is shown in [3], that if F(z) G K n ( E ) , then 

(1 - ¿ ( O M z ) ) 1 " " ^ ^ ) ) G K n ( E ) , Vw(z) G A. 

Let us introduce an operator Qn [.F(z)J by the formula 

(1) i%[F(z)] = Nn[( 1 - « ( O M » ) ) 1 " " ^ ) ) ] . 

By virtue of the condition 

y ( l - a > ( 0 )u{z)f-»F{u>{z)) 
^ t 0, Vz G E, (see [3J) 

we conclude that the operator (1) is for any u G E defined on Kn{E). When 
n = 1 we have an operator 

( 2 ) ^ [ F { x ) ] - ( 1 - Id w o 

frequently used in the theory of univalent in E functions. From the elemen-
tary properties of the devided difference it easily follows. 

LEMMA 1. If F{z) G K n ( E ) , then the function 

F ( z , ( ) = W [ F ( z ) ] e K n ( E ) , VCG£. 

Let us mention that the operator (2) was applied by F. Marti [1] to 
deduce one of his variational formulas in the class Ki(E) of univalent and 
normed in E functions. 

T H E O R E M 1 ( F . Marti). If the function 

oo 
F{z) = z+ Y^ak>lzk e KX(E), 

k- 2 

then the function F(z; £ ) G Ki(E) for any ( G E, and a formula 

F(Z; C) = F(z) + ( F ' ( Z ) - 1 - 2a 2 ( 1 F ( * ) ) C - Z2F'(Z)( + 0(|FL) 

holds for sufficiently small ( . 

3. Let us define a variational formula in the class Kn(E) similar to that 
of Marti. The following theorem holds: 
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THEOREM 2. If the function 

F{z) = zn + j^ 0'k,nZn+k~1 G Kn(E), 
k=2 

then the function F(z; £) G Kn(E) for any £ G E, and a formula 

(3) F(z, 0 = F(z) + (F'(z) - (n + 1 )a2,nF(z) - n z ) ( 
—(z2F'(z) — (n — l)zF(z))( + o(|C|) 

holds for sufficiently small (. 

P r o o f . The fact that the function F(z; Q G Kn(E) for any fixed C G E 
follows from Lemma 1. Let us expand F(z; ( ) into power series of 2 

00 

(4) F(z; 0 = zn + £aktn(()zn+k-1, 
k=2 

where (see [4]) 

(5) a k i n ( 0 = 

l V » ( k - l ) l _ 1 >|2\fc—1—to7th (Q 
^ ' m\(k - 1 - m)! ^ (n + k - 1 - m)!/*»)«)' 

Obviously 

(6) F(z\ 0) = F(z), o*lB(0) = ofc,n. 

Let C = xe17,—1 < x < l , 0 < 7 < 2w. The function F(^z-,xen^j is analytic 
for any fixed 7 and z at the point x = 0. Therefore, taking into account (6), 
we may write 

(7) F(z;xeii) = F(z) + Q(z)x + o(|s|) 

where 

dF(z; xe^) 
Q(z) = dx x=0 

Furthermore, the k-coefficient (^„(xe ' 7 ) is an analytic function for any fixed 
7 at the point x = 0. From (5), one can easily to obtain an equality 
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(8N dakin(xe'i) 

dx 

zn+k-l 

x=0 

x=0 

(n + k)ak+i,ne17 - (n + 1 )akina2ine'y + (k - l )a f c_i i ne~'7 . 

Let us calculate Q(z). Using (4) and (8) we obtain 

n ( x _ daktn(xe 

Q { ) ~ h ** 
oo 

= z V + AJafc+i,«^-1 - " l ) « * - i , n * * _ 1 

k=2 fc=2 
oo 

k=2 

= - e i 7 nz n _ 1 - e " ^ 2 ^ ) - (n - l ) * F ( z ) ) 

- (n + l j a j . n c ' 7 ^ ) . 

Multiplying by x and puting it into (7) we see that the function F(z\ ( ) 

has an expression of the form (3) for all sufficiently small values of If n — 1 
we obtain the Marti variational formula again. 

