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SOME VARIATIONAL FORMULAS IN THE CLASS I?n(E)
AND THEIR APPLICATIONS

Introduction

If for each function F(2) from a class V' we succeed in isolating a family
F(z,¢) of functions uniformly differentiable with respect to ¢ within the
domain D as € = 0, then the expansion of the type

F(z,e) = F(z) +€Q(2) + o(le|, D)

is called a variational formula in the class V' (written for F'). The develop-
ment of a variational formula is usually a difficult and separate task. The
variational method is one of the fundamental tools in the geometric theory
of functions of complex variable. This method allows to solve a series of ex-
tremal problems particularly in the theory of univalent functions. Applying
the variational-geometric method, Lavrent’yev achieved significant results
in applied problems [5]. The method of solwing extremal problems in the
class of univalent functions proposed by an American mathematician Schif-
fer leads to differential equations for extremal function [6]. G.M. Goluzin [7]
suggested his own variational method which led him to the same differential
equations as that of Schiffer. Goluzin’s method often leads to a final solution
of various extremal problems of geometrical theory of analytical functions.
Using the automorphism of a unit circle, French mathematican F. Marti
arrived at variational formula in the class of univalent functions and solwed
a few significant extremal problems [1].

In this work, we show the variational formulas for a class of analytical
functions. Some extremal problems can be solved applying these variational
formulas.

1. Let E be the unit circle, i.e. |z| < 1. Following [2] denote by K,(F) a
class of analytic on E functions F(z) such that the n-devided difference
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[F(Z), 20y .- .,zn] =
3 F(zy)
m£=:0 (2m = 20) - - (2m = Zm-1)(2m — Zm+1) - - - (2m — 2n

)70

for any pairwise different points zp,...,2, € F.

When n = 1 we have a class K1(E) of univalent functions in £ whose
important role as means for realisation of conformal mapping is well known.
Note, that if F(z) € K,(E), then F(")(z) # 0 for any z € E (see [2]). Let
us note the following property of the class K ,(E), n > 1. In order that
F(z) € K,(E), for n > 1, it is necessary and sufficient, that functions

wu=1l, U =2,.0., Upog=2""1, wup= F(2)
form the Chebyshev system in F or that the equation
a+az+-Fa,_ 12" '+ F(2)=0

have no more than n roots in E for any ap,a1,...,8,-1.

We will call the analytical function F(z) in E to be n-normed in E, if
its expansion in power series of 2 is of the form

oo
F(z)=2"+ E ak 2" TR L,
k=2

The numbers ay, , are called the k-coefficient of function F(z). Let us intro-
duce a normalization operator N,[F(z)] for the class K,(E) according to
the formula

n—1
Na[F(2)] = -F—(g'(—o) (F(z) - mz:o %F("‘)(O)zm) .

Such an operator transforms any function F(z) from the class K,(E) into an
n-normed function which due to the elementary properties of the n-divided
difference, belongs to the class K,(FE) as well (see [2]).

Let us denote by K. n(E) the set of all n-normed functions from the class
Ko(E). When n = 1, the class K;(E) consists of univalent and normed in
E functions.

Note that the class I~{n(E),n > 1 is compact with respect to uniform
convergence inside E.

The properties of functions from the class K,(E), for n > 1, have been
studied in [2]-[4] and in other works of the author of this paper.
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2. Let A be a set of all univalent mappings w from F into itself having
form
z+¢
1+4(z
It is shown in [3], that if F(z) € K,(F), then
(1 -=o(0)w(2)) " "F(w(2)) € K,(E), Yw(z)€ A.

» (€ E.

w=w(z)=

Let us introduce an operator 2, [F (z)] by the formula

(1) D[F(2)] = Na[(1 - 3(0)w(2))' " F(w(2)))-
By virtue of the condition
0"(1 - @(0)w(2))' " F(w(2))
oz

we conclude that the operator (1) is for any w € E defined on K,(E). When
n = 1 we have an operator

Flw(z))-F
2 %G = G

frequently used in the theory of univalent in F functions. From the elemen-
tary properties of the devided difference it easily follows.

LEMMA 1. If F(z) € K,(E), then the function
F(z,0) = D4F(2)] € BalE), Y€ E.

#0, VzeE, (see[3)])

Let us mention that the operator (2) was applied by F. Marti [1] to
deduce one of his variational formulas in the class K1(F) of univalent and
normed in F functions.

THEOREM 1 (F. Marti). If the function
F(z)=2+ iak,1gk € jf'l(E),'c
k=2
then the function F(z;() € I?l(E) for any { € E, and a formula
F(2¢) = F(2) + (F'(2) = 1 = 2021 F(2)) = 2 F'(2) + o([¢])
holds for sufficiently small (.

