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ON THE DIMENSION OF A TANGENT SPACE
TO A STRUCTURED SPACE

In this paper we investigate the dimension of a tangent space (in the
sense of Zarisky) at a point of a structured space. The paper is a continua-
tion and generalization of [4] and [5]. The notion of a structured space is a
generalization of the concept of the differential space introduced by Sikor-
ski [7]. This generalization was originally considered by Mostov [3]. Some
foundations of structured spaces with applications to relativistic physics are
presented in [1] and [2].

In Section 1 we present some basic notions and definitions from struc-
tured space theory. In Section 2 we discuss the dimension of the tangent
space in terms of germs of the smooth cross-sections.

1.Preliminaries

Let M be a topological space with the topology 7as. The sheaf C of real
functions on M is said to be a differential structure on M if, for any open
set U € mapr and any functions fy,...,f, € C(U), w € C®°(R"), there is
wo(fiy--.,fn) € C(U), where C(U) denotes the set of all cross-sections of C
over U. For a topological space M and a differential structure C on M, the
pair (M,C) is said to be a structured space.

For a point p € M, let C,, be the set of all germs at p of sections of the
sheaf C. The set C,, with the natural operations of addition and multiplication
is an algebra over R. By f; we will denote the germ of a section f € C(U)
atpe U, U € 1a.

A linear mapping v : C, — R such that

(1) v(f - g) = f(p) - v(g) + g(p) - v(¥),

for any f,g € C,, is said to be a tangent vector to the structured space
(M,C) at p. By T, M we shall denote the linear space of all tangent vectors
to (M,C) at p € M, called the tangent space to (M,C) at p € M.
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A continuous mapping F : M — N is said to be a smooth mapping of a
structured space (M,C) into a structured space (N, D) if,

ao (FIF7Y(U)) € C(F(D)),
for any U € 7y and any section @ € D(U). In such a case we will write
F:(M,C)— (N,D).
If F:(M,C)— (N,D) then, for any point p € M and a vector v € T, M,
the mapping F.,v : Dp(p) — R defined by

(2) (Fepv)(8) = v(F7g),
is a tangent vector to (N,D) at F(p), where F*g is the pull-back of the
germ g by the mapping F.

Now we prove the following

LEMMA 1.1. Let (M,C) be a structured space and p € M be an arbitrary
point. The following conditions are equivalent:

(1) vectors vy,...,v, € T, M are linearly independent,
(ii) the mapping L : C, — R™ defined by L(f) = (vi(f),...,vn(f)), for
f € C,, is a surjection,
(iii) there exist germs fy,...,f;, € Cp, such that vi(f;) = 6 for i,j =
1,...,n,
(iv) there exist germs fy,...,f, € Cp such that det(vi(f;)) # 0.

Proof. (i)=(ii) If L is not a surjection then the image ImL C R" is
a linear subspace of R™. There exists a non-zero vector (A1,...,A,) which
is normal to ImL, i.e. Aqjvi(f) + -+ Aqvn(f) = 0, for any £ € C, or,
equivalently, Ajvy + ...+ Apv, = 0. In this case v;,...,v, are linearly
dependent. This gives us a contradiction.

(ii)=-(iii) Let ;7 = (1,0,...,0),e; = (0,1,...,0),...,e, = (0,...,0,1)
be the standard basis in R". For ¢, j = 1,...,n, there exists a germ f; € C,,
such that L(f;) = ej. Now it is obvious that v;(f;) = 6;;,for 4,5 =1,...,n.

(iii)=(iv) This implication is evident.

(iv)=(i) Let Ay,...,A; € R be such numbers that Ajvy +...+ A0, = 0.
Let us consider the linear system

/\lvl(fl) +...+ )\nvn(fl) =0
/\lvl(fg) + ...+ /\n’vn(fz) =0

A1y (fn) +...+ /\n'vn(fn) =0.

Since the determinant det(v;(f;)) # 0 then the system has the unique solu-
tion Ay = A2 =...= A, = 0. This ends the proof. m



Dimension of a tangent space 257

In the sequel, for any n € N, w € C*°(R") and germs f,...,f, € C, let
wo(fy,...,f,) € Cp be the germ with a representative wo(fi,..., fn), where
fip = f,‘, for i = 1,...,n.

