

E. Kir'yatskis

**SOME VARIATIONAL FORMULAS IN THE CLASS $\tilde{K}_n(E)$
AND THEIR APPLICATIONS**

Introduction

If for each function $F(z)$ from a class V we succeed in isolating a family $F(z, \varepsilon)$ of functions uniformly differentiable with respect to ε within the domain D as $\varepsilon = 0$, then the expansion of the type

$$F(z, \varepsilon) = F(z) + \varepsilon Q(z) + o(|\varepsilon|, D)$$

is called a variational formula in the class V (written for F). The development of a variational formula is usually a difficult and separate task. The variational method is one of the fundamental tools in the geometric theory of functions of complex variable. This method allows to solve a series of extremal problems particularly in the theory of univalent functions. Applying the variational-geometric method, Lavrent'yev achieved significant results in applied problems [5]. The method of solwing extremal problems in the class of univalent functions proposed by an American mathematician Schiffer leads to differential equations for extremal function [6]. G.M. Goluzin [7] suggested his own variational method which led him to the same differential equations as that of Schiffer. Goluzin's method often leads to a final solution of various extremal problems of geometrical theory of analytical functions. Using the automorphism of a unit circle, French mathematician F. Marti arrived at variational formula in the class of univalent functions and solwed a few significant extremal problems [1].

In this work, we show the variational formulas for a class of analytical functions. Some extremal problems can be solved applying these variational formulas.

1. Let E be the unit circle, i.e. $|z| < 1$. Following [2] denote by $K_n(E)$ a class of analytic on E functions $F(z)$ such that the n -devided difference

$$[F(z); z_0, \dots, z_n] = \sum_{m=0}^n \frac{F(z_m)}{(z_m - z_0) \dots (z_m - z_{m-1})(z_m - z_{m+1}) \dots (z_m - z_n)} \neq 0$$

for any pairwise different points $z_0, \dots, z_n \in E$.

When $n = 1$ we have a class $K_1(E)$ of univalent functions in E whose important role as means for realisation of conformal mapping is well known. Note, that if $F(z) \in K_n(E)$, then $F^{(n)}(z) \neq 0$ for any $z \in E$ (see [2]). Let us note the following property of the class $K_n(E)$, $n \geq 1$. In order that $F(z) \in K_n(E)$, for $n \geq 1$, it is necessary and sufficient, that functions

$$u \equiv 1, \quad u_1 = z, \dots, \quad u_{n-1} = z^{n-1}, \quad u_n = F(z)$$

form the Chebyshev system in E or that the equation

$$a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + F(z) = 0$$

have no more than n roots in E for any a_0, a_1, \dots, a_{n-1} .

We will call the analytical function $F(z)$ in E to be n -normed in E , if its expansion in power series of z is of the form

$$F(z) = z^n + \sum_{k=2}^{\infty} a_{k,n} z^{n+k-1}.$$

The numbers $a_{k,n}$ are called the k -coefficient of function $F(z)$. Let us introduce a normalization operator $N_n[F(z)]$ for the class $K_n(E)$ according to the formula

$$N_n[F(z)] = \frac{n!}{F^{(n)}(0)} \left(F(z) - \sum_{m=0}^{n-1} \frac{1}{m!} F^{(m)}(0) z^m \right).$$

Such an operator transforms any function $F(z)$ from the class $K_n(E)$ into an n -normed function which due to the elementary properties of the n -divided difference, belongs to the class $K_n(E)$ as well (see [2]).

Let us denote by $\tilde{K}_n(E)$ the set of all n -normed functions from the class $K_n(E)$. When $n = 1$, the class $\tilde{K}_1(E)$ consists of univalent and normed in E functions.

Note that the class $\tilde{K}_n(E)$, $n \geq 1$ is compact with respect to uniform convergence inside E .

The properties of functions from the class $\tilde{K}_n(E)$, for $n \geq 1$, have been studied in [2]–[4] and in other works of the author of this paper.

2. Let Λ be a set of all univalent mappings ω from E into itself having form

$$\omega = \omega(z) = \frac{z + \zeta}{1 + \bar{\zeta}z}, \quad \zeta \in E.$$

It is shown in [3], that if $F(z) \in K_n(E)$, then

$$(1 - \bar{\omega}(0)\omega(z))^{1-n} F(\omega(z)) \in K_n(E), \quad \forall \omega(z) \in \Lambda.$$

Let us introduce an operator $\Omega_n[F(z)]$ by the formula

$$(1) \quad \Omega_n^\omega[F(z)] = N_n[(1 - \bar{\omega}(0)\omega(z))^{1-n} F(\omega(z))].$$

By virtue of the condition

$$\frac{\partial^n (1 - \bar{\omega}(0)\omega(z))^{1-n} F(\omega(z))}{\partial z^n} \neq 0, \quad \forall z \in E, \quad (\text{see [3]})$$

we conclude that the operator (1) is for any $\omega \in E$ defined on $K_n(E)$. When $n = 1$ we have an operator

$$(2) \quad \Omega_1^\omega[F(z)] = \frac{F(\omega(z)) - F(\zeta)}{(1 - |\zeta|^2)F'(\zeta)}$$

frequently used in the theory of univalent in E functions. From the elementary properties of the devided difference it easily follows.

