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ON A GRAPH THEORETIC DESCRIPTION 
OF REGULAR MARKOV CHAINS 

AND POSITIVE LINEAR SYSTEMS 

Abstract. Regular Markov chains are widely used in stochastic modelling and ex-
hibit a well known limiting behaviour. This is also true for a certain class of positive linear 
systems according to the Perron-Frobenius theorem. In our paper we give a characteriza-
tion of regularity by graph theoretic properties. Moreover, we describe all regular Markov 
chains with given transition and limiting behaviour. 

1. Introduction 
Markov chain models represent an important class of stochastic dynamic 

systems. Consider a finite Markov chain with state set S = { S i , . . . , £„}, 
n £ N , and stationary transition probabilities pij > 0, i,j = 1 , . . . , n. 
Whereas onestep transitions from state Si to state Sj are determined by the 
transition matrix P = (pij), the probabilities for m-step transitions , 
m 6 N , are given by the elements of Pm. In order to obtain a classification 
of Markov chains a binary relation g on the state set S can be defined by 

SigSj O- i = j or p\j > 0 for some positive integer m, 

i.e. SigSj holds iff Sj can be reached from S\. From the algebraic point of 
view q is a quasi-ordering relation and implies an equivalence relation 0 on 
S according to 

SiOSj O (SigSj) and (SjgSi). 
The corresponding partition divides the set of all states into communicating 
classes. A special case occurs if there is only one class whose states are all 
aperiodic, i.e. every state in S can be reached from every other state by a 
fixed number of transitions. In this case the Markov chain is called regular 
(see e.g. [3], [5] for more details). 

Regular Markov chains have a wide variety of applications. Let us con-
sider a discrete stochastic process xt+i = xtP for t = 0,1,2,... where Xt 
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denotes the probability distribution vector of the process and P is the transi-
tion matrix corresponding to a regular Markov chain. Then according to the 
basic limit theorem for Markov chains, the long-term probabilities converge 
to a limiting distribution which is independent of the initial conditions. To 
be more precise, lim^oo xt = a, where a is a left eigenvector of P corre-
sponding to the eigenvalue A = 1. Moreover, the matrix P* approaches a 
matrix each of whose rows is equal to a, if t —oo. Our aim is to give a 
description of regularity by graph theoretic properties. 

In close connection to Markov chains there are positive linear systems, i.e. 
dynamic systems in which the state variables are always positive (or at least 
nonnegative). These arise frequently in many real systems. Let us consider 
a discrete dynamic system xt+1 = Axt, where Xt denotes the state vector at 
time t and A is real n X n-matrix with A > 0. If A is strictly positive, i.e. 
A > 0, or more generally A > 0 and Am > 0 for some to € N, according to 
the Perron—Frobenius theorem (cf. [5]) there exists a dominant eigenvalue 
A af A of largest absolute value which is in fact positive and simple, and a 
corresponding positive eigenvector a. Furthermore the state vector xt tends 
to be aligned with Ata as t —>• oo. Thus the system approaches a stable 
relative distribution. In section 2 we give a description of positive systems 
which behave in that way. 

Moreover, we characterize regular Markov chains with transition proba-
bilities proportional to given transition numbers and with a given limiting 
distribution in section 3. This problem is of interest in the context of random 
walk models and cellular automata. 

2. A characterization of graphs corresponding to regular Mar-
kov chains 

Let P — (pij) be the transition matrix of a finite Markov chain with state 
set S = { 5 i , . . . , and define a corresponding directed graph GP = (V,E) 
with vertex set V = { 1 , . . . , n} and edge set E C V2 such that 

(where ij denotes the edge ( i , j ) ) . Then clearly state Sj can be reached from 
state Si iff there exists a directed walk in Gp which connects vertex i to 
vertex j . The communicating classes of the Markov chain correspond to the 
connected components of G. In particular P is regular iff any two vertices 
in Gp can be connected by a directed walk of fixed length. 

On the other hand, let A > 0 be any nonnegative real n x n-matrix and 
define a directed graph GA = {V,E) with vertex set V = { l , . . . , n } and 
edge set E C V2 such that 

( 1 ) ij £ E o PIJ > 0 

(2) ij e E AIJ > o 
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just as above. Then the elements of the matrix Am correspond to the directed 
walks of length to in GA (m G N), and Am > 0 for some positive integer 
to holds iff again two vertices in GA can be connected by a directed walk of 
fixed length. 

If the transition matrix P or the matrix A is symmetric, the correspond-
ing graphs may be considered as nondirected instead of directed graphs. The 
question whether a Markov chain is regular or not, the question whether a 
positive linear system approaches a stable distribution or not, carries over to 
the problem under which conditions any two vertices in the corresponding 
(directed or nondirected) graph can be connected by a walk of some fixed 
length. This question is answered by the following two theorems. 

T H E O R E M 2 . 1 . Let G = (V,E) be a finite, nondirected graph. Then the 
following conditions are equivalent: 

(i) There exists a positive integer m G N such that any two vertices 
v, w G V can be connected by a walk of fixed length to. 

(ii) G is connected and has a cycle of odd length. 

Observe that if condition (i) holds for any particular TO, then it also holds 
for all TO' with m' > m. Furthermore, condition (ii) holds if G is connected 
and there exists at least one edge vv G E for some v G V. 

Proof: (i) => (ii) Condition (i) clearly implies that G is connected. Next 
let us assume that all proper cycles and hence all loops have even length. 
Then for any vw G E let p\ and p2 be two walks of length m connecting v 
to v and w to v, respectively. Then p = p\ + vw + pi forms a loop of length 
2m + 1 which is a contradiction. 

