

Grzegorz Bartuzel, Andrzej Frysztkowski

RELAXATION OF THE DIFFERENTIAL INCLUSIONS
OF THE STURM-LIOUVILLE TYPE

Abstract. Let $T = (0; \pi)$, W be a linear normed space of Sobolev type and consider an operator $\mathcal{P} : \mathcal{W} \rightarrow \mathcal{H}$, and a multifunction $\mathcal{F} : \text{dom } \mathcal{F} \subset T \times \mathbf{R}^k \rightarrow \text{cl } (\mathbf{R}^k)$. The paper deals with a problem of the connection of the topological properties of the solution set $\mathcal{R}_{\mathcal{F}}$ for the boundary value problem for a differential inclusion:

Find $w \in W$ such that $\mathcal{P}w \in \mathcal{F}(t, w)$,

and the solution set $\mathcal{R}_{\text{clco } \mathcal{F}}$ of the relaxed problem

Find $w \in W$ such that $\mathcal{P}w \in \text{clco } \mathcal{F}(t, w)$,

where W is a Sobolev space $W^{2,2}([0; \pi]) \cap W_0^{1,2}([0; \pi])$ and $\mathcal{P}w = -\frac{d^2w}{dt^2}$ with Dirichlet boundary data $w(0) = 0 = w(\pi)$. The density of the solution set $\mathcal{R}_{\mathcal{F}}$ in the solution set $\mathcal{R}_{\text{clco } \mathcal{F}}$ is proved.

1. Introduction

Differential inclusions of the form $\mathcal{P}u(t) \in \mathcal{F}(t, u(t))$ where \mathcal{P} is a differential operator are immediate generalization of the differential equations. The theory of properties of ordinary differential inclusions of the first order has been thriving since the early seventies and a lot is known on the existence of solutions and on their properties both in the framework of the Euclidean space \mathbf{R}^n as well as in the framework of the Banach space X .

In general differential inclusions with ordinary differential operators of the higher order are much less examined although a remarkable amount of interest in this field has been observed lately [8], [3].

The present paper deals with linking the topological properties of the solution set to the inclusion

$$(1) \quad -\frac{d^2x(t)}{dt^2} \in \mathcal{F}(t, x(t))$$

with boundary conditions

$$(2) \quad x(0) = 0 = x(\pi),$$

and the solution set to the inclusion boundary value problem

$$(3) \quad -\frac{d^2x(t)}{dt^2} \in \text{clco } \mathcal{F}(t, x(t))$$

with boundary conditions

$$(4) \quad x(0) = 0 = x(\pi).$$

About the multifunctions $\mathcal{F}(t, \cdot)$ we assume that they are Lipschitz with compact but not necessarily convex values in the Euclidean space \mathbf{R}^k . We prove that the set of solutions $\mathcal{R}_{\mathcal{F}}$ is dense in the set of solutions $\mathcal{R}_{\text{clco } \mathcal{F}}$. In section 2 we prove a version of the Filippov lemma taking into account the theory of the Sturm–Liouville equation

$$(5) \quad -\frac{d^2x}{dt^2} - m(t)x = \lambda x, \quad t \in T$$

and the classical Filippov lemma [6]. The main result on density in the strong L^2 topology is formulated and proved in the section 3 while the section 1 contains preliminary facts and definitions which are needed in this paper.

2. Preliminaries

Let $T = (0; \pi)$, \mathcal{L} be the σ -algebra of Lebesgue measurable subsets of T . The spaces of functions integrable with p -th power on T for $1 \leq p \leq \infty$, equipped with the usual norms $|x|_p$, we shall denote by L^p and let $W^{m,p}$ and $W_0^{m,p}$ be Sobolev spaces endowed with the usual norms $|x|_{m,p}$.

Let us fix a function $w \in L^2$ and consider the Sturm–Liouville operator L_w defined for $x \in W^{2,2}$ by

$$(6) \quad (L_w x)(t) := -\frac{d^2x(t)}{dt^2} - w(t)x(t), \quad t \in T.$$

This operator satisfies

$$(7) \quad \langle L_w x, z \rangle = \int_0^\pi (x'(t)z'(t) - w(t)x(t)z(t))$$

for all $x \in W^{2,1}$ and $z \in W_0^{1,\infty}$. Denote the bilinear form on the right hand side of (7) by $a_w(x, z)$ and observe that it can be extended uniquely to a bounded bilinear form on $W_0^{1,2} \times W_0^{1,2}$. It is known that for any real $w \in L^2$ such a form defines unbounded Sturm–Liouville operator in the space $\mathcal{H} := L_X^2$ with countable real point spectrum $\lambda_0 < \lambda_1 < \dots, \lim_{k \rightarrow \infty} \lambda_k = +\infty$.

