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O N T H E D I M E N S I O N OF A T A N G E N T SPACE 
TO A S T R U C T U R E D SPACE 

In this paper we investigate the dimension of a tangent space (in the 
sense of Zarisky) at a point of a structured space. The paper is a continua-
tion and generalization of [4] and [5]. The notion of a structured space is a 
generalization of the concept of the differential space introduced by Sikor-
ski [7]. This generalization was originally considered by Mostov [3]. Some 
foundations of structured spaces with applications to relativistic physics are 
presented in [1] and [2]. 

In Section 1 we present some basic notions and definitions from struc-
tured space theory. In Section 2 we discuss the dimension of the tangent 
space in terms of germs of the smooth cross-sections. 

1 .Preliminaries 
Let M be a topological space with the topology TM- The sheaf C of real 

functions on M is said to be a differential structure on M if, for any open 
set U G TM and any functions f i , . . . , f n € C(Z7), u> € C°°(]Rn), there is 

• • , f n ) £ C(C7"), where C(U) denotes the set of all cross-sections ofC 
over U. For a topological space M and a differential structure C on M, the 
pair ( M , C ) is said to be a structured space. 

For a point p € M, let Cp be the set of all germs at p of sections of the 
sheaf C. The set Cp with the natural operations of addition and multiplication 
is an algebra over R. By fp we will denote the germ of a section / € C(U) 
at p e u, u e TM. 

A linear mapping v : Cp — R such that 
(1) t;(f-g) = f(p)-t;(g) + g(p)-t;(f), 
for any f , g £ Cp, is said to be a tangent vector to the structured space 
( M , C ) at p. By TPM we shall denote the linear space of all tangent vectors 
to ( M , C ) at p G M, called the tangent space to ( M , C ) at p € M. 
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A continuous mapping F : M —• N is said to be a smooth mapping of a 
structured space (M,C ) into a structured space (N,V) if, 

ao(F\F-\U))eC(F-\U)), 
for any U G TJV and any section a £ V(U). In such a case we will write 
F:(M,C)-+(N,V). 

If F : (M,C ) -»• (N,T>) then, for any point pe M and a vector v e TPM, 
the mapping F*pv : 'PF(P) —>• R defined by 

( 2 ) ( * » ( g ) = v(F*g)t 

is a tangent vector to (N, V) at F(p), where F*g is the pull-back of the 
germ g by the mapping F. 

Now we prove the following 

L E M M A 1 . 1 . Let (M,C) be a structured space and p £ M be an arbitrary 
point. The following conditions are equivalent: 

(i) vectors v\,..., vn € TPM are linearly independent, 
(ii) the mapping L : Cp —• R n defined by ¿ ( f ) = ( w i ( f ) , . . . , v n ( f ) ) , for 

f G Cp, is a surjection, 
(iii) there exist germs f i , . . . , f n 6 Cp such that V{(ij) — ¿¡j for i,j = 

(iv) there exist germs f j , . . . , f n e Cp such that det(vj(f,)) / 0. 

P r o o f . (i)=i>(ii) If L is not a surjection then the image ImL C K n is 
a linear subspace of R n . There exists a non-zero vector (Ai , . . . , An) which 
is normal to ImL, i.e. Ait>i(f) + • • • + Anw„(f) = 0, for any f G Cp or, 
equivalently, AjWj + . . . + \nvn = 0. In this case vi,...,vn are linearly 
dependent. This gives us a contradiction. 

(ii)=Kiii) Let ex = ( l , 0 , . . . , 0 ) , e 2 = ( 0 , 1 , . , . , 0 ) , . . . , e n = (0 , . . . , 0 ,1 ) 
be the standard basis in R n . For ej, j = 1 , . . . , n, there exists a germ f j € Cp 
such that L({j) = ej. Now it is obvious that Vi(fj) = 6{j, for i,j = 1 , . . . , n. 

(iii)=>-(iv) This implication is evident. 
(iv)=^(i) Let Ai , . . . , A„ 6 M be such numbers that Ai^i + . . . + Xnvn = 0. 

Let us consider the linear system 
A 1 V I ( f i ) + . . . + A n i ; n ( f 1 ) = 0 

A i ® i ( f 2 ) + . . . + A n t ; B ( f2) = Q 

A l V l ( f n ) + • • . + A n U r l ( f n ) = 0. 

Since the determinant det(uj(fj)) 0 then the system has the unique solu-
tion Ai = A2 = . . . = An = 0. This ends the proof. • 
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In the sequel, for any n G N, w G C°°(Rn) and germs f i , . . . , in G Cp let 
u>o(fx,...,fn) € Cp be the germ with a representative u o ( / l r . . , f n ) , where 
ftp = for i = l,...,n. 

