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RELAXATION OF THE DIFFERENTIAL INCLUSIONS
OF THE STURM-LIOUVILLE TYPE

Abstract. Let T = (0;7), W be a lirear normed space of Sobolev type and consider
an operator P : W — H, and a multifunction F :domF C T x RF —d (Rk). The
paper deals with a problem of the connection of the topological properties of the solution
set R r for the boundary value problem for a differential inclusion:

Find w € W such that Pw € F(t,w),
and the solution set Rjco 7 of the relaxed problem
Find w € W such that Pw € clco F(t,w),

2
where W is a Sobolev space W22([0; 7)) N Wul’z([O;w]) and Pw = _‘fi_tt?g with Dirichlet
boundary data w(0) = 0 = w(r). The density of the solution set R in the solution set
Reclco F 1s proved.

1. Introduction

Differential inclusions of the form Pu(t) € F(t,u(t)) where P is a dif-
ferential operator are immediate generalization of the differential equations.
The theory of properties of ordinary differential inclusions of the first or-
der has been thriving since the early seventies and a lot is known on the
existence of solutions and on their properties both in the framework of the
Euclidean space R™ as well as in the framework of the Banach space X.

In general differential inclusions with ordinary differential operators of
the higher order are much less examined although a remarkable amount of
interest in this field has been observed lately [8], [3].

The present paper deals with linking the topological properties of the
solution set to the inclusion

2
1) ~T2HD ¢ 1,00

with boundary conditions
(2) 2(0) = 0 = o(),
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and the solution set to the inclusion boundary value problem

(3) —ddﬁgt) € clco F(t,2(t))

with boundary conditions
(4) z(0) = 0 = z(7).
About the multifunctions F(t,-) we assume that they are Lipschitz with
compact but not necessarily convex values in the Euclidean space R*. We
prove that the set of solutions R # is dense in the set of solutions R¢co 7. In
section 2 we prove a version of the Filippov lemma taking into account the
theory of the Sturm-Liouville equation

d*z
(5) _W - m(t)z' = /\(L‘, t e T
and the classical Filippov lemma [6]. The main result on density in the strong
L? topology is formulated and proved in the section 3 while the section 1
contains preliminary facts and definitions which are needed in this paper.

2. Preliminaries

Let T = (0;7), £ be the o-algebra of Lebesgue measurable subsets of
T. The spaces of functions integrable with p—th power on 7 for 1 < p < oo,
equipped with the usual norms |z|,, we shall denote by L? and let W™?
and Wy"'* be Sobolev spaces endowed with the usual norms |z, ,.

Let us fix a function w € L? and consider the Sturm-Liouville operator
L., defined for z € W%? by

(6) (Loz)(?) i= -2 ;g” —w®)z(t), teT.

This operator satisfies

(7) (Luz,2) = | (a'(1)2(2) - w(t)z(1)=(t))
0
for all z € W?! and z € W(}’oo. Denote the bilinear form on the right
hand side of (7) by a, (2, z) and observe that it is can be extended uniquely
to a bounded bilinear form on W,** x W,'?. It is known that for any real
w € L? such a form defines unbounded Sturm-Liouville operator in the space
H := L% with countable real point spectrum Mg < A\; < ..., leIIgo Ak = +oo0.
Moreover, we may choose the positive eigenfunction z( corresponding to the
eigenvalue Ag (c.f. [10], [4], [5]).
The simplest Sturm-Liouville operator is the operator Loz = —‘fT,f
(for w = 0) with the spectrum A = 1, Ay = 4, Ao = 9,..., and
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zo = 4/ Z[sint,...,sint].

The equation

(8) Lo:l: =Uu
with the boundary conditions (4)
(9) 2(0) =0 = z(m)

has a solution z = Gu € W% N W, for any u € L*. This solution is
expressed by the formula

(10) Gu(t) = Sgo(t,s)u(s)d.s

where
Li(r-s) fort<s,
Ls(r—1t) fort>s,

gO(ta 5) = {
is the corresponding Green function.