LEMMA 1.2. Let (M,C) be a structured space, p € M an arbitrary point
and v € T,M be a vector. Then for any fi,...,f, € C, and w € C*(R")

(3) v(wo (fy,...,5)) = Zw,',.(fl(p), e Ta(p)) - v(£).

Proof. Let f; € C(U), for some open set U 5 p, be a section such
that f; = ﬁp, for ¢ = 1,...,n. Consider the mapping F' = (fi,..., fn). Of
course, F : (U,C(U)) — (R"*,C*(R™)) is smooth. It is easy to see that
the mapping t.p : TpU — Tp,M is an isomorphism of linear spaces, where
¢ (U,Cy) — (M,C) is an embedding. Let & € T,U be a vector such that
tep® = v. Of course, F,,¥ € Trp)R™ It is clear that, for any w € C*(R"),
we have the equality

n

(Fpt)(w) = Z ¥(fip) - Wi (F(p)).
Hence we obtain =

5o (fips- s Fap)) = D wii(F(8)) - 3(fip)
or equivalently =

00 (i) = S WG (), -, Talp)) - 0(F). m
i=1

2. Main results
Let (M,C) be a structured space and p € M an arbitrary point.

DEFINITION 2.1. A germ f € C,, is said to be differentially dependent on
germs g1,...,8n € Cp if there exists a function w € C*°(R™) such that
f=wo(g1y---,8n)
DEFINITION 2.2. A set {f1,...,f,} C C, is said to be differentially in-
dependent if no germ f;, for 1 € {1,...,n}, depends differentially on the

remaining ones. Any set F C C, is said to be differentially independent if
every finite subset of F is differentially independent.

Now we prove

ProposITION 2.1. Let (M,C) be a structured space andp € M. A subset
{f1,...,£.} C C, is differentially independent iff, for any w € C®(R") the
following implication is true:

(*) wo(fi,.... ) =0 = Vici<n w;’;(fl(P)» . Ta(p)) = 0.



258 P. Multarzynski, W. Sasin

Proof. (=) Let {fi1,...,f,} C C, be differentially independent, and let
us assume that w o (fy,...,f;) = 0, for some function w € C*°(R"). There
exist an open neighbourhood U € 7 of p and sections fi,..., fn, € C*(U)
such that f,-p =f;fori=1,...,nand wo(f1,..., fn) = 0. Let us consider the
differential space (U, sc {f1,..., fa}y) finitely generated by {fi,..., fn} [6].
It is easy to see that the set { f1,..., fn} is differentially independent at p (see
[4]). From Proposition 3 in [4] it follows that V1<i<n wl'i(fl(p), oo fo(p)) =
0. Hence wii(fl(p), ., fa(p)) =0, for every i = 1,...,n.

(<) Let {fy,...,f,} C C, be a subset satisfying (), for any w € C°(R").
Suppose that the set {f;,...,f,} is differentially dependent and, without
losing of generality, let us assume that there exists a function § € C®°(R""1)
such that f; = 8o(fs, ..., ,). Then f; —Bo(fy, ..., f,) = 0. Let w € C(R™)
be a function given by the formula
(4) W(T1y. .oy Zp) =21 — 0(za,...,2,),
for (z1,...,2,) € R™ Of course, wo(fy,...,f,) = 0 and wl'l(:vl,. coyZp) = 1,
for any (z1,...,2,) € R™ Thus w‘l(fl(p), ...,f2(p)) = 1 and the condition
(*) is not satisfied. m

COROLLARY 2.2. If tangent vectors vy,...,v, € TpoM are linearly inde-
pendent then any set of germs fy,...,f, € Cp, such that vi(f;) = 6;;, for
1,7 =1,...,n, is differentially independent.

Proof. We will show that the set {fj,...,f,} satisfies condition ().
Let w € C°(R") be a function such that w o (fi,...,f;) = 0. We have
vj(wo (f1,...,f,)) = 0, for j = 1,...,n. Hence and from Lemma 1.2 we
have

n
D whi(fi(P), - Fal(p)) - vi(£) = O,
i=1
for j = 1,...,n Since the set {fy,...,f,} satisfies condition (), on the
strength of Proposition 2.1, this set of germs is differentially independent.