LEMMA 1 .2 . LEI ( M , C ) be a structured space, p G M an arbitrary point 
and v G TpM be a vector. Then for any f i , . . . , f n G Cp and u> G C°°(Rn) 

n 
(3) o (f t , . . ., fn)) = ^ w[4(fl(P). . . ., fn(p)) • v(fi). 

i=1 
P r o o f . Let fi G C(U), for some open set U 9 p, be a section such 

that fj = fip, for i = 1 , . . . , n. Consider the mapping F = ( / i , . . . , /„). Of 
course, F : (U,C(U)) (En , C°°(Rn)) is smooth. It is easy to see that 
the mapping i»p : TPU —> TPM is an isomorphism of linear spaces, where 
l : (U,Cu) (M,C ) is an embedding. Let v G TPU be a vector such that 
t*pv = v. Of course, Fmpv G T F ( p )R n . It is clear that, for any u> G C°°(R"), 
we have the equality 

i-1 
Hence we obtain 

«(«o (/iP? • • •, TnP)) = ¿ 4 ( f ( p ) ) • 
¿=1 

or equivalently 
n 

v(U O ( f i , . . , , f n ) ) = • • -MP)) • v(fi). RN 
»=1 

2. Main results 
Let (M,C ) be a structured space and p G M an arbitrary point. 

DEFINITION 2 . 1 . A germ f G Cp is said to be differentially dependent on 
germs g i , . . . , gn G Cp if there exists a function u> G C°°(Rn) such that 

f = w o ( g 1 , . . . , g B ) . 

DEFINITION 2 . 2 . A set { F I , . . . , f n } c Cp is said to be differentially in-
dependent if no germ fj, for i G { l , . . . , n } , depends differentially on the 
remaining ones. Any set T C Cp is said to be differentially independent if 
every finite subset of T is differentially independent. 

Now we prove 

PROPOSITION 2 . 1 . Let (M,C) be a structured space andp G M. A subset 
{ f i , . . . , f n } C Cp is differentially independent i f f , for any to G C°°(Rn) the 
following implication is true: 
(*) U O (fi , . . ., fn) = 0 = • ¥!<<<„ 4 ( f l ( p ) , • • •, fn(p)) = o. 
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Proof . (=>) Let { f i , . . . , f n } CCP be differentially independent, and let 
us assume that w o ( f j , . . . , f n ) = 0, for some function w € C°°(Rn). There 
exist an open neighbourhood U € tm o fp and sections f i , . . . , f n £ C°°(U) 
such that fip = f,- for i = 1 , . . . , n anduo(/ l r , . ,/„) = 0. Let us consider the 
differential space (U, sc { / i , . . . , fn}u) finitely generated by { / i , . . . , /„} [6]. 
It is easy to see that the set {/i , . . . , / „ } is differentially independent at p (see 
[4]). From Proposition 3 in [4] it follows that Vi<,<n . . . , fn(p)) = 
0. Hence wft.(fi(p),..., fn(p)) = 0, for every i = 1 , . . . , n. 

(<=) Let { f i , . . . , f n } C Cp be a subset satisfying (*), for any u> 6 C°°(Rn). 
Suppose that the set { f i , . . . , f n } is differentially dependent and, without 
losing of generality, let us assume that there exists a function 6 £ C c o ( R n _ 1 ) 
such that fi = 0o ( f 2 , . . . , f„). Then f j - 8o ( f 2 , . . . , fn) = 0. Let u e C ^ i R " ) 
be a function given by the formula 
(4) u(xi,...,xn) = xi -0(x2,...,xn), 
for (a?!,.. .,xn) e R". Of course, (^©(fi,.. . , f n ) = 0 and W|X(a;i,.. .,xn) = 1, 
for any (®i , . . . •>%n) G Rn . Thus wij(f j(p), . . . ,fn(p)) = 1 and the condition 
(*) is not satisfied. • 

COROLLARY 2 . 2 . If tangent vectors v\,..., vn E TPM are linearly inde-
pendent then any set of germs f i , . . . , f n € Cp, such that Vi(fj) = ¿¡j, for 
1,j= 1,..., n, is differentially independent. 