3. Let us define a variational formula in the class K, (E) similar to that
of Marti. The following theorem holds:
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THEOREM 2. If the function
F(Z) =z"4+ f: ak’n2n+k—l € I?n(E),
k=2
then the function F(z;() € I?n(E) for any ¢ € E, and a formula
(3) F(2,0)=F(2) + (F'(2) - (n+ 1)az n F(2) — n2""")¢
~(#2F'(2) = (n — 1)2F(2))¢ + o([¢])
holds for sufficiently small (.

Proof. The fact that the function F(z;() € K,(E) for any fixed { € E
follows from Lemma 1. Let us expand F(z;() into power series of z

(4) F(Z; C) =2z"4 Z ak,n(C)zn+k_1’

k=2
where (see [4])

(5)  akn(C) =

k-1
m (k - 1) —-1—-mm n!F(n+k—1—m) (C)
2 D o T e T TR

Obviously
(6) F(z,0)= F(z), akn(0)= akn.

Let ( = ze"’, -1 < 2 < 1,0 < 7 < 27. The function F(z;zei”) is analytic
for any fixed v and z at the point & = 0. Therefore, taking into account (6),
we may write

(M F(z26™) = F(2) + Q(2)a + ofla)
where
2 = OF(z; ze')
Qz) = —75— »

Furthermore, the k-coefficient ay ,(ze!?) is an analytic function for any fixed
v at the point z = 0. From (5), one can easily to obtain an equality
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3ak,n(wei7)
®) —F%—

r=0
(n+ k)ak+1,nei'y —(n+ l)ak,nag,ne” + (k- 1)ak_1,,e"*".

Let us calculate Q(z). Using (4) and (8) we obtain

TORDIE S

k=2

Zn+k—1

z=0

o0 [o ]
= z"e* Z(n + k)ak+1,nzk“1 —e " Z(k - 1)ak_1,nzk'1
k=2 k=2

oo
- z"(n+ 1)ag ne*’ E ak,nzk"l
k=2

= TF'(2) — ez — e (22 F'(2) - (n — 1)2F(2))
— (n+ 1)ag e F(2).
Multiplying Q(z) by z and puting it into (7) we see that the function F(z;()

has an expression of the form (3) for all sufficiently small values of (. If n = 1
we obtain the Marti variational formula again.

Along with the variation of the function F(z2) € K n(E) we show the
variation of its k-coefficient. The following theorem holds:

THEOREM 3. Let the function F(z) = 2™ + 152, ag n2"t*~1 € K, (E).
Then the k-coefficient ar n(() of the function F(z;() satisfies the formula

(9) akn(C) = ak,n+((n+k)ak+l,n_(n+1)ak,na2,n)(_(k—1)ak—1,nz+0(|C|)
for all sufficiently small value of (.

Proof. Let { = ze*?, -1 <z < 1,0 < 7 < 27. From (5) we see that the
function ag »(ze'?) is analytic at z = 0 for any fixed . Therefore

(‘?ak,n(ze”)

k(26 = ain + 2D 4y o)

z=0
for any |z| < p, where p is sufficiently small. Using (8), we obtain (9).
We will show another simple variational formula in the class K,(E).

THEOREM 4. If F(2) € K, (E), then the function e~ """ F(e"'z) € K,(E)
for any real v and we have the formula

(10) e " F(e"z) = F(2) + i(2F"(2) = nF(2))y + o(|7).
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Proof. The fact that the function e~ F(e'z), for any real y belongs

to the class K,(E) does not raise any doubts. Formula (10) can be easily
obtained from the expansion of this function into a power series of 2.

4. Let us solve a few extremal problems applying formulas (3), (9) and
(10)

THEOREM 5. Let functions
o0
Fn(z)=2"+ Za&?z"“'l, m=1,2
k=2

belong to the class K,(E),n > 1 and at any point z # 0 their values are
such that '

|Fi(20)l = max |[F(2)|, [F(2)l= min |F(z)|
F(z)€EK,(E) F(z)€K.(E)

Then
(11) (1—l20f*)FL(20)+((n—1)Z—(n+1)ayw) ) Fm(20) = nzp™, m=1,2.

Proof. We will prove the theorem for the case when m = 1. The case
m = 2 is treated in a similar fashion. The existence of the function Fj(z2)
satisfying the condition of the theorem is provided by the compactness of the
class K,(E),n > 1. According to Theorem 4, the function e~*""F(e*'2) €

K n(E), n > 1 for any real v. Using the variational formula (10) we obtain
|F1(20) + i(20F{(20) = nF1(20))y + o(I7))I? < | Fi(20)[%.
Hence for any real v we have

Re {iFi(20)(20F5(20) — nFi(20))7} + Re {o(|7])} < 0.