Along with the variation of the function F(z) 6 Kn(E) we show the 
variation of its ^-coefficient. The following theorem holds: 

THEOREM 3. Let the function F(z) = zn + ££L2 " M 2 " * * - 1 € Kn(E). 

Then the k-coefficient afc,n(C) °f the function F(z; £) satisfies the formula 

(9) O'k.n ( 0 — Qk.n )C-(*-l)afc_ l iB<+o(|CI) 

for all sufficiently small value of ( . 

P r o o f . Let £ = xen,—l < £ < 1 , 0 < 7 < 27r. From (5) we see that the 
function akf7i(xe%1) is analytic at x = 0 for any fixed 7 . Therefore 

( m , dakìn(xe^) 
ak,„{xe 1) = akiTl + 

dx 
X + o(|x|) 

x=0 

for any |x| < p, where p is sufficiently small. Using (8), we obtain (9). 

We will show another simple variational formula in the class Kn(E). 

THEOREM 4 . If F{z) E Kn(E), then the function e~in'1F{e^z) € Kn{E) 

for any real 7 and we have the formula 

( 1 0 ) e ~ i n i F ^ z ) = F(z) + i{zF'{z) - nF(z))-y + o(| 7|). 
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P r o o f . The fact that the function e , n 7 F ( e t ' 1 z ) , for any real 7 belongs 
to the class Kn(E) does not raise any doubts. Formula (10) can be easily 
obtained from the expansion of this function into a power series of 2. 

4. Let us solve a few extremal problems applying formulas (3), (9) and 
(10) 

T H E O R E M 5. Let functions 

00 
F m ( z ) = zn + 5>(iS»n+lk"1> m = 1 , 2 

k=2 

belong to the class K n ( E ) , n > 1 and at any point z 0 / 0 their values are 

such that 

|Fi(*o)| = max |F(z0) | , 1 ^ ( ^ ) 1 = min |F(z0) | . 
F(z)eKn(E) F(z)€Kn(E) 

Then 

(11) ( l - |^o | 2 ) i ? , 4(^o)+((«- l )^o-(n+l)4 m n ) )^m(^o) = m = 1 ,2. 

P r o o f . We will prove the theorem for the case when m = 1. The case 
m = 2 is treated in a similar fashion. The existence of the function F\(z) 
satisfying the condition of the theorem is provided by the compactness of the 
class K n ( E ) , n > 1. According to Theorem 4, the function e _ m 7 . F (e , 7 z ) £ 
K n ( E ) , n > 1 for any real 7 . Using the variational formula (10) we obtain 

|*i(«>) + i(zoF[(z0) - n F 1 ( z 0 ) h + o(|7|)|2 < |Fi(z0)|2. 

Hence for any real 7 we have 

Re ^ ( z o X z o F ^ z o ) - nF1(z0))7} + Re {o(|7 | )} < 0. 

But 

Re{iFx{zQ){zQF[{zQ) - nF^zo))} = 0 , 

hence 

( 1 2 ) Im{z0F1(z0)F{(z0)} = 0. 

Since Fi(z) e K n ( E ) , n > 1, then F ( z ; ( ) £ K n ( E ) , n > 1 for any C € E 

and therefore, taking into account the property of the function F \ ( z ) , we 
have 



Some variational formulas 271 

Hence, using the variational formula (3) we obtain the inequality 

m*o) + (F{(z0) - nzr1 - (n + 1 )o£i*i(«>))C 
- (z2F{(z0) - (n - l)z0F1(z0))C + o(|C|))|2 < |*i(*o)|2 

which holds for sufficiently small values of (. The last inequality may be 
replaced by the inequality 

(13) ReiClF^zoXFUzo) - nzJ"1 - ( n + l ) o g f x ( z b ) ) 

- (F1(Z0)(Z2
0F[(Z0) - (n - l ) M ( ^ o ) ) ) ] } + ¿2e{o(|C|)} < 0, 

which holds for any ( under the condition that |£| < p, where p is sufficiently 
small. From (13) we conclude that 

(14) A(*>)(•?!(*>) - - (n + 

~(Fi(zo)(z2
0Fi(zo) - (n - l)zoA(^o))) = 0. 