Proof . We will show that the set { f i , . . . , f n } satisfies condition (*). 
Let oj £ C°°(R") be a function such that u o ( f i , . . . , f n ) = 0. We have 
vj(u o (ii,...,in)) = 0, for j — 1 ,...,n. Hence and from Lemma 1.2 we 
have 

n 

¿=1 
for j = l , . . . , n Since the set { f i , . . . , f n } satisfies condition (*), on the 
strength of Proposition 2.1, this set of germs is differentially independent. 

DEFINITION 2 . 3 . A set B C Cp is said to be a differential basis of C at p 
if B is differentially independent and, for any germ f € Cp there exist n 6 N, 
u e C°°(Rn) and g i , . . . , g „ € B such that f = « o ( g l , . . . ,gn ) . 

LEMMA 2 . 1 . Let (M,C) be a structured space and B be a differential basis 
of C at p £ M. For each function uq : B • R, there exists a unique tangent 
vector u : Cp —> R such that u\B = uo-

Proof . Let u : Cp R be given by 
n 

(5) «(f) = • ..MP)) • «o(*), 
j=i 
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for f e Cp, where n € N, f i , . . . , f„ € B, u € C°°(Rn) are such that f = 
u> o ( f i , . . . , f n ) . The correctness of definition (5) is a consequence of the 
condition (*) in Proposition 2.1. Indeed, for a germ f composed in two 
different ways we can take the sum of the two sets of its components from the 
differential basis B, which allows us to write f in the forms f = wo(f i , . . . , f n ) 
and f = wo ( f 1 ? . . . , f n ) , for some f i , . . . , f „ € B, w, Q G C°°(Rn), n G N. 
Then 

(w — w) o ( f i , . . . , f n ) = 0 
and consequently, from (*), 

(u-Q)\j(f1(p),...,fn(p)) = 0, 
for j — 1 , . . . , n. Hence we obtain 

n n 

¿=1 !=1 
which proves the correctness of definition (5). It can be easily shown that 
the function u given by (5) is a tangent vector and that u is the unique 
vector from TPM such that u\B = UQ. M 

COROLLARY 2 .3 . Let (M,C) be a structured space and B be a differential 
basis of C at p £ M. Then the mapping fi : TPM —> given by 
(6) v(u) = u\B, 
for u e TPM, is an isomorphism of vector spaces. 

P r o o f . It is easy to see that fi is a linear mapping. From Lemma 2.1 
follows that fi is a surjection. Let us also notice that fi is a monomorphism. 
Indeed, suppose that u € TVM is a vector such that fi(u) = 0. It means that 
u\B = 0. In view of Lemma 2.1 from the uniqueness of prolongation of u\B, 
it follows that u = 0. • 

COROLLARY 2 .4 . Let ( M , C ) be a structured space and B be a differential 
basis of C at p € M. Then 

(a) Card B < N0 => dim(TpM) = Card B, 
(b) Card B > N0 dim(TpM) > Card B, 
(b*) Card B > N0 =>• dim(TpM) = 2CardB, if the generalized continuum 

hypothesis is assumed. 
Now, for any p e M, we shall denote by ap the linear subspace of Cp of 

all germs f G Cp for which there exist f i , . . . , f n e Cp, u € C°°(Rn), for some 
n € N, such that 
(7) f = o ; o ( f 1 , . . . , f n ) and wf/fiO»), . . -X(p)) = 0, 
for j = 1 , . . . , n . Let Cp/ap be the quotient linear space and [f] be the 
equivalence class of f G Cp. Now, one can prove 
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LEMMA 2 . 2 . Let (M,C) be a structured space, p € M an arbitrary point. 
Then 

(i) p o t t , . . . , * » ) ] = E?=i «¡i(fi(p), • • •, 
for anyf1,...,tneCp,Oe C°°(Rn), n 6 N, 

(ii) [f • g] = f(p)[g] + [f] • g(p), for any f, g € Cp, 
(iii) ifk(zCp is a germ of a constant function then [k] = 0. 

P r o o f , (i) Let u € C°°(R71) be a function given by the formula 
n 

u(xi,...,xn) = 0(xi,...,xn)~ ^^(flCi»),...,^))-««, 
¿=1 

for . . . , xn) € Rn . It is easy to see that 
n 

U o ( f 1 , . . . , g = i o ( f 1 W - f » 
¿=i 

and a; | t(fi(p),. . . , fn(f»)) = 0, for i = 1 , . . . , n. Hence 
n 

0 o ( f x , . . . , f n ) - £ ^ ( f x b ) , . . . , fn(p)) • fi e ap, 
i=1 

or equivalently 
n 

[6 o ( f l f . . . , fn)] = £ E ' ^ I P ) , U P ) ) • FT], 
t=i 

(ii) follows from (1) if we take 9 € C°°(R2) given by 0(xi,x2) = xi • x2, 
for (xi,x2) G R2. 