The operator G : L2 — W?? s linear, and bounded, and positive, i.e.
for any function u < 0 we have Gu < 0 where u = (uy,...,u;) < 0 means
that all u; <0, ¢ = 1,...,k. In particular, it implies that for any u € L? the
following estimate

(11) |Gu(t)] < G(|uvE|)(t) a.einT
holds.
Let us consider the differential inclusion
d®z
(12) a7 € F(t,z),

where the multifunction F(¢,z) satisfies the following hypotheses:

(H1) the sets F(t,z) are compact subsets of R* for any ¢ € T and z € R,
and the multifunctions ¢ — F(¢,z) are measurable for any z € R¥;
(H2) there exists m € L? such that for any z,y € R¥ we have

dH(]:(t’x)vf(t’ y)) < m(t)lx -9l
where dg(K, L) stands for Hausdorff distance between sets K and
L CR%;
(H3) |F(¢,0)|| := sup {|z| : z € F(¢,0)} < a(t) a.e. and a € L2.

Remark 1. Let us notice that for any measurable selection v(t) €
F(t,Gu(t)) the hypothesis (H2) implies

dist (v(2), F(2,0)) < m(1)|G(u)(?)]
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for a.e. t € T = [0; 7]. Then from (H3) follows an estimate
lo(®)| < a(t) + mBIG(|ulVE)(?)|
and further v € L. u
On the positive measurable function m we impose the hypothesis
(H4):

2

[3i7§ 2(t)t2(7r—t)2dt} <1

(13)

or
4 /3 2
(14) |mls <—A% O Im|eo < 3v/10/72VE.
Remark 2. The hypothesxs (H4) is a sufficient condition for
1 ¢ o(mGVE)

i.e. for the invertability of the operator I — mG+Vk in a Banach algebra BH
of all linear bounded operators S : H — H. m

Let us consider the boundary value problem to the inclusion (12) with
boundary conditions (4). By a solution of the problem (12), (4) we mean
any function € W?%? such that

(15) (Loz)(t) € F(t,z(t)) a.ein T=(0;m).
In the present paper we deal with properties of the solution sets R and
Relco 7 of the problem (12), (4) and the problem (3), (4) respectively.

We prove that R £ is dense in the strong L? topology in the solution set

7-\chco F-
Recall the notion of decomposability. The set £ C L? is called decom-

posable, if
(16) xat+ (1-xa)v €K

for any u, v € K and A € L. The family of all non-empty, closed, and
decomposable subsets of L? let us denote by dec(L?). Let us observe that to
the multifunction F there corresponds the map Kz : L? — dec(L?) given
by

Kr(z)={f € L*: f(t) € F(t,Gz(t)) a.e.}
3. A version of the Filippov lemma

Let us assume that the problem (1) and the operator L, satisfy (H1),
.., (H4). The fundamental lemma in this paper is as follows:
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LEMMA 1. Assume (H1),...,(H4). Let fo be an arbitrary element in L?
and p € L? be such that dist (fo, F(t,Gfo(t)) < p(t) a.e.. Then there exist
a solution = € Wy *([0;7]) n W22([0; 7]) of (1) such that

(17)  |2(t) - Gfo(t)| < GVEUI - mGVE) 'p(t) ae inT,
227 _
(18) ‘—‘fl—ti(t) - fo(t)| < (I - mGvk) 1p(t) ae. inT.

Proof. Take into account the Filippov iterations technique. Observe
that for any p € L?

|mGVEp(t)l> < 7lpl:  where by (H4) 7 < 1.

So the series
(19) 8(1) = Y [(mGVRYpl(t) € I?
£=0

is convergent in L? as well as pointwisely.
We shall construct z = Gf, where f € L} NFix K.
Since

dist (fo(t), F(t,Gfo(?))) < p(t) a.e
there exists an L%-selection f1 of F(t,G fo(t)) such that
|f1(8) = fo(D)] < p(t) a.e
Then

|Gf1(t) = Gfo(t)| < GVEp(t) ace.

and therefore, by (H2),
dist (f1(t), F(t, G f1(1))) < mGVEp(t) a.e.

Next, there exists an L2-selection f; of F(¢,G f1(t)) such that

1f1(t) = f2(t)] < mGVEp(t) a.e.
and hence

dist (f2(2), F(t, G f2(1))) < (mGVk)p(t)  a.e.