DEFINITION 2.3. A set B C C,, is said to be a differential basis of C at p
if B is differentially independent and, for any germ f € C,, there exist n € N,
w € C°(R™) and g1,...,8n € B such that f = wo(g1,...,8n)-

LEMMA 2.1. Let (M, C) be a structured space and B be a differential basis
of C at p € M. For each function up : B — R, there exists a unique tangent
vector u : C, — R such that u|B = up.

Proof. Let u : C, — R be given by
(5) u(f) = wai(fl(p)7 . ,fn(p)) : ’U,o(f,'),
i=1
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for f € C,, where n € N, fi,...,f, € B, w € C®°(R") are such that f =
wo (fi,...,f,). The correctness of definition (5) is a consequence of the
condition (*) in Proposition 2.1. Indeed, for a germ f composed in two
different ways we can take the sum of the two sets of its components from the
differential basis B, which allows us to write f in the forms f = wo(fy,...,f;)
and f = ©o (fy,...,1,), for some fy,...,f, € B,w, @ € C*(R"), n € N.
Then

(w=-@)o(f1,...,f)=0

and consequently, from (%), .

(w - o)i](fl(p)) .. )f'n(p)) =0,
for  =1,...,n. Hence we obtain

> wii(f1(p), - - £al)) - wo(£) = > &fi(£1(p), - - -, £a(P)) - wo(£),
i=1 i=1

which proves the correctness of definition (5). It can be easily shown that
the function u given by (5) is a tangent vector and that u is the unique
vector from T, M such that u|B = up. »

COROLLARY 2.3. Let (M,C) be a structured space and B be a differential
basis of C at p € M. Then the mapping p : T,M — RE, given by

(6) p(u) = u|B,

for u € T,M, is an isomorphism of vector spaces.

Proof. It is easy to see that p is a linear mapping. From Lemma 2.1
follows that y is a surjection. Let us also notice that y is a monomorphism.
Indeed, suppose that u € T, M is a vector such that u(u) = 0. It means that
u|B = 0. In view of Lemma 2.1 from the uniqueness of prolongation of u|B,
it follows that u =0. m

COROLLARY 2.4. Let (M,C) be a structured space and B be a differential
basis of C at p € M. Then

(a) CardB < X¢ = dim(T,M) = Card B,

(b) CardB > Ro = dim(Tp,M) > Card B,

(b*) Card B > Ro = dim(Tp,M) = 2€97¢B _ if the generalized continuum
hypothesis is assumed.

Now, for any p € M, we shall denote by a, the linear subspace of C}, of
all germs f € C,, for which there exist fi,...,f, € Cp, w € C®(R"), for some
n € N, such that

(7) f=wo(fy,...,f,) and wl'j(fl(p), .o f(p)) =0,
for j = 1,...,n. Let Cp/a, be the quotient linear space and [f] be the
equivalence class of f € C,. Now, one can prove
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LEMMA 2.2. Let (M,C) be a structured space, p € M an arbitrary point.
Then

() (00 (f1,. .., )] = Ziss 01;(F(p), - - ., FulP))IE],
for any fy,...,f, €Cp, 0 € C*°(R"), n € N,

(i) [f - g] = f(p)[g] + [f] - g(p), for any f,g € C;,
(iii) if k € C, is a germ of a constant function then [k] = 0.

