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ON CHARACTERIZING THE EXPONENTIAL 
DISTRIBUTION BY LINEARITY OF REGRESSION 

FOR NON-ADJACENT ORDER STATISTICS 

Abstract. Let X i , X 2 , - . - , X n be a random sample from an absolutely continuous 
distribution with the corresponding order statistics Xi:n < X2-.n < • • • < Xn.n- It is shown 
that the distribution is exponential if and only if E(Xk+r-n\Xk-n) = X^n + \k,r,n) f°r a 

pair of triplets (k, r, n); r > 3 - two cases are considered. 

1. Introduction 
There are many characterizations of the exponential distribution based 

on properties of order statistics, among them characterizations involving 
some dependency assumptions - see for instance Galambos and Kotz (1978) 
or Azlarov and Volodin (1986). 

It is well known that for a sample from an exponential distribution Xi:n, 
~ ...,Xn:n — Xn-i:n are mutally independent. Consequently, for 

an exponential sample, the regression of Xj:n on Xj : n ( j > i) is linear. A 
natural question to ask is if this happens only for the exponential distribu-
tion. 

Fisz (1958) proved that if X\ and Xi are independent identically dis-
tributed with an absolutely continuous distribution and if X\-_2 and X-i-.i — 
Xi:2 are independent then X\ has an exponential distribution. Further ex-
tensions of this theorem were done by Rogers (1963) and Tanis (1964). 

Ferguson (1967) proved the following theorem: 
if Xi, X2, •. •, Xn is a sample from a continuous distribution and 

F(Xk+i:niXk:n) = aXk-.n + & for some 1 < k < n, 
then only the following three cases are possible: 
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1. a = 1 =i> X\ has an exponential distribution, 
2. a > 1 X\ has a Pareto distribution, 
3. a < 1 =i> Xi has a power distribution. 

(One comment is in order. Ferguson states his result assuming that for some 
1 < k < n, E(Xk:n\Xk+i-.n) = aXk+i — b instead of assuming the regression 
Xk+i-.n on Xk-.n and arrrives at distributions dual to that given in 1-3. Here 
the regression X^+i-.n on Xk-.n is used to show the resemblance to the next 
theorem.) 

As pointed out in the monograph Arnold, Balakrishnan, Nagaraja (1992) 
the question raised by Ferguson (1967) about analogous characterizations for 
non-adjacent order statistics has not been settled until the very recent paper 
by Wesolowski and Ahsanullah (1997). They solved the problem considering 
linearity of regression of Xk+2:n on Xk.n: 

iiX1,X2,..., Xn is a sample from an absolutely continuous distribution 
and E(Xk+2:n\Xk:n) = aXk:„ + b for some 1 < k < n - 1, 

t h e n the same three cases 1 . - 3 . are the only possible. 

In this paper linearity of regression of Xk+r:n on Xk:n for r > 2 is con-
sidered. However instead of a single regression condition, a pair of identities 
E(Xki+rr.n. \Xki:ni) = = Xki :n.i "f bi, i — 1,2, is considered, with suitably 
chosen triplets r,, n t) , i = 1,2. In Section 2 the case of = 3 ,1 < fcj < 
rii — 3, i = 1,2, n\ — ki — is studied. In this case a complete char-
acterization of exponential distribution by a pair of regression conditions 
is given. In Section 3 spacings greater than 3 are also allowed but only for 
special choices of and ki i.e. n\ — k\ = — + 1-

Let us point out that characterizations connected with regressional prop-
erties of order statistics are widely investigated nowadays. See for instance: 
Beg and Balasubramanian (1990), Roy and Mukherjee (1991), El-Din, Mah-
moud and Youssef (1991), Swanepoel (1991), Pakes, Fakhry, Mahmoud and 
Ahmad (1996). 

2. A n y triplets wi th spacing equal 3 
Consider i.i.d. random variables X\,...,Xn with a corresponding dis-

tribution function (df) F. As mentioned in Introduction for an exponential 
distribution we have E(Xk+r-.n\Xk-.n) = Xk:n + b. Here we treat the converse 
implication in the case r = 3. 

