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ON CHARACTERIZING THE EXPONENTIAL
DISTRIBUTION BY LINEARITY OF REGRESSION
FOR NON-ADJACENT ORDER STATISTICS

Abstract. Let X;,Xo,...,Xn be a random sample from an absolutely continuous
distribution with the corresponding order statistics X1.n < X2:n < ... < Xn:n. It is shown
that the distribution is exponential if and only if E(Xt4rnlXkn) = X + b(k,rn) for a
pair of triplets (k,r,n); r > 3 - two cases are considered.

1. Introduction

There are many characterizations of the exponential distribution based
on properties of order statistics, among them characterizations involving
some dependency assumptions - see for instance Galambos and Kotz (1978)
or Azlarov and Volodin (1986).

It is well known that for a sample from an exponential distribution Xj.,,
X2:n — X1inye ooy Xnen — Xn—1.n are mutally independent. Consequently, for
an exponential sample, the regression of X;., on X;., (5 > ¢) is linear. A
natural question to ask is if this happens only for the exponential distribu-
tion.

Fisz (1958) proved that if X; and X, are independent identically dis-
tributed with an absolutely continuous distribution and if Xy., and X3.9 —
Xi.2 are independent then X; has an exponential distribution. Further ex-
tensions of this theorem were done by Rogers (1963) and Tanis (1964).

Ferguson (1967) proved the following theorem:

if X1, X,,..., X, is a sample from a continuous distribution and
E(Xk41:0|Xk:n) = a Xk + b for some 1 < k < n,
then only the following three cases are possible:
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1. @ = 1 = X, has an exponential distribution,
2. a > 1 = X, has a Pareto distribution,
3.a <1 = X; has a power distribution.

(One comment is in order. Ferguson states his result assuming that for some
1<k <n, E(Xen!|Xks1:n) = aXgq1 — b instead of assuming the regression
Xk+1:n o0 Xg.n, and arrrives at distributions dual to that given in 1-3. Here
the regression Xy41:n on Xi.p is used to show the resemblance to the next
theorem.)

As pointed out in the monograph Arnold, Balakrishnan, Nagaraja (1992)
the question raised by Ferguson (1967) about analogous characterizations for
non-adjacent order statistics has not been settled until the very recent paper
by Wesolowski and Ahsanullah (1997). They solved the problem considering
linearity of regression of X49.n 0n Xp.p:

if Xy, Xs,...,X, is a sample from an absolutely continuous distribution
and F(Xg42:0|Xkin) = aXgp +bforsomel <k <n-—1,
then the same three cases 1. - 3. are the only possible.

In this paper linearity of regression of Xx4rn on Xg.p, for r > 2 is con-
sidered. However instead of a single regression condition, a pair of identities
E(Xkiring | Xkin;) = = Xkyn; + biyi = 1,2, is considered, with suitably
chosen triplets (k;,7i,n:),? = 1,2. In Section 2 the case of ; = 3,1 < k; <
n; — 3,0 =1,2,n1 — k1 # ny — ky is studied. In this case a complete char-
acterization of exponential distribution by a pair of regression conditions
is given. In Section 3 spacings greater than 3 are also allowed but only for
special choices of n; and k; i.e. ny — ky = ny — kg + 1.

Let us point out that characterizations connected with regressional prop-
erties of order statistics are widely investigated nowadays. See for instance:
Beg and Balasubramanian (1990), Roy and Mukherjee (1991), El-Din, Mah-
moud and Youssef (1991), Swanepoel (1991), Pakes, Fakhry, Mahmoud and
Ahmad (1996).

2. Any triplets with spacing equal 3

Consider i.i.d. random variables X1,...,X, with a corresponding dis-
tribution function (df) F. As mentioned in Introduction for an exponential
distribution we have E(Xkyrn|Xk:in) = Xk:n +b. Here we treat the converse
implication in the case r = 3.