Proof. (i) Let w € C*°(R") be a function given by the formula
(T, yTn) =01,y Th) — Xn:o'i(fl(p), ooy Bu(D)) - 244
i=1
for (z1,...,2,) € R™ It is easy to see that
wo(fy,...,f)=800(f,...,1,) — Zn:O'i(fl(p),...,fn(p)) -f;,
i=1

and wy;(fi(p), ..., fa(p)) = 0, for i = 1,...,n. Hence

0o (fr,....E) = Y O(fi(p), ..., fa(p)) - £ € ap,
i=1
or equivalently
[0 o (fl’ LR ) fn)] = Z eli(fl(p)7 .- ,fn(p)) : [fi]a
i=1

(i) follows from (1) if we take § € C*°(RZ) given by 8(z1,z2) = 21 - 23,
for (z1,72) € R2.
(iii) is obvious. m

Now, let v € T, M be an arbitrary vector tangent to (M,C) at p € M.
Note that v|a, = 0. Thus v induces a linear functional I, € (C,/a,)* defined
by

(8) Ly([f]) = v(f),
for any f € C,,.
PRroPOSITION 2.5. The mapping I : T,M — (Cp/a,)* defined by
(9) I(v) =1,
for any v € T, M, is an isomorphism of linear spaces.

Proof. It is easy to see that I is a linear monomorphism. So it is enough
to show that I is an epimorphism. For any ! € (Cp/ap)*, let v, : C, — R be
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given by

(10) w(f) = I([f]),

for f € C,. It follows from condition (2) of Lemma 2.2 that v; is a tangent
vector to (M,C) at p such that I(v;) =1. =

Let us notice that a mapping u : C, — R is a tangent vector iff it is
linear and u|a, = 0.

COROLLARY 2.6. Let (M,C) be a structured space and p € M. Then for
any n € N, dim(T, M) = n iff dim(Cp/ap) = n. In particular, dim(T,M) =
0 ffCp = ay.

COROLLARY 2.7. Let (M,C) be a structured space and p € M. If £ € C,
satisfies v(f) = 0 for each v € T, M, then f € a,.

Proof. For any linear functional ! € (Cp/a,)*,
I([fh = 0.
Hence we get [f] = 0 or equivalently f € a,. »

DEFINITION 2.4. A set F C Cp is said to be a linearized basis of the
differential structure C at p € M (l-basis, for short) if any germ f € C, can
be uniquely expressed in the form

f= A1f1++Anfn+g,
where fy,...,f, € F, A1,... A, € R\ {0}, g € a,.

DEFINITION 2.5. The algebra C,, is generated by a subset Cy C Cp, if for
any germ f € C, there exist f;,...,f, € G, w € C*®(R"), n € N, such that

f=wol(fy,...,f).

ProPOSITION 2.8. Let (M,C) be a structured space and p € M an ar-
bitrary point. If the algebra C, is generated by a subset Cy C Cp, then there
exists a linearized basis F of C at p such that F C Cy.

Proof. Consider the quotient space C,/a,. It is evident that the set
{[f]) : £ € Co} generates the linear space Cp/a,. Let B = {[f,] : f; € Co,s €
S}, where S is a set of indices, be a basis of C,,/a,. One can verify that the
set F = {f; : s € §} is clearly an l-basis of C at p. m

LEMMA 2.3. Let (M,C) be a structured space and let F be an l-basis of
C at p € M. For any function ug : F — R there ezxists ezactly one tangent
vector u : Cp — R at p such that u|F = uo.

Proof. Let u : C, — R be a mapping defined by
(11) u(f) =Y Mo (f),
i=1
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for f € Cp\ ap, and u(f) = O for f € ap, where fy,...,f, € F, Ay,..., A, €R
are elements such that f = >, A\;f; + g, where g € a,. The mapping u is
linear and u|a, = 0. Therefore u € T, M and u|F = ug. The uniqueness of
u is clear. m

LEMMA 2.4. All linearized bases of C at p € M are of the same cardi-
nality. If Co generates C, then, for any linearized basis F of C,, Card F <
Card Cy.

Proof. Let F; and F; be,two l-bases of C at p. Then the sets [F1] =
{[f] : f € A1}, [Fo] = {[f] : f € F,} are bases of the linear space C,/a,, and
Card[F;] = Card[F;], for i = 1,2. Of course, Card[F;] = Card[F3]. Hence
Card[F;] = Card[F;]. The second assertion follows from Proposition 2.8. m

PRrOPOSITION 2.9. Let (M,C) be a structured space and let F C C,, be an
l-basis of C at p € M. Then the mapping ® : T,M — R” defined by
(12) ®(u) = u|F,
for u € T, M, is an isomorphism of linear spaces.