LEMMA 1. If $F(z) \in \tilde{K}_n(E)$, then the function

$$F(z, \zeta) = \Omega_n^\omega[F(z)] \in \tilde{K}_n(E), \quad \forall \zeta \in E.$$

Let us mention that the operator (2) was applied by F. Marti [1] to deduce one of his variational formulas in the class $\tilde{K}_1(E)$ of univalent and normed in E functions.

THEOREM 1 (F. Marti). If the function

$$F(z) = z + \sum_{k=2}^{\infty} a_{k,1} z^k \in \tilde{K}_1(E),$$

then the function $F(z; \zeta) \in \tilde{K}_1(E)$ for any $\zeta \in E$, and a formula

$$F(z; \zeta) = F(z) + (F'(z) - 1 - 2a_{2,1}F(z))\zeta - z^2 F'(z)\bar{\zeta} + o(|\zeta|)$$

holds for sufficiently small ζ .

3. Let us define a variational formula in the class $\tilde{K}_n(E)$ similar to that of Marti. The following theorem holds:

THEOREM 2. *If the function*

$$F(z) = z^n + \sum_{k=2}^{\infty} a_{k,n} z^{n+k-1} \in \tilde{K}_n(E),$$

then the function $F(z; \zeta) \in \tilde{K}_n(E)$ for any $\zeta \in E$, and a formula

$$(3) \quad F(z, \zeta) = F(z) + (F'(z) - (n+1)a_{2,n}F(z) - nz^{n-1})\zeta - (z^2 F'(z) - (n-1)zF(z))\bar{\zeta} + o(|\zeta|)$$

holds for sufficiently small ζ .

P r o o f. The fact that the function $F(z; \zeta) \in \tilde{K}_n(E)$ for any fixed $\zeta \in E$ follows from Lemma 1. Let us expand $F(z; \zeta)$ into power series of z

$$(4) \quad F(z; \zeta) = z^n + \sum_{k=2}^{\infty} a_{k,n}(\zeta) z^{n+k-1},$$

where (see [4])

$$(5) \quad a_{k,n}(\zeta) = \sum_{m=0}^{k-1} (-1)^m \frac{(k-1)!}{m!(k-1-m)!} (1 - |\zeta|^2)^{k-1-m} \bar{\zeta}^m \frac{n! F^{(n+k-1-m)}(\zeta)}{(n+k-1-m)! F^{(n)}(\zeta)}.$$

Obviously

$$(6) \quad F(z; 0) \equiv F(z), \quad a_{k,n}(0) = a_{k,n}.$$

Let $\zeta = xe^{i\gamma}$, $-1 < x < 1$, $0 \leq \gamma < 2\pi$. The function $F(z; xe^{i\gamma})$ is analytic for any fixed γ and z at the point $x = 0$. Therefore, taking into account (6), we may write

$$(7) \quad F(z; xe^{i\gamma}) = F(z) + Q(z)x + o(|x|)$$

where

$$Q(z) = \frac{\partial F(z; xe^{i\gamma})}{\partial x} \Big|_{x=0}.$$

Furthermore, the k -coefficient $a_{k,n}(xe^{i\gamma})$ is an analytic function for any fixed γ at the point $x = 0$. From (5), one can easily obtain an equality

$$(8) \quad \left. \frac{\partial a_{k,n}(xe^{i\gamma})}{\partial x} \right|_{x=0} = (n+k)a_{k+1,n}e^{i\gamma} - (n+1)a_{k,n}a_{2,n}e^{i\gamma} + (k-1)a_{k-1,n}e^{-i\gamma}.$$