(ii) (i) Let pi be any cycle of odd length l(pi) = h passing through 
ui G V and let p2 = U\U2U\ be a loop of length 2. Then by combining p\ 
and p2, loops of arbitrary length > l\ through u\ can be generated. 

Now let v, w G V be any two vertices and let do be diameter of graph 
G. Since G is connected there exist walks vu\ and u\w connecting v to u\ 
and ui to to, respectively, of lengths l(vu{) < do, l(uiv) < do. Moreover, 
there exists a loop U\U\ of length 

l(uiui) = h + (dG - l{vui)) + (dG - l{uiw)) > l\ 
as stated before. It follows that p = vu\ + U\U\ + U\w represents a walk 
which connects v to w and has length l(p) = Ida + /i =: TO, where m does 
not depend on the vertices v and w, as claimed in (i). • 

T H E O R E M 2 . 2 . Let G = (V,E) be a finite, directed graph. Then the 
following conditions are equivalent: 

(i) There exists a positive integer m G N such that any two vertices 
v, w G V can be connected by a directed walk of fixed length m. 
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(ii) G is strongly connected and there exist two directed loops pi,p2 such 
that gcd(l{p\),l{p2)) = 1. 

All remarks made subsequent to Theorem 2.1 also hold in the case of 
directed graphs. In addition we note that condition (ii) clearly holds if there 
are two proper cycles pi,p2 in G such that gcd(l(pi),l(p2)) = 1; the latter 
condition, however, is not necessary (e.g. consider a graph G which consists 
of three connected cycles of lengths 6, 10 and 15, respectively). It seems to 
be reasonable to replace condition (ii) by the demand that G is strongly 
connected and the greatest common divisor of the lengths of all cycles in G 
equals to 1. This, however, remains as an open question. 

Proof: (i) (ii) Obviously G is strongly connected if condition (i) holds. 
In order to prove the existence of two directed loops with relative prime 
lengths take any edge vw G E and choose two walks p\ = vv from v to v 
and p'2 = wv connecting w to v according to (i) such that l{p\) = l(p2) = TO-
Then pi and p2 = vw + p'2 both are loops and 

gcd(l(pi),l(p2)) = gcd(m,m+ 1) = 1. 

(ii) => (i) Let pi andp 2 be two directed loops passing through ui,u2 € V, 
respectively, of lengths l(pi) = l\, l{p2) = l2 with gcd{l\J2) = 1. Then there 
exist xo,yo £ Z such that 1\XQ + l2yo = 1. We consider the Diophantine 
equation 

(3) hx + l2y = m' for m' € N 

and ask for solution x,y > 0. The solutions of equation (3) in Z are given 
by 

x = m'xo + kl2, y -- m'yo — kli, k 6 Z 
whence x > 0, y > 0 iff k belongs to the interval —m'xo/l2 < k < m'yo/li 
of length m'/(lil2). So if m' > l\l2 this interval contains at least one integer 
k and hence nonnegative solutions of equation (3) exist. (In fact equation 
(3) has nonnegative solutions if m' > {l\ — l)(l2 - 1)- This is known as 
the postage stamps problem [6] which is also connected to the notion of 
Frobenius numbers of certain semigroups [4]). Let x and y be solutions of 
equation (3) with 

m! > hl2 + (dG - l(uiu2)) + (dG - l(u2Ui)) > hl2. 

It follows that p = xpi + ui u2 + yp2 + u2 u\ forms a directed loop of arbi-
trary length l(p) > l\l2 + 2da passing through u\ (where xp\ denotes the 
loop generated by x repetitions of pi, and yp2 is defined in the same way). 
Therefrom we conclude just as in the nondirected case that any two vertices 
v,w 6 V can be connected by a directed walk of length m = l\l2 + 4dg. 
This completes the proof of Theorem 2.2. • 
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In order to give an example let us consider the cohort population model 
of population biology (cf. [5] and [7]) describing the growth of a population 
which is divided into age groups according to 

/ f i h ••• f n \ 
si 0 . . . 0 

(4) xt+i = Axt with A - , t = 0 ,1 ,2 , . . . 

\ 0 . . . «„_1 0 / 
where xt denotes the population distribution at time t, fi > 0 is the fertility 
rate and s* > 0 is the survival rate of the ¿-th age group for i = 1,.. . ,ra. 
The graph GA corresponding to A looks as follows: 

According to Theorem 2.2 the population approaches a stable age dis-
tribution, determined by the dominant eigenvector of A, if and only if there 
are two age groups i and j such that f i > 0, f j > 0 and gcd(i,j) = 1. This 
is in particular true if / , > 0 and / ¡+ i > 0 for some i < n. 

3. Transitions in Markov chain models 
In this last section we consider an important question concerning the 

construction of Markov chain models. In many applications, e.g. in the con-
text of random walks or cellular automata (cf. [1], [2]), transition probabil-
ities are expected to be proportional to the lengths (or areas) of common 
boundaries between cells, and limiting probabilities are assumed to be pro-
portional to the areas (or volumes) of cells. In general, we are interested in 
Markov chains with given transition and limiting behaviour. In the sequel a 
characterization of these processes is given. 

First of all we introduce the notion of a proportional matrix belonging 
to a Markov chain. Let K = (kij) be any real n x n-matrix such that 

(5 ) kij > 0 f o r i ± j a n d ku = - ^ k^, i,j = 1