THEOREM 1. Assume that F is absolutely continous and E(| Xk, +3:n|)
< 00,1 =1,2, where k1, ks € {].,. ..,n—3}, k1 # ko. IfE(in_*.;:,:n'inm) =
Xkn + bi y 3= 1,2, where by, by are some real numbers then F is an ezpo-
nential df.
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P roof. Using the formulas for the joint density function of X;., and X;.,,
and the density function of X;., (see for instance the monograph Arnold,
Balakrishnan, Nagaraja (1992)) we can write
(1) E(Xk+3:'n,|Xk:n = 2}) =

n—kKn-k-Dn-k-2)F .- - ke
= (Bt R D {4F @) - PP ) ) dy

xr
where P = 1 — F and f is the density of F. Let p = inf{z : F(z) > 0} and
v = sup{z : F(z) < 1}. Consequently by (1)
(2) =z+b=

_(n-k)n Q—F’i _—kii()" —k-2) V ylF(z) = F)PF**=3(9) f(v) dy

T

and then there does not exist an interval (c,d), 4 < ¢ < d < v, over which
F is constant since the left hand side of (2) is increasing in such an interval
and the right side is constant, while both sides are continuous, so that they
could not possibly be equal at the next point of increase of F. Thus (g, v)
is the support of F and the equation

2F"k(z)(z + b)
®) FBmF-DrE-F=2)

= {y[F(z) - Fy)PPF"*=3(y) f(y) dy

holds true for any z € (p,v).

The df F is absolutely continuous so f = F' L-almost everywhere on
R, where L denotes the Lebesgue measure. Differentiating both sides of (3)
with respect to z, we get for L-almost all z € (y,v)

@) —2f(2) | y[F(z) - F@IF"*(9)f(y)dy =

_ =2F"F1(g) f(z)(z + b) N 2F"k(z)

T (n—-k-1)(n-k-2) (n—k)Y(n—k-1)(n-k-2)
Observe that (4) implies that f equals to a function continuous on (g, v) so
we can extend f to the whole interval (y,v) in such a way that f(z) = F'(z)
and (4) hold true for any z € (p,v). Since (4) implies f > 0 in (g, v), thus
we can divide both sides of (4) by —2f(z) obtaining

v

5)  JolF(=) - F@IF" () f(y) dy =

_ Frk=Y(z)(z + b) B Fr=%(z)
T (n-k-1)(n-k-2) (n-k)(n-k-1)(n-k-2)f(z)
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Since the left-hand side of (5) is differentiable then f’ exists in (g, v). Diffe-
rentiating (5) and simplifying we have

v n—k—2 )z
(6) §yFn_k_3(y)f(y)dy -4 G _(k )_( 2)+ -
_ 2P+ (z) _ Fr*(z)f'(2)
(n—k-1)(n-k-2)f(c) (n-k)n-k-1)(n-k-2)%z)

Thus f" exists. If we differentiate both sides of (6) and simplify, then we
obtain the following equation

(7)  cf*(2) = 3F(2)f*(a)(n = k)(n — k = 1) = 3F(2) f'(2) f*(2)(n — k)+
+F(2)f"(2)f(z) = 3F(2) f*(2) = 0

where ¢ = b(n — k)(n — k — 1)(n — k — 2). Now denoting y = F (i.e. f =
=y, = =y", f" = —y") we get by (7) a third order differential equation
in (p,v)

(8) cy's(:v)—3(n—k)(n—k—1)yy'4+3(n—k)+y2y'2y"+y y ylll 3y3y112 0.

Substituting u(y) = ¥’ (i.e. ¥" = vu,y" = v'u? + wu) in (8) and
dividing both sides by u? (y' = 0 is impossible since it yields f = 0) we have

(9) vPuu" - 2934 + 3(n - k)y?ur’ — 3(n — k)(n — k — Dyu? — cud = 0.

Without losing generality we can assume k; > k. Consequently we have
two differential equations of the third order

(10)

yuu” — 2y%u? + 3(n — k1 )yPuw’ — 3(n — k1)(n — k1 - yu? - clu =0

yuu 2y3 2 +3(n—k2)y?uu' — 3(n—k2)(n— k2 — Dyu? —cou® =0
where ¢; = bj(n — k;)(n - ki — 1)(n — k; — 2) for ¢ = 1, 2.

Subtracting them and then dividing both sides by uy? (y = 0 is impos-
sible in (p,v)) we get

(11) (k2 et kl)u, —_ 3g§u = (cl — 02)_y1_2u2

where g = (n— k1)(n—ky — 1) — (n— ko)(n — ka — 1).
The equation (11) is of a Bernoulli type. Using the routine technique we
get the solution

y;2—’;1

1 Ca—C; ;—Lr_ -1
3 g=(ka— k:jy n +D

(12) y =
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which can be rewritten as
F&-F (2)

(13) T P il —

The left-hand side of (13) is always non-negative in (u,v). Upon taking
limit for £ — v~ the right-hand side has the same sign as —D (since F(z) —
0). Thus —D > 0.