Let us calculate $Q(z)$. Using (4) and (8) we obtain

$$\begin{aligned} Q(z) &= \sum_{k=2}^{\infty} \left. \frac{\partial a_{k,n}(xe^{i\gamma})}{\partial x} \right|_{x=0} z^{n+k-1} \\ &= z^n e^{i\gamma} \sum_{k=2}^{\infty} (n+k)a_{k+1,n}z^{k-1} - e^{-i\gamma} z^n \sum_{k=2}^{\infty} (k-1)a_{k-1,n}z^{k-1} \\ &\quad - z^n (n+1)a_{2,n}e^{i\gamma} \sum_{k=2}^{\infty} a_{k,n}z^{k-1} \\ &= e^{i\gamma} F'(z) - e^{i\gamma} nz^{n-1} - e^{-i\gamma} (z^2 F'(z) - (n-1)zF(z)) \\ &\quad - (n+1)a_{2,n}e^{i\gamma} F(z). \end{aligned}$$

Multiplying $Q(z)$ by x and putting it into (7) we see that the function $F(z; \zeta)$ has an expression of the form (3) for all sufficiently small values of ζ . If $n = 1$ we obtain the Marti variational formula again.

Along with the variation of the function $F(z) \in \tilde{K}_n(E)$ we show the variation of its k -coefficient. The following theorem holds:

THEOREM 3. *Let the function $F(z) = z^n + \sum_{k=2}^{\infty} a_{k,n}z^{n+k-1} \in \tilde{K}_n(E)$. Then the k -coefficient $a_{k,n}(\zeta)$ of the function $F(z; \zeta)$ satisfies the formula*

$$(9) \quad a_{k,n}(\zeta) = a_{k,n} + ((n+k)a_{k+1,n} - (n+1)a_{k,n}a_{2,n})\zeta - (k-1)a_{k-1,n}\bar{\zeta} + o(|\zeta|)$$

for all sufficiently small value of ζ .

Proof. Let $\zeta = xe^{i\gamma}$, $-1 < x < 1$, $0 \leq \gamma < 2\pi$. From (5) we see that the function $a_{k,n}(xe^{i\gamma})$ is analytic at $x = 0$ for any fixed γ . Therefore

$$a_{k,n}(xe^{i\gamma}) = a_{k,n} + \left. \frac{\partial a_{k,n}(xe^{i\gamma})}{\partial x} \right|_{x=0} x + o(|x|)$$

for any $|x| < p$, where p is sufficiently small. Using (8), we obtain (9).

We will show another simple variational formula in the class $\tilde{K}_n(E)$.

THEOREM 4. *If $F(z) \in \tilde{K}_n(E)$, then the function $e^{-in\gamma} F(e^{i\gamma} z) \in \tilde{K}_n(E)$ for any real γ and we have the formula*

$$(10) \quad e^{-in\gamma} F(e^{i\gamma} z) = F(z) + i(zF'(z) - nF(z))\gamma + o(|\gamma|).$$

P r o o f. The fact that the function $e^{-in\gamma} F(e^{i\gamma} z)$, for any real γ belongs to the class $\tilde{K}_n(E)$ does not raise any doubts. Formula (10) can be easily obtained from the expansion of this function into a power series of z .

4. Let us solve a few extremal problems applying formulas (3), (9) and (10)

THEOREM 5. *Let functions*

$$F_m(z) = z^n + \sum_{k=2}^{\infty} a_{k,n}^{(m)} z^{n+k-1}, \quad m = 1, 2$$

belong to the class $\tilde{K}_n(E)$, $n \geq 1$ and at any point $z_0 \neq 0$ their values are such that

$$|F_1(z_0)| = \max_{F(z) \in \tilde{K}_n(E)} |F(z_0)|, \quad |F_2(z_0)| = \min_{F(z) \in \tilde{K}_n(E)} |F(z_0)|.$$

Then

$$(11) \quad (1 - |z_0|^2) F'_m(z_0) + ((n-1)\bar{z}_0 - (n+1)a_{2,n}^{(m)}) F_m(z_0) = n z_0^{n-1}, \quad m = 1, 2.$$

P r o o f. We will prove the theorem for the case when $m = 1$. The case $m = 2$ is treated in a similar fashion. The existence of the function $F_1(z)$ satisfying the condition of the theorem is provided by the compactness of the class $\tilde{K}_n(E)$, $n \geq 1$. According to Theorem 4, the function $e^{-in\gamma} F(e^{i\gamma} z) \in \tilde{K}_n(E)$, $n \geq 1$ for any real γ . Using the variational formula (10) we obtain

$$|F_1(z_0) + i(z_0 F'_1(z_0) - n F_1(z_0))\gamma + o(|\gamma|)|^2 \leq |F_1(z_0)|^2.$$

Hence for any real γ we have

$$Re \{ i \bar{F}_1(z_0) (z_0 F'_1(z_0) - n F_1(z_0)) \gamma \} + Re \{ o(|\gamma|) \} \leq 0.$$