THEOREM 1. Assume that F is absolutely continous and J) 
< 00, i = 1,2, where fci, k2 G { 1 , . . . , n- 3}, h ^ k2. If E(Xki+3:n\Xki:n) = 
Xki:n + bi , i = 1,2, where 61,62 are some real numbers then F is an expo-
nential df. 
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P r o o f . Using the formulas for the joint density function of X t : n and Xj:n 

and the density function of Xi:n (see for instance the monograph Arnold, 
Balakrishnan, Nagaraja (1992)) we can write 

(1) E(Xk+3..n\Xk:n = x) = 

= ( n ~ ~ k ~ 2 ) I ^ W - m 2 F ^ ( y ) f ( y ) d y 

where F = 1 — F and f is the density of F. Let (i = inf{x : F(x) > 0 } and 
v = sup{x : F(x) < 1} . Consequently by (1) 

(2) x + b = 

= " ' k ' I M * ) - - (v)f(y) iv 

and then there does not exist an interval (c, d), fx < c < d < v, over which 
F is constant since the left hand side of (2) is increasing in such an interval 
and the right side is constant, while both sides are continuous, so that they 
could not possibly be equal at the next point of increase of F. Thus (¿i, u) 
is the support of F and the equation 

= - w r - ^ w m H 

holds true for any x 6 (/x, i/). 
The df F is absolutely continuous so f — F' ¿-almost everywhere on 

R , where L denotes the Lebesgue measure. Differentiating both sides of (3) 
with respect to x, we get for ¿-almost all x E (fi, v) 

V 

( 4 ) - 2f{x) J y[F(z) - F(y)]Fn-k-3(y)f(y) dy = 
X 

_ -2Fn-k~1(x)f(x)(x + b) 2Fn~k{x) 

(•n-k- l ) ( n - k - 2 ) (n - k)(n - k - l ) ( n - k - 2 ) ' 

Observe that (4) implies that / equals to a function continuous on (/x, i/) so 
we can extend / to the whole interval ( f i , u) in such a way that f(x) = F'(x) 
and (4) hold true for any x G (fi, v). Since (4) implies / > 0 in (/i, v), thus 
we can divide both sides of (4) by — 2 f { x ) obtaining 

V 

( 5 ) J - F(y)]Fn-k-3(y)f(y) dy = 
X 

^n-fc-i(a;)(a: + 6) Fn~k(x) 

( n - k - l ) ( n - Jfc - 2 ) (n - k)(n - k - 1 ) ( n — k — 2 )f(x)' 
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Since the left-hand side of (5) is differentiable then / ' exists in (fx, v). Diffe-
rentiating (5) and simplifying we have 

(6) $ yF^'3 ( y ) f ( y ) dy = + 

2Fn~k-1(x) Fn~k(x)f(x) 
(n-k- 1 )(n - k - 2 ) / (x) (n - fc)(n - k - l)(n - k - 2 ) / 3 ( x ) ' 

Thus / " exists. If we differentiate both sides of (6) and simplify, then we 
obtain the following equation 

(7) c f { x ) - 3 F(x)f\x){n - k){n - k - 1) - 3 F 2 ( x ) f ( x ) f ( x ) ( n - k)+ 

+F3(x)f"(x)f(x) - 3Fs(x)f'2(x) = 0 

where c = b(n - k)(n - k — 1 )(n - k — 2). Now denoting y = F (i.e. / — 
—y',f = -y" i f ' — -y'") we get by (7) a third order differential equation 
in (/¿, u) 

(8) cy'5(x)-3(n-k)(n-k-i)yy'4u(n-k)Wy'V+y3y'y'''-3y3y"2 = o. 

Subst i tu t ing u(y) = y' (i.e. y" = u'u,y'" = u"u2 -f- u'2u) in (8) and 
dividing both sides by u2 (y' = 0 is impossible since it yields / = 0) we have 

(9) y3uu" - 2 y3u'2 + 3 (n - k)y2uu' - 3 (n - k){n - k - 1 )yu2 - cu3 = 0. 

Without losing generality we can assume k2 > k\. Consequently we have 
two differential equations of the third order 
(10) 

( y3uu" - 2y 3 u' 2 + 3(n - k^uu' - 3(n - ^ ^ ( n - fci - l ) i /u 2 - c i « 3 = 0 
\ y3uu" - 2y3u'2 + 3(n - k2)y2uu' - 3(n - fc2)(n - k2 - l)yu2 - c 2 u 3 = 0 

where c,- - 2>,(n — ¿¿)(ra - k{ - l)(n - ki — 2) for ¿ = 1 , 2 . 
Subtracting them and then dividing both sides by uy2 (y = 0 is impos-

sible in (//, i/)) we get 

( 1 1 ) (k2 - h)u' - = (ci - c2)-^u2 

where g = (n — ki)(n — k\ — 1) — (n — fc2)(n — k2 — 1). 
The equation (11) is of a Bernoulli type. Using the routine technique we 

get the solution 

yk2-*i 
(12) y' = 

I i r & T T y ^ - ' + D 
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which can be rewritten as 

(13) / (*) = 
F ^ ( x ) 

.1 ci ~C1 F Ij-̂ XI -1/ 

The left-hand side of (13) is always non-negative in (/¿, v). Upon taking 
limit for x —>• v~ the right-hand side has the same sign as —D (since F(x) —> 
0). Thus -D > 0. 