(iii) is obvious. • 

Now, let v G TpM be an arbitrary vector tangent to (M,C) at p G M. 
Note that v\ap = 0. Thus v induces a linear functional lv € (Cp/ap)* defined 
by 

(8) lv([f}) = „(f), 
for any f € Cp. 

P R O P O S I T I O N 2 . 5 . The mapping I: TPM (Cp/ap)* defined by 
( 9 ) I(v) = lv, 
for any v € TPM, is an isomorphism of linear spaces. 

P roof . It is easy to see that I is a linear monomorphism. So it is enough 
to show that I is an epimorphism. For any I 6 (Cp/ap)*, let v\ : Cp -* R be 
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V,(i) = /([f]), 
for f G Cp. It follows from condition (2) of Lemma 2.2 that vi is a tangent 
vector to ( M , C ) at p such that I(v\) = I. m 

Let us notice that a mapping u : Cp —• R is a tangent vector iff it is 
linear and u\ap = 0. 

C O R O L L A R Y 2 . 6 . Let (M,C) be a structured space and p G M. Then for 
any n G N, dim(TpM) = n i f f dim(Cp/ap) = n. In particular, dim(TpM) = 
0 i f f C p = ap. 

C O R O L L A R Y 2 . 7 . Let (M,C) be a structured space and p G M. I f f G Cp 
satisfies v(i) = 0 for each v G TPM, then f G ap. 

P r o o f . For any linear functional I G (C p /a p )* , 
m = o. 

Hence we get [f] = 0 or equivalently f £ ap. • 

D E F I N I T I O N 2 . 4 . A set T C Cp is said to be a linearized basis of the 
differential structure C at p € M (1-basis, for short) if any germ f G Cp can 
be uniquely expressed in the form 

where f i , . . . , f n G J7, A 1 ? . . . An G R \ { 0 } , g G ap. 

D E F I N I T I O N 2.5. The algebra Cp is generated by a subset Co C Cp, if for 
any germ f G Cp there exist f i , . . . , f n G Co, u G C°°(Rr i), n G N, such that 

P R O P O S I T I O N 2.8. Let (M,C) be a structured space and p G M an ar-
bitrary point. If the algebra Cp is generated by a subset Co C Cp, then there 
exists a linearized basis T of C at p such that T C Co-

P r o o f . Consider the quotient space Cp/ap. It is evident that the set 
{[f] : f G Co} generates the linear space Cp/ap. Let B = {[fs] : f s G Co,s G 
5}, where S is a set of indices, be a basis of Cp/ap. One can verify that the 
set T = {f s : s G 5} is clearly an 1-basis of C at p. m 

L E M M A 2.3. Let (M,C) be a structured space and let T be an l-basis of 
C at p G M. For any function uo : T —̂• R there exists exactly one tangent 
vector u : Cp —• R at p such that u^ = uq. 

P r o o f . Let u : Cp —• R be a mapping defined by 

f = Axfi + . . . + Anfn + g, 

f = w o ( f 1 , . . . , f n ) . 

n 
( H ) 

i=l 
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for f G Cp \ ap, and w(f) = 0 for f £ ap, where f i , . . . , f„ G T, A j , . . . , An G R 
are elements such that f = + 8» where g G ap. The mapping u is 
linear and u\ap = 0. Therefore u G TPM and u\!F = UQ. The uniqueness of 
u is clear. • 

L E M M A 2 . 4 . All linearized bases of C at p G M are of the same cardi-
nality. If Co generates Cp then, for any linearized basis T of Cp, Card T < 
Card C0. 

P r o o f . Let T\ and Ti be.two 1-bases of C at p. Then the sets [T\] = 
{[f] : f G [^2] = {[f] : f G T2} are bases of the linear space Cp /ap , and 
Card[J",] = Card[J"j], for i = 1,2. Of course, Card[^i] = C a r d ^ ] . Hence 
Cardf^i] = Cardf^]- The second assertion follows from Proposition 2.8. • 

P R O P O S I T I O N 2 . 9 . Let (M,C) be a structured space and let T C Cp be an 
l-basis of C at p G M. Then the mapping $ : TPM —> Redefined by 

(12) * ( « ) = u\F, 
for u G TpM, is an isomorphism of linear spaces. 