But

$$Re \{ i \bar{F}_1(z_0) (z_0 F'_1(z_0) - n F_1(z_0)) \} = 0,$$

hence

$$(12) \quad Im \{ z_0 \bar{F}_1(z_0) F'_1(z_0) \} = 0.$$

Since $F_1(z) \in \tilde{K}_n(E)$, $n \geq 1$, then $F(z; \zeta) \in \tilde{K}_n(E)$, $n \geq 1$ for any $\zeta \in E$ and therefore, taking into account the property of the function $F_1(z)$, we have

$$|F_1(z_0; \zeta)| \leq F_1(z_0), \quad \forall \zeta \in E.$$

Hence, using the variational formula (3) we obtain the inequality

$$|F_1(z_0) + (F'_1(z_0) - nz_0^{n-1} - (n+1)a_{2,n}^{(1)}F_1(z_0))\zeta - (z_0^2F'_1(z_0) - (n-1)z_0F_1(z_0))\bar{\zeta} + o(|\zeta|)|^2 \leq |F_1(z_0)|^2$$

which holds for sufficiently small values of ζ . The last inequality may be replaced by the inequality

$$(13) \quad \operatorname{Re}\{\zeta[\bar{F}_1(z_0)(F'_1(z_0) - nz_0^{n-1} - (n+1)a_{2,n}^{(1)}F_1(z_0)) - (F_1(z_0)(\bar{z}_0^2\bar{F}'_1(z_0) - (n-1)\bar{z}_0\bar{F}_1(z_0)))]\} + \operatorname{Re}\{o(|\zeta|)\} \leq 0,$$

which holds for any ζ under the condition that $|\zeta| < p$, where p is sufficiently small. From (13) we conclude that

$$(14) \quad \bar{F}_1(z_0)(F'_1(z_0) - nz_0^{n-1} - (n+1)a_{2,n}^{(1)}F_1(z_0)) - (F_1(z_0)(\bar{z}_0^2\bar{F}'_1(z_0) - (n-1)\bar{z}_0\bar{F}_1(z_0))) = 0.$$

Using (12) we can write down the relation

$$\bar{z}_0^2\bar{F}'_1(z_0)F_1(z_0) = |z_0|^2F'_1(z_0)\bar{F}_1(z_0),$$

which transforms equality (14) into (11).

5. Let us consider extremal problems related to the coefficients of functions from $\tilde{K}_n(E)$, $n \geq 1$.

THEOREM 6. *Let the function*

$$F(z) = z^n + \cdots + a_{k-1,n}z^{n+k-2} + \hat{a}_{k,n}z^{n+k-1} + a_{k+1,n}z^{n+k} + \cdots$$

belongs to the class $\tilde{K}_n(E)$, $n \geq 1$ and its k -coefficient $\hat{a}_{k,n}$, $k \geq 2$ has a property

$$|\hat{a}_{k,n}| = \max_{F(z) \in \tilde{K}_n(E)} \frac{|F^{(n+k-1)}(0)|}{(n+k-1)!}.$$

Then the equality

$$(15) \quad \bar{a}_{k,n}((n+k)a_{k+1,n} - (n+1)\hat{a}_{k,n}a_{2,n}) - (k-1)\hat{a}_{k,n}\bar{a}_{k-1,n} = 0$$

holds.

Proof. The existence of the function $F(z) \in \tilde{K}_n(E)$, $n \geq 1$ whose k -coefficient of expansion assumes the maximum in absolute value, is ensured by the compactness of the class $\tilde{K}_n(E)$, $n \geq 1$. Since $F(z) \in \tilde{K}_n(E)$, $n \geq 1$ then the function $F(z; \zeta) = z^n + \cdots + a_{k,n}(\zeta) + \cdots$ belongs to $\tilde{K}_n(E)$, $n \geq 1$ as well for any $\zeta \in E$. Applying the property of the coefficient $\hat{a}_{k,n}$ of the

function $F(z)$ we have

$$|a_{k,n}(\zeta)| \leq |\hat{a}_{k,n}|, \quad \forall \zeta \in E.$$

Hence, using the variational formula (9), we obtain the inequality

$$\begin{aligned} |\hat{a}_{k,n} + ((n+k)a_{k+1,n} - (n+1)\hat{a}_{k,n}a_{2,n})\zeta - (k-1)a_{k-1,n}\bar{\zeta} + o(|\zeta|))| \\ \leq |\hat{a}_{k,n}|, \end{aligned}$$

which holds for any sufficiently small ζ . The latter inequality can be replaced by

$$(16) \quad \begin{aligned} Re\{[\hat{a}_{k,n}((n+1)a_{k+1,n} - (n+1)\hat{a}_{k,n}a_{2,n}) \\ - (k-1)\hat{a}_{k,n}\bar{a}_{k-1,n}]\zeta\} + Re\{o(|\zeta|)\} \leq 0, \end{aligned}$$

which holds for any ζ under the condition $|\zeta| < p$ where p is sufficiently small. Since the argument of complex number ζ can be chosen arbitrarily, then (15) easily follows from (16).