But

Re{iF(20)(20F](20) — nFi(2))} = 0,
hence
.(12) Im{ZOFI(Zo)Fl’(Zo)} = 0.

Since Fy(z) € Kn(E), n > 1, then F(2;¢) € Kn(E),n > 1for any ¢ € E
and therefore, taking into account the property of the function Fj(z), we
have '

|F1(20;¢)| £ Fi(20), V(€ E.
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Hence, using the variational formula (3) we obtain the inequality

|Fy(20) + (Fi(20) — nzp™ = (n+ 1)a$)h Fi(20))¢
— (RF(20) = (n = V)20 F1(20)) + o)) < [Fi0)[?

which holds for sufficiently small values of (. The last inequality may be
replaced by the inequality

(13)  Re{¢[Fi(20)(Fi(20) — nzy™" — (n+ 1)a) Fi(20))
— (Fy(#0)(Z F}(20) — (n — 1)20Fy(20)))]} + Re{o(I{])} < 0,

which holds for any ¢ under the condition that |{| < p, where p is sufficiently
small. From (13) we conclude that

(19)  Fy(20)(Fi(20) = n2y™" = (n + Daf 1 Fi(0))
~(Fi(20)(Z F1(20) = (n — 1)20F1(20))) = 0.
Using (12) we can write down the relation
Z F{(20)F1(%0) = |20|* F{(20) Fy(20),
which transforms equality (14) into (11).

5. Let us consider extremal problems related to the coefficients of func-
tions from K,(E), n > 1.

THEOREM 6. Let the function
F(Z) = 2" 4+ + aflc—l,n:‘f'n'{bk“2 + &k,nzn+k—1 + ak+1,n2n+k + -

belongs to the class I?n(E),n > 1 and its k-coefficient axn,k > 2 has a
property

A [FC+-D(0)

lk,n] = max —Y——.

" F@eRam (RtE-1)!

Then the equality
(15)  akn((n+ k)aksr,n = (04 D)aknaz,n) = (k = 1)ak,nlx—1,0 = 0
holds.

Proof. The existence of the function F(z) € K,(E),n > 1 whose k-
coefficient of expansion assumes the maximum in absolute value, is ensured
by the compactness of the class K,(F), n > 1. Since F(z) € K,(E),n > 1
then the function F(z;¢) = 2™ +- -+ ax n(¢) + - - - belongs to K,(E),n > 1
as well for any ¢ € E. Applying the property of the coefficient i , of the
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function F(z) we have

lakn(O] < lakn], V¢ € E.

Hence, using the variational formula (9), we obtain the inequality
|akn + (7 + k)aks1,n = (0 + 1)akna2,0)¢ — (k= 1)ar—1,nC + o(I¢]))]

S Idkvnl’

which holds for any sufficiently small {. The latter inequality can be replaced
by

(16) Re{[agn((n+ 1)art1,n — (R + 1)éxnaz,n)
—(k = 1)ék nar-1,nJC} + Re{o(|¢])} < 0,

which holds for any ¢ under the condition |{| < p where p is sufficiently
small. Since the argument of complex number { can be chosen arbitrarily,
then (15) easily follows from (16).

Two following theorems can be proved in a similar way
THEOREM 7. Let the functions

Fp(2) = 2" 44 0 2mHh=2 (M omth=t g gm) onth L

m = 1,2 belong to the class I?n(E),'n > 1 and their k-coefficient &Ec’,’;), m =
1,2 have the properties

(n+k-1)
Re"(l) = max Re~F—(03,
B peRam)  (ntk—1)!

(n+k-1)
Re“(z) = min ReF—(()?.
F(z)ekno(8) (ntk—1)!

Then the following equalities

A _ (2t k)7, — (k- 13l .,
Shim (n+ l)a(m)

m=1,2

)

hold.

We denote by K7(E) the class of functions from K.(E) whose all ex-
pansion coeflicients are real numbers



Some variational formulas 273

THEOREM 8. Let the function
F(z) = 2" 4.+ ak—l,n2n+k—2 + &k,nzn+k_1 + ak+],nzn+k 4.

belongs to the class K "(E),n > 1 and its k-coefficient a. n possess the prop-
erty

|[Fi+E-1)(0)]
jaal = max O
Fzyeky(g) (n+k—1)
Then the equality

o _ (n + k)ak+1,n - (k - l)ak—l,n
ag,n =
’ (n 4 1ag,n

holds.
COROLLARY 1. Let the function
F(z)=2"+a2n2™" + a3 02" 4+

belongs to the class I?n(E), n 2> 1 and its second coefficient a; , has the
property

\ |FH0(0)]
izl = max o
F(z)eRa(E) (n+1)!
Then
o = (n+1)a3, +1
3m = n+2 ’
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