P r o o f . This proposition follows immediately from Lemma 2.3. • 

C O R O L L A R Y 2 . 1 0 . Let (M,C) be a structured space and let J7 be a lin-
earized basis of C at p G M. Then 

(a) Card T < N0 Card T = dim(TpM), 
(b) Card T > N0 =>• Card T < dim{TpM), 
(b*) CardJF > N0 =• 2Card:F = dim(TpM), if the generalized contin-

uum hipothesis is assumed. 

Now, let us compare the notions of the differential basis and the lin-
earized basis. 

P R O P O S I T I O N 2 . 1 1 . Let (M,C) be a structured space and p G M be an 
arbitrary point. If a set T C Cp is a differential basis of C at p then T is a 
linearized basis of C at p. 

P r o o f . If the differential basis T is empty then, obviously, it is the 
linearized basis. In turn, if the differential basis is nonempty then also the 
set Cp \ ap is nonempty. In this case let f G Cp \ ap be an arbitrary element. 
There exist n G N, f i , . . . , in G T, u G C°°(Rn) such that 

(13) f = w o ( f 1 , . . . , f n ) . 

Hence and from Lemma 2.2 obtain 
n 

(14) [f] = [ U o ( f x , . . . , f n ) ] = 5 > | i ( f i C P ) , • • •, f„(p)) • [*]. 
¿=1 
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We will show that the set {[f] : f 6 T} is a basis of the vector space Cp/ap. 
It is enough to prove the linear independence of this set. Let 

Ai[fi] + . . . + An[fn] = 0, 
for some Ai , . . . , An € R and f i , . . . , f n £ T, n £ N. Then 

[Aifi + . . . + Anfn] = 0, 
or equivalently 

Aifi + . . . + Anf„ £ ap. 
From the above formula one concludes that Ai , . . . , A„ = 0. In fact, without 
losing of generality let us assume that Ai / 0. Then fi can be presented in 
the form . . 

- A2„ An fi = -T - I2 - . . . - T-fn + g, 
Ai Ai 

for some g £ ap . Let uq : T -H• R be such that uo(fi) = 1 and u0(h) = 0 for 
h £ B \ {fi}. From Lemma 2.1 there exists exactly one u £ TPM such that 
u\B = UQ. Then 

u(fi) = 1 and u(fi) = - - . . . - + g^ = 0, 

which means a contradiction. 
Now it is clear from (14) that f may be expressed in the form 

n 

<=1 where g € op, A,- = wf f(fi(p),.. . f n ( p ) ) for i = 1 , . . . , fi and Ai , . . . , \ n are uniquely determined. • 
PROPOSITION 2 .12 . Let (M,C) be a structured space and p £ M. A lin-

earized basis T of C at p is a differential basis iff the algebra Cp is generated 
by T. 

P r o o f . Let T be a linearized basis of C at p and assume that Cp is 
generated by T. It remains to show that T is differentially independent. Let 
u> (E C°°(Rn), f i , . . . , fra G T be arbitrary elements such that 

« o ( f 1 ) . . . , g = 0. 
In view of Lemma 2.2 we have 

[wo( f i , . . . , f n ) ] = 0 
or 

¿ « ¡ < ( f 1 ( P ) l . . . , i ; 0 , ) ) . [ f i ] = o. 
¿=i 

Since [f i ] , . . . , [fi] are linearly independent we observe that . (^ (p) , . . . 
..., in(p)) = 0, for i = 1 , . . . , n. We have proved that T satisfies the condi-
tion (*) in Proposition 2.1. Thus T is differentially independent. Therefore 
T is a differential basis of C at p. m 
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Let us notice that a linearized basis T does not need to generate Cp. For 
example, if (M, r ) is a topological space and C is a non-trivial sheaf of all 
continuous functions, then (M,C) is a structured space with the dimension 
equal zero at every point. In this case, for every p (E M, Cp = ap and, 
consequently, the linearized basis T is empty. If the stalk Cp is non-trivial, 
then Cp is not generated by the empty linearized basis T. One should notice 
that in this case the differential basis does not exist at the point p £ M. In 
general, a differential basis at a point does not always exist while a linearized 
basis does exist always, however it can be empty. Of course, if a differential 
basis is empty, then the linearized basis is also empty and the dimension at a 
given point is zero. Conversly, if at a given point the dimension is zero, then 
necessarily the linearized basis is empty and the differential basis is either 
also empty or it does not exist. Many examples of nonempty linearized 
bases which do not generate the stalk Cp one can obtain, for instance, by 
defining the Cartesian products of a non-trivial zero dimensional space with 
structured spaces of higher dimension. 
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