Two following theorems can be proved in a similar way

THEOREM 7. *Let the functions*

$$F_m(z) = z^n + \cdots + a_{k-1,n}^{(m)} z^{n+k-2} + \hat{a}_{k,n}^{(m)} z^{n+k-1} + a_{k+1,n}^{(m)} z^{n+k} + \cdots$$

$m = 1, 2$ belong to the class $\tilde{K}_n(E)$, $n \geq 1$ and their k -coefficient $\hat{a}_{k,n}^{(m)}$, $m = 1, 2$ have the properties

$$\begin{aligned} Re\hat{a}_{k,n}^{(1)} &= \max_{F(z) \in \tilde{K}_n(E)} Re \frac{F^{(n+k-1)}(0)}{(n+k-1)!}, \\ Re\hat{a}_{k,n}^{(2)} &= \min_{F(z) \in \tilde{K}_n(E)} Re \frac{F^{(n+k-1)}(0)}{(n+k-1)!}. \end{aligned}$$

Then the following equalities

$$\hat{a}_{k,n}^{(m)} = \frac{(n+k)a_{k+1,n}^{(m)} - (k-1)\bar{a}_{k-1,n}^{(m)}}{(n+1)a_{2,n}^{(m)}}, \quad m = 1, 2$$

hold.

We denote by $\tilde{K}_n^r(E)$ the class of functions from $\tilde{K}_n(E)$ whose all expansion coefficients are real numbers

THEOREM 8. *Let the function*

$$F(z) = z^n + \cdots + a_{k-1,n}z^{n+k-2} + \hat{a}_{k,n}z^{n+k-1} + a_{k+1,n}z^{n+k} + \cdots$$

belongs to the class $\tilde{K}_n^r(E)$, $n \geq 1$ and its k -coefficient $\hat{a}_{k,n}$ possess the property

$$|\hat{a}_{k,n}| = \max_{F(z) \in \tilde{K}_n^r(E)} \frac{|F^{(n+k-1)}(0)|}{(n+k-1)!}.$$

Then the equality

$$\hat{a}_{k,n} = \frac{(n+k)a_{k+1,n} - (k-1)a_{k-1,n}}{(n+1)a_{2,n}}$$

holds.

COROLLARY 1. *Let the function*

$$F(z) = z^n + \hat{a}_{2,n}z^{n+1} + a_{3,n}z^{n+2} + \cdots$$

belongs to the class $\tilde{K}_n(E)$, $n \geq 1$ and its second coefficient $\hat{a}_{2,n}$ has the property

$$|\hat{a}_{2,n}| = \max_{F(z) \in \tilde{K}_n(E)} \frac{|F^{(n+1)}(0)|}{(n+1)!}.$$

Then

$$a_{3,n} = \frac{(n+1)\hat{a}_{2,n}^2 + 1}{n+2}.$$

References

- [1] F. Marti, *Sur le module des coefficients de Mac Laurin d'une function univalente*, C.R., (1934), 1563–1571.
- [2] E. Kir'yatskis, *Über funktionen, die keine nullgleiche dividierte differenz n -ter orrdnung besitzen*, Lieth. Math. J., 1(1-2) (1961), 109–115 (in Russian).
- [3] E. Kir'yatskis, *Über funktionen, die keine nullgleiche dividierte differenz n -ter orrdnung besitzen*, Lüth. Math. J., 3(1) (1963), 157–168 (in Russian).
- [4] E. Kir'yatskis, *On some operators connected with the fractional-linear transitions of the unit circle*, Lieth. Math. J., 16(1) (1976), 111–121.
- [5] M. Lavrent'ev and B. Shabat, *Methods of the theory of functions of complex variable*, Gosizdat, Moscow, 1958, p. 671 (in Russian).
- [6] M. Schiffer, *A method of variation with in the family of simple functions*, Proc. London Math. Soc., 44 (1938), 432–449.

- [7] G. Goluzin, *Geometric theory of functions of a complex variable*, Nauka, Moscow (1968), p. 627 (in Russian).

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY
11 Saulėtekio ave.
2054 VILNIUS, LITHUANIA
E-MAIL eduazdk@pub.osf.lt

Received November 27, 1996; revised version January 16, 1997.