Using the induction argument, we can find a sequence {f,} of L?-selections
such that

(20) |[far1(t) = ()] S (mGVE)"p(2)  ace.,
and hence

dist (fnp1(2), F(t, G frs1(t)) < (mGVE)"p(t)  a.e.
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Take
o0
f=/o +Z(fn+l '_fn)
n=0
and observe that f € L% N Fix Kx. The inequalities (17) and (18) are now
a straightforward conclusion of (19) and (20). m
Denote

(21) Zf(t):= | f(s)ds.

0

LEMMA 2. For every L?-selection h € clco F(t,Gh(t)) and for any e > 0
there is f € F(t,Gh(t)) such that

(22) |Zf(t) — Zh(t)| < g/2m,
(23) IGf(t) — Gh(t)| < €.
Proof. Observe that for every t € T we have
t ¢
Th(t) € Sclco F(r,Gh(T))dr = S]—'(T, Gh(T))dr.
0 0

Since ||F(t,Gh(t))|| € L* (Remark 1), then the existence of a required
f(t) € F(t,Gh(t)) satisfying (22) is the first part of the proof of the classical
Filippov-Wazewski Relaxation Theorem (see Aubin—Cellina cf. [1]).

The inequality (23) follows from the previous one and the representation
Gu(t) = £(Z%u)(r) = (Z%u)(1). =

4. Main result
Let us consider the problem of density of the solution set R C W2 n
W,? to the differential inclusion

d2
(24) ~SF €F(t,z) with 2(0)=0=2(r)
in the solution set Reico x C W22 N WO1 2 to the relaxed inclusion
d2
(25) —d—tf € clco F(t,z) with z(0) =0 = z(r).

Let us impose the conditions (H1) (H2) and (H3) on the right hand side
F(t,z) and let us assume that operator L,,, where m(t) is “Lipschitz con-
stant” of the multifunction F(t,-) satisfies (H4). The solution set R is the
set of all # such that (24) is fulfiled almost everywhere in 7" with (4) on the
boundary of T'. Let us denote

(26) Kr(u) = {ve L?:v(t) € F(t,G(v)(t)) a.e. in T}
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and FixKr = {u:u € Kx(u)}. It is clear that for z = Gu
z€RFs iff uweFixKg.
The main result in this paper is the following:

THEOREM 1. Let us assume that for the multifunction F(t,z) the hy-
potheses (H1), (H2), (H3) and (H4) hold. Then

Rr is dense in Recor
with respect to the strong topology L*.

Proof. Our proof is based on the version of Filippov lemma formulated
in Lemma 2.

We shall prove that K : L? — dec(L?) defined as in (26) is nonempty,
closed valued multifunction.

To see that the sets Kx(u) # 0, let v be a measurable selection of multi-
function t — F(t,G(u)(t)). The existence of v follows from the Kuratowski
and Ryll-Nardzewski Theorem while its square integrability from Remark 1.
The closedness of Kx(u) follows from the fact that any L? convergent se-
quence of L?-selections of F(t,Gu(t)) contains, by Remark 1 a pointwisely
convergent subsequence.

Take any h € clco F(t,Gh) and arbitrary € > 0. By Lemma 2 there exists
f € F(t,Gh) such that, |Zf(t) — Zh(t)| < /27 and |G f(t) — Gh(t)| < € for
all feT.

Observe that dist (f(t),F(t,Gf(t)) < duF(t,Gh(t)F(t,Gf(t)) <
m@IGA() — GF(1)] < m(t)e.

By the above version of Filippov Lemma 1 with p(t) = em(t) there exists
f € F(t,Gf(t))such that |GF(t) — Gf(t)| < eGVE(I — mGVE) 'm(t) and

therefore

|G~ Gfls < VEI(I - mGVE) ™ llgaopa2nF|mlse.
But this in turn implies that
21r%\/E

|Gf - Gfls < 1
-9

Im|se.

So, we have

|Gf ~ Ghly <|Gf ~ Gfla +|Gf — Ghlz < ae

1vE
where o = %Vnh +1. =
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