Solving (12) we get

1 Cy — (1 D
14 ——F—n +
( ) 3g_(k2__k) (y) kzgkly

1- 7‘7'5:"7-:1:+E'.

Let us consider two possible cases:

First case: D =0

In F(z) = = (ks =

¢y —

F(z) = exp [3-"—‘22—'12:1—’“1)(75 + E)] .

YR

Taking limit z — pt we get

SO YESCELS TS |

Thus F = —p and
_ — (ky —
(15) F(z) =exp [3g—c§jc—lkl)(:c - u)] for z € (p,v).

Taking limit £ — v~ in (15) we observe that its left-hand side equals
zero, while the right-hand side remains positive. Hence v = oo and we get
the exponential distribution.

Second case: D < ()
Inserting (14) in (10) upon performing suitable differentations we get

T (o2 Y B 2 et
Dy | 2 (14 R 43— k) g =3 (n—ka) (ks =1)] =0

which is a contradiction since y can not be constant on (u,v). Hence D < 0
is impossible and the only solution is the exponential distribution. =

Remark. Theorem 1 can be easily extended to the case
E(Xk.'+3:n,' |Xk,':'n.') = Xk;:n; + bi"; 1= 172
for some 1 < k; < n; — 3 and ny — ky # na — ks.
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3. Special triplets with spacings > 3

The case of r > 3 is much more complicated. Applying here the method
used in Section 2 we arrive at an (r — 2) order differential equation and we
do not know how to solve it in general. Here we present a solution only for
special choices of n; and k;: ny — ky = ng — kg + 1.

THEOREM 2. Let k1, kq,n1,n2 be natural numbers such that 1 < k; <
n; —r for i = 1,2 and r > 2. Assume that F is absolutely continuous and
E(le2+'r:n2|) < . IfE(Xk.-+r:n.~ |Xk,-:n.-) = Xk;:n,- +bi7 1= 1,2’ where b17b2
are some real numbers and ny — k1 = ny — kg + 1, then F is an exponential

df.
Proof. Let (u,v) be the support of F. Then

E(Xk1+'r:n1|Xk1:n1 = 27) =z+ b1 =
(n1—ky)! 1

oD by =) P ey VUF(@) = P F R () f(5) dy.

T

Hence

(’I‘ - 1)'(77,2 - kg -r+ 1)'
(16) (’I‘L2 — ko + ].)'

F’"z"kﬁl(a:)(z +b)=
= {4[F(z) - F(y)Ir 1 Fra=*m+ () f(y) dy.

Differentiating both sides of (16) we get
(7‘ - 1)'(77,2 - k‘z -r+ 1)'

(ary - R B T et ) )+ )+
~Dlng —ky—r -
(r 1()n(2ni kzkj' 1)! u 1)'Fn2_k2+1($) =

v

= (r = 1)f(2) | ylF(2) - P [-F@)IF™ " (y) f(y) dy.
Substituting —F(y) = [F(z) — F(y)] = F(z) in (17) and dividing both
sides by (r — 1) f(z) we get
(r—2)(ng—ky—r+1)!

(18) - (ne — ko)! Fra=h (2)(= +b1)+

(r—2)ny — ky — 7 4+ 1)! Fre—katl(g)
(n2 — k2 +1)! HONEE
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_ {ylF(=) ~ P P (3) (y) dy+

T
v

- F(z) {y[F(e) = F)I" " F™ 77" (y) f(y) dy.

T

Upon assumptions we can write
(7‘ — 1)'(712 - kg - 7‘)'

(19) (ng — ky)! Fr2=k(z)(z + by) =
= [ulF(z) - F(y)) 1 Fa=%2="(y) f(y) dy.

Differentiating both sides of (19) and dividing by (r — 1) f(z) we have

r—2)(n2—ko—7)! ng—ky— r=2)ng—ko—r)! Fr27%2(z) _
(20) R PR (2) (o + ) - PR ) =

v

= {y[F(z) - F@)I" 2 Fr==%~"(y) f(y) dy.

Substituting (19) and (20) to (18) and simplyfing we arrive at
(21) (n2 - kg -7+ 1)(712 - kz + l)f(l')(bQ - bl) = ‘I‘F(.'E)

Equation (21) is easy to solve if we substitute y = F(z) (i.e. —y' = f(z)).The
only solution turns out to be the df of the exponential distribution: F(z) =
exp[§(z — p)] for z € (i, 00) where § = — e E=5)- ™
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