Moreover, we may choose the positive eigenfunction x_0 corresponding to the eigenvalue λ_0 (c.f. [10], [4], [5]).

The simplest Sturm–Liouville operator is the operator $L_0 x = -\frac{d^2x}{dt^2}$ (for $w = 0$) with the spectrum $\lambda_0 = 1, \lambda_1 = 4, \lambda_2 = 9, \dots$, and

$$x_0 = \sqrt{\frac{2}{k\pi}}[\sin t, \dots, \sin t].$$

The equation

$$(8) \quad L_0 x = u$$

with the boundary conditions (4)

$$(9) \quad x(0) = 0 = x(\pi)$$

has a solution $x = Gu \in W^{2,1} \cap W_0^{1,2}$ for any $u \in L^1$. This solution is expressed by the formula

$$(10) \quad Gu(t) = \int_0^\pi \mathcal{G}_0(t, s)u(s)ds$$

where

$$\mathcal{G}_0(t, s) = \begin{cases} \frac{1}{\pi}t(\pi - s) & \text{for } t \leq s, \\ \frac{1}{\pi}s(\pi - t) & \text{for } t > s, \end{cases}$$

is the corresponding Green function.

The operator $G : L^2 \rightarrow W^{2,2}$ is linear, and bounded, and positive, *i.e.* for any function $u \leq 0$ we have $Gu \leq 0$ where $u = (u_1, \dots, u_k) \leq 0$ means that all $u_i \leq 0$, $i = 1, \dots, k$. In particular, it implies that for any $u \in L^2$ the following estimate

$$(11) \quad |Gu(t)| \leq G(|u\sqrt{k}|)(t) \quad \text{a.e. in } \bar{T}$$

holds.

Let us consider the differential inclusion

$$(12) \quad -\frac{d^2x}{dt^2} \in \mathcal{F}(t, x),$$

where the multifunction $\mathcal{F}(t, x)$ satisfies the following hypotheses:

- (H1) the sets $\mathcal{F}(t, x)$ are compact subsets of \mathbf{R}^k for any $t \in \bar{T}$ and $x \in \mathbf{R}^k$, and the multifunctions $t \mapsto \mathcal{F}(t, x)$ are measurable for any $x \in \mathbf{R}^k$;
- (H2) there exists $m \in L^2$ such that for any $x, y \in \mathbf{R}^k$ we have

$$d_H(\mathcal{F}(t, x), \mathcal{F}(t, y)) \leq m(t)|x - y|,$$

where $d_H(K, L)$ stands for Hausdorff distance between sets K and $L \subset \mathbf{R}^k$;

$$(H3) \quad \|\mathcal{F}(t, 0)\| := \sup \{|x| : x \in \mathcal{F}(t, 0)\} \leq a(t) \quad \text{a.e. and } a \in L^2.$$

Remark 1. Let us notice that for any measurable selection $v(t) \in \mathcal{F}(t, Gu(t))$ the hypothesis (H2) implies

$$\text{dist}(v(t), \mathcal{F}(t, 0)) \leq m(t)|G(u)(t)|$$

for a.e. $t \in T = [0; \pi]$. Then from (H3) follows an estimate

$$|v(t)| \leq a(t) + m(t)|G(|u|\sqrt{k})(t)|$$

and further $v \in L^2$. ■

On the positive measurable function m we impose the hypothesis (H4):

$$(13) \quad \gamma := \sqrt{k} \left[\frac{1}{3\pi} \int_0^\pi m^2(t) t^2 (\pi - t)^2 dt \right]^{\frac{1}{2}} < 1$$

or

$$(14) \quad |m|_2 < \frac{4}{\pi} \sqrt{\frac{3}{k\pi}} \quad \text{or} \quad |m|_\infty < 3\sqrt{10}/\pi^2\sqrt{k}.$$