Proof. This proposition follows immediately from Lemma 2.3. m

COROLLARY 2.10. Let (M,C) be a structured space and let F be a lin-
earized basis of C at p € M. Then

(a) CardF < Xg = Card F = dim(T, M),

(b) CardF > Rg = Card F < dim(T,M),

(b*) CardF > Ry = 29974 = dim(T,M), if the generalized contin-
uum hipothesis is assumed.

Now, let us compare the notions of the differential basis and the lin-
earized basis.

ProposiTION 2.11. Let (M,C) be a structured space and p € M be an
arbitrary point. If a set F C C,, is a differential basis of C at p then F is a
linearized basis of C at p.

Proof. If the differential basis F is empty then, obviously, it is the
linearized basis. In turn, if the differential basis is nonempty then also the
set Cp \ ap is nonempty. In this case let f € C, \ a, be an arbitrary element.
There exist n € N, f1,...,f, € F, w € C®(R") such that

(13) f=wo(fy,...,f,).

Hence and from Lemma 2.2 obtain

(14) [fl=[wo(fi,....T)] = Zwlli(fl(l’)’ -+ Ta(p)) - [£i].
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We will show that the set {[f]: f € F} is a basis of the vector space C,/a,.
It is enough to prove the linear independence of this set. Let

/\l[fl] +...+ An[fn] =0,
for some Ay,...,A, € Rand f;,...,f, € F,n € N. Then

My +...+ Ads] =0,
or equivalently

M+ .. AT € ap.
From the above formula one concludes that Ay,..., A, = 0. In fact, without
losing of generality let us assume that A; # 0. Then f; can be presented in
the form A A

f, = —A—jfz - = A_:f"_*—g’
for some g € a,. Let ug : F — R be such that ug(f;) = 1 and ug(h) = 0 for
h € B\ {f;}. From Lemma 2.1 there exists exactly one u € T, M such that
¢|B = ug. Then
u(f) =1 and u(fy)= u(— = —...—- —fn+g) =0,
A1 A1
which means a contradiction.
Now it is clear from (14) that f may be expressed in the form

f=) Mi+tg,
i=1
where g € ap, A = w(i(fl(p),...fn(p)) fori=1,...,n and Ay,..., A\, are
uniquely determined. m

PROPOSITION 2.12. Let (M,C) be a structured space and p € M. A lin-
earized basis F of C at p is a differential basis iff the algebra C, is generated
by F.

Proof. Let F be a linearized basis of C at p and assume that C, is
generated by F. It remains to show that F is differentially independent. Let
w € C®(R"™), f1,...,f, € F be arbitrary elements such that

wo(fl,...,fn) =0.
In view of Lemma 2.2 we have
wo (f1,...,f)]=0

> Wi (f1(p); .o Ea(p)) - [fi] = 0.
=1

Since [f1],...,[fi] are linearly independent we observe that w,(fi(p),...
..o, Ta(p)) =0, for i = 1,...,n. We have proved that F satisfies the condi-
tion (*) in Proposition 2.1. Thus F is differentially independent. Therefore
F is a differential basis of C at p. m
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Let us notice that a linearized basis F does not need to generate C,. For
example, if (M, ) is a topological space and C is a non-trivial sheaf of all
continuous functions, then (M,C) is a structured space with the dimension
equal zero at every point. In this case, for every p € M, C, = a, and,
consequently, the linearized basis F is empty. If the stalk C, is non-trivial,
then C, is not generated by the empty linearized basis 7. One should notice
that in this case the differential basis does not exist at the point p € M. In
general, a differential basis at a point does not always exist while a linearized
basis does exist always, however it can be empty. Of course, if a differential
basis is empty, then the linearized basis is also empty and the dimension at a
given point is zero. Conversly, if at a given point the dimension is zero, then
necessarily the linearized basis is empty and the differential basis is either
also empty or it does not exist. Many examples of nonempty linearized
bases which do not generate the stalk C, one can obtain, for instance, by
defining the Cartesian products of a non-trivial zero dimensional space with
structured spaces of higher dimension.
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