Using (12) we can write down the relation 

Z2
0F{(Z0)F1(Z0) = \Z0\2F[(Z0)Fx{ZQ), 

which transforms equality (14) into (11). 

5. Let us consider extremal problems related to the coefficients of func-
tions from Kn(E), n > 1. 

THEOREM 6. Let the function 

F(z) = zn + • • • + ak.hnzn+k-2 + ak<nzn+k~1 + ak+1>nzn+k + ••• 

belongs to the class Kn(E),n > 1 and its k-coefficient akiTl, k > 2 has a 
property 

| j*n+fc-i) (0 ) | 
afc,n = max - — — — 

F(g)ex.(E) (n + k-1)! 

Then the equality 

(15) ak,n{{n + k)ak+i,n - (» + l)a*,na2,n) ~ (k - l)ak>nak_ltn - 0 

holds. 

P r o o f . The existence of the function F(z) G Kn(E),n > 1 whose k-
coefficient of expansion assumes the maximum in absolute value, is ensured 
by the compactness of the class Kn(E), n > 1. Since F(z) 6 Kn(E),n > 1 
then the function F(z- Q = zn H h akiTl(() -\ belongs to Kn(E), n > 1 
as well for any ( € E. Applying the property of the coefficient akiTl of the 
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function F(z) we have 

K „ ( O I < K n l , V C € £ . 

Hence, using the variational formula (9), we obtain the inequality 

Iôfc.n + ((n + k)ak+i,n - (n + 1 )âktna2,n)( - (k - l)afc_i,„C + o(|C|))| 
< |âfe,n|, 

which holds for any sufficiently small £. The latter inequality can be replaced 
by 

(16) Re{[âk,n{{n + l)ajt+i,„ - (n + l)âAina2,„) 
- ( k - l)â*,nâfc_lin]C} + ^e{o(|Cl)} < 0, 

which holds for any £ under the condition |£| < p where p is sufficiently 
small. Since the argument of complex number £ can be chosen arbitrarily, 
then (15) easily follows from (16). 

Two following theorems can be proved in a similar way 

T H E O R E M 7 . Let the functions 

Fm(z) = *« + ..• + at{nzn+k~2 + ag*"**-1 + + • • • 

m = 1,2 belong to the class Kn(E),n > 1 and their k-coefficient = 
1,2 have the properties 

m F(n+fc-l)(0) 
Reà\' = max Re- 777, fc,n F(z)eKn(E) (n + fc-1)!' 

o »(2) . p **"+*-*>(0) Real ' = min Re-. 777. 
F(z)eKn(E) (n + k- 1)! 

Then the following equalities 

.(m) (rl + k)a^\tn-(k-l)â[%n 
" M " , , n (m) ' m = 1 ' 2 

(•n + l)û2in 

hold. 

We denote by the class of functions from Kn{E) whose all ex-
pansion coefficients are real numbers 
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T H E O R E M 8 . Let the function 

F(z) = *» + ... + ak-ltnzn+k~2 + ak,nzn+k~l + ak+1<nzn+k + • • • 

belongs to the class n > 1 and its k-coefficient akin possess the prop-
erty 

| f O * * - i ) ( 0 ) | 
|o fc,B | = m a x - j — — — - r j - . 

Then the equality 

_ (n + k)ak+i,n ~ (k - l)ak-i,n 

a k ' n ~ ( » + l ) « a , n 

holds. 

C O R O L L A R Y 1. Let the function 

F(z) = zn + a2inzn+1+a3,nzn+2 + ---

belongs to the class Kn(E), n > 1 and its second coefficient ¿2,n has the 
property 

! F ( n + 1 ) ( 0 ) | 

F(z)£Kn(E) 

Then 

(n + l ) a j > n + l 
fl3'n = ii+~2 • 
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