Remark 2. The hypothesis (H4) is a sufficient condition for

$$1 \notin \sigma(mG\sqrt{k})$$

i.e. for the invertability of the operator $I - mG\sqrt{k}$ in a Banach algebra \mathcal{BH} of all linear bounded operators $S : \mathcal{H} \rightarrow \mathcal{H}$. ■

Let us consider the boundary value problem to the inclusion (12) with boundary conditions (4). By a solution of the problem (12), (4) we mean any function $x \in W^{2,2}$ such that

$$(15) \quad (L_0 x)(t) \in \mathcal{F}(t, x(t)) \quad \text{a.e. in } T = (0; \pi).$$

In the present paper we deal with properties of the solution sets $\mathcal{R}_{\mathcal{F}}$ and $\mathcal{R}_{\text{clco } \mathcal{F}}$ of the problem (12), (4) and the problem (3), (4) respectively.

We prove that $\mathcal{R}_{\mathcal{F}}$ is dense in the strong L^2 topology in the solution set $\mathcal{R}_{\text{clco } \mathcal{F}}$.

Recall the notion of decomposability. The set $\mathcal{K} \subset L^2$ is called decomposable, if

$$(16) \quad \chi_A u + (1 - \chi_A)v \in \mathcal{K}$$

for any $u, v \in \mathcal{K}$ and $A \in \mathcal{L}$. The family of all non-empty, closed, and decomposable subsets of L^2 let us denote by $\text{dec}(L^2)$. Let us observe that to the multifunction \mathcal{F} there corresponds the map $\mathcal{K}_{\mathcal{F}} : L^2 \rightarrow \text{dec}(L^2)$ given by

$$\mathcal{K}_{\mathcal{F}}(x) = \{f \in L^2 : f(t) \in \mathcal{F}(t, Gx(t)) \text{ a.e.}\}$$

3. A version of the Filippov lemma

Let us assume that the problem (1) and the operator L_m satisfy (H1), ..., (H4). The fundamental lemma in this paper is as follows:

LEMMA 1. Assume (H1), ..., (H4). Let f_0 be an arbitrary element in L^2 and $p \in L^2$ be such that $\text{dist}(f_0, \mathcal{F}(t, Gf_0(t))) \leq p(t)$ a.e.. Then there exist a solution $x \in W_0^{1,2}([0; \pi]) \cap W^{2,2}([0; \pi])$ of (1) such that

$$(17) \quad |x(t) - Gf_0(t)| \leq G\sqrt{k}(I - mG\sqrt{k})^{-1}p(t) \quad \text{a.e.} \quad \text{in } T,$$

$$(18) \quad \left| -\frac{d^2x}{dt^2}(t) - f_0(t) \right| \leq (I - mG\sqrt{k})^{-1}p(t) \quad \text{a.e.} \quad \text{in } T.$$

Proof. Take into account the Filippov iterations technique. Observe that for any $p \in L^2$

$$|mG\sqrt{k}p(t)|_2 \leq \gamma|p|_2 \quad \text{where by (H4)} \quad \gamma < 1.$$

So the series

$$(19) \quad \beta(t) = \sum_{\ell=0}^{\infty} [(mG\sqrt{k})^\ell p](t) \in L^2$$

is convergent in L^2 as well as pointwisely.

We shall construct $x = Gf$, where $f \in L_X^2 \cap \text{Fix } \mathcal{K}_F$.

Since

$$\text{dist}(f_0(t), \mathcal{F}(t, Gf_0(t))) \leq p(t) \quad \text{a.e.}$$

there exists an L^2 -selection f_1 of $\mathcal{F}(t, Gf_0(t))$ such that

$$|f_1(t) - f_0(t)| \leq p(t) \quad \text{a.e.}$$

Then

$$|Gf_1(t) - Gf_0(t)| \leq G\sqrt{k}p(t) \quad \text{a.e.}$$

and therefore, by (H2),

$$\text{dist}(f_1(t), \mathcal{F}(t, Gf_1(t))) \leq mG\sqrt{k}p(t) \quad \text{a.e.}$$

Next, there exists an L^2 -selection f_2 of $\mathcal{F}(t, Gf_1(t))$ such that

$$|f_1(t) - f_2(t)| \leq mG\sqrt{k}p(t) \quad \text{a.e.}$$

and hence

$$\text{dist}(f_2(t), \mathcal{F}(t, Gf_2(t))) \leq (mG\sqrt{k})^2 p(t) \quad \text{a.e.}$$

Using the induction argument, we can find a sequence $\{f_n\}$ of L^2 -selections such that

$$(20) \quad |f_{n+1}(t) - f_n(t)| \leq (mG\sqrt{k})^n p(t) \quad \text{a.e.},$$

and hence

$$\text{dist}(f_{n+1}(t), \mathcal{F}(t, Gf_{n+1}(t))) \leq (mG\sqrt{k})^{n+1} p(t) \quad \text{a.e.}$$

Take

$$f = f_0 + \sum_{n=0}^{\infty} (f_{n+1} - f_n)$$

and observe that $f \in L^2_X \cap \text{Fix } \mathcal{K}_{\mathcal{F}}$. The inequalities (17) and (18) are now a straightforward conclusion of (19) and (20). ■

Denote

$$(21) \quad \mathcal{I}f(t) := \int_0^t f(s) ds.$$

LEMMA 2. *For every L^2 -selection $h \in \text{clco } \mathcal{F}(t, Gh(t))$ and for any $\varepsilon > 0$ there is $f \in \mathcal{F}(t, Gh(t))$ such that*

$$(22) \quad |\mathcal{I}f(t) - \mathcal{I}h(t)| < \varepsilon/2\pi,$$

$$(23) \quad |Gf(t) - Gh(t)| < \varepsilon.$$

Proof. Observe that for every $t \in T$ we have

$$\mathcal{I}h(t) \in \int_0^t \text{clco } \mathcal{F}(\tau, Gh(\tau)) d\tau = \int_0^t \mathcal{F}(\tau, Gh(\tau)) d\tau.$$

Since $\|F(t, Gh(t))\| \in L^2$ (Remark 1), then the existence of a required $f(t) \in F(t, Gh(t))$ satisfying (22) is the first part of the proof of the classical Filippov–Ważewski Relaxation Theorem (see Aubin–Cellina cf. [1]).

The inequality (23) follows from the previous one and the representation $Gu(t) = \frac{t}{\pi}(\mathcal{I}^2 u)(\pi) - (\mathcal{I}^2 u)(t)$. ■

4. Main result

Let us consider the problem of density of the solution set $\mathcal{R}_{\mathcal{F}} \subset W^{2,2} \cap W_0^{1,2}$ to the differential inclusion

$$(24) \quad -\frac{d^2 x}{dt^2} \in \mathcal{F}(t, x) \quad \text{with} \quad x(0) = 0 = x(\pi)$$

in the solution set $\mathcal{R}_{\text{clco } \mathcal{F}} \subset W^{2,2} \cap W_0^{1,2}$ to the relaxed inclusion

$$(25) \quad -\frac{d^2 x}{dt^2} \in \text{clco } \mathcal{F}(t, x) \quad \text{with} \quad x(0) = 0 = x(\pi).$$

Let us impose the conditions (H1)–(H2) and (H3) on the right hand side $\mathcal{F}(t, x)$ and let us assume that operator L_m , where $m(t)$ is “Lipschitz constant” of the multifunction $\mathcal{F}(t, \cdot)$ satisfies (H4). The solution set $\mathcal{R}_{\mathcal{F}}$ is the set of all x such that (24) is fulfilled almost everywhere in T with (4) on the boundary of T . Let us denote

$$(26) \quad \mathcal{K}_{\mathcal{F}}(u) = \{v \in L^2 : v(t) \in \mathcal{F}(t, G(u)(t)) \text{ a.e. in } T\}$$

and $\text{Fix } \mathcal{K}_{\mathcal{F}} = \{u : u \in \mathcal{K}_{\mathcal{F}}(u)\}$. It is clear that for $x = Gu$

$$x \in \mathcal{R}_{\mathcal{F}} \text{ iff } u \in \text{Fix } \mathcal{K}_{\mathcal{F}}.$$

The main result in this paper is the following:

THEOREM 1. *Let us assume that for the multifunction $\mathcal{F}(t, x)$ the hypotheses (H1), (H2), (H3) and (H4) hold. Then*

$$\mathcal{R}_{\mathcal{F}} \text{ is dense in } \mathcal{R}_{\text{clco } \mathcal{F}}$$

with respect to the strong topology L^2 .

Proof. Our proof is based on the version of Filippov lemma formulated in Lemma 2.

We shall prove that $\mathcal{K} : L^2 \rightarrow \text{dec}(L^2)$ defined as in (26) is nonempty, closed valued multifunction.

To see that the sets $\mathcal{K}_{\mathcal{F}}(u) \neq \emptyset$, let v be a measurable selection of multifunction $t \mapsto \mathcal{F}(t, G(u)(t))$. The existence of v follows from the Kuratowski and Ryll-Nardzewski Theorem while its square integrability from Remark 1. The closedness of $\mathcal{K}_{\mathcal{F}}(u)$ follows from the fact that any L^2 convergent sequence of L^2 -selections of $\mathcal{F}(t, Gu(t))$ contains, by Remark 1 a pointwisely convergent subsequence.

Take any $h \in \text{clco } \mathcal{F}(t, Gh)$ and arbitrary $\varepsilon > 0$. By Lemma 2 there exists $f \in \mathcal{F}(t, Gh)$ such that, $|\mathcal{I}f(t) - \mathcal{I}h(t)| < \varepsilon/2\pi$ and $|Gf(t) - Gh(t)| < \varepsilon$ for all $f \in T$.

Observe that $\text{dist}(f(t), \mathcal{F}(t, Gf(t))) \leq d_H \mathcal{F}(t, Gh(t)) \mathcal{F}(t, Gf(t)) \leq m(t)|Gh(t) - Gf(t)| \leq m(t)\varepsilon$.

By the above version of Filippov Lemma 1 with $p(t) = \varepsilon m(t)$ there exists $\bar{f} \in \mathcal{F}(t, G\bar{f}(t))$ such that $|G\bar{f}(t) - Gf(t)| \leq \varepsilon G\sqrt{k}(I - mG\sqrt{k})^{-1}m(t)$ and therefore

$$|G\bar{f} - Gf|_2 \leq \sqrt{k} \|(I - mG\sqrt{k})^{-1}\|_{L^2 \rightarrow L^2} 2\pi^{\frac{3}{2}} |m|_1 \varepsilon.$$

But this in turn implies that

$$|G\bar{f} - Gf|_2 \leq \frac{2\pi^{\frac{3}{2}} \sqrt{k}}{1 - \gamma} |m|_1 \varepsilon.$$

So, we have

$$|G\bar{f} - Gh|_2 \leq |G\bar{f} - Gf|_2 + |Gf - Gh|_2 \leq \alpha \varepsilon$$

where $\alpha = \frac{2\pi^{\frac{3}{2}} \sqrt{k}}{1 - \gamma} |m|_1 + 1$. ■

References

- [1] J. P. Aubin and A. Cellina, *Differential Inclusions*, Springer, Berlin (1984).

- [2] G. Bartuzel and A. Fryszkowski, On existence of solutions for inclusions $\frac{d^2u}{dt^2} \in F(x, \nabla u)$. In R. März, editor, *Proc. of the Fourth Conf. on Numerical Treatment of Ordinary Differential Equations*, pages 1–7, Sektion Mathematik der Humboldt Universität zu Berlin, Berlin, Sep. 1984.
- [3] G. Bartuzel and A. Fryszkowski, A topological property of the solution set to the Sturm-Liouville differential inclusions, *Demonstratio Math.*, 28(4) (1995) 903–914.
- [4] F. Berezin and M. Shubin, *Schrödinger Equation*, Moscow Univ. Publ., Moscow, 1983.
- [5] R. Dautray and J. Lions, *Mathematical Analysis and Numerical Methods for Science and Technology*, Springer, Berlin, 1988.
- [6] A. F. Filippov, *Differjencial'nyje uravnenija s rozryvnoj pravoj čast'ju: Differential equations with discontinuous right hand side*, Nauka, Moskva, 1985.
- [7] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps. *Studia Math.*, 76 (1983) 163–174.
- [8] A. Granas, R. Gunther, and J. Lee, Nonlinear boundary value problems for ordinary differential equations, *Dissertationes Math.*, 244, 1981.
- [9] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors. *Bull. Acad. Polon. Sci.,* 13, (1965), 397–403.
- [10] M. Reed and B. Simon, *Methods of Modern Mathematical Physics*, Academic Press, New York, 1979.

INSTITUTE OF MATHEMATICS
 WARSAW UNIVERSITY OF TECHNOLOGY
 Plac Politechniki 1
 00 661 WARSZAWA, POLAND

Received August 18, 1997.