Solving (12) we get 

(14) \ \ C l , M v ) + , D „ y 1 ' ^ 1 = * + £ 

Let us consider two possible cases: 

First case: D = 0 

lnF(x) = 3 9 - } k 2 - J 1 \ x + E) 

F{x) = exp 

Taking limit x —• we get 

1 — exp 

C2 - cl 
- (fca ~ ^1) 

c2 - cl 

g - { k 2 - h ) 

(x + E) 

C<i - cl 
Thus E = —fi and 

(15) F(x) = exp for x G ( / / , f ) . 
C2 - Cl 

Taking limit x —> i/~ in (15) we observe that its left-hand side equals 
zero, while the right-hand side remains positive. Hence v = 00 and we get 
the exponential distribution. 

Second case: D < 0 
Inserting (14) in (10) upon performing suitable differentations we get 

1 c2 - Cl 
- (A;2 - fci) 

[ - 2 - 3(n - kx)(n - h - 2)] - ci + 

Dy (n - fci^-Stn-fciXn-fci-l)] =0 

which is a contradiction since y can not be constant on (p, v). Hence D < 0 
is impossible and the only solution is the exponential distribution. • 

R e m a r k . Theorem 1 can be easily extended to the case 

E(Xki+3:ni l^fciinj) = xki:ni +bi, i = 1,2 
for some 1 < ki < ni — 3 and n\ — k\ ^ ri2 — • 
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3. Special triplets with spacings > 3 
The case of r > 3 is much more complicated. Applying here the method 

used in Section 2 we arrive at an (r — 2) order differential equation and we 
do not know how to solve it in general. Here we present a solution only for 
special choices of ni and ki: n\ — = n2 — k2 + 1 • 

THEOREM 2. Let ki,k2,ni,n2 be natural numbers such that 1 < fc,- < 
n{ — r for ¿ = 1 , 2 and r > 2. Assume that F is absolutely continuous and 

¡:ni :ni ~\~bi, i — 1,2, where 62 
are some real numbers and n\ — k\ = n2 — k2 + 1, then F is an exponential 
df. 

P r o o f . Let (/i, v) be the support of F. Then 

E(Xk1+r:n1\Xk1:n1 = x) - X + bi = 

Hence 

V 
= \y[F(x) - F(y)]r~1Fn2-k2-r+\y)f(y)dy. 

X 

Differentiating both sides of (16) we get 
( 1 7 ) + 

(r - l)!(na - k2 - r + 1 ) ! 1 _ 
(n2 -k2 + 1)! W -

V 

= (r - l ) f ( x ) J ^ ( z ) - F{y)]T-2[-F(y)]Fn2-k2-r{y)f{y) dy. 
X 

Substituting -F(y) = [F(a;) - F(y)] - F(x) in (17) and dividing both 
sides by (r - 1 )f(x) we get 
( 1 8 ) 

(r - 2)!(n2 - k2 - r + 1)! Fn*~k*+1(x) _ 
+ (n2 — k2 + 1)! /(*) 
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v 
= - F{y)]r-1Fn>-k*-r(y)f(y)dy+ 

X 

-F(x)\y[F(x) - F(y)]r-2Fn>-k*-r(y)f(y)dy. 
X 

Upon assumptions we can write 

V 

= S y[F(x) - F(y)]r-1Fn2~k2-r(y)f(y)dy. 
X 

Differentiating both sides of (19) and dividing by (r — 1 )f(x) we have 

/on^ ( r - 2 ) ! ( n 3 - f c 3 - r ) ! p n , - f a - l f , V T , h \ (r-2)! (w a -k 2 -r)! (x) _ 
(n2-fc2-l)! * KxKx + °2) („ 2-k2)< f(x) 

v 
= \y[F(x) - F(y)Y-2Fn>-k>-r{y)f{y)dy. 

X 

Substituting (19) and (20) to (18) and simplyfing we arrive at 

(21) ( n 2 - k2 - r + 1 ) ( n 2 - k2 + 1 )f(x)(b2 - = rF(x). 

Equation (21) is easy to solve if we substitute y = F(x) (i.e. —y' = / (x ) ) .The 
only solution turns out to be the df of the exponential distribution: F(x) = 
exp[tf(x - /i)] for x € (p, oo) where 6 = (n2_fe2_r+1)(-;_fc2+1)(62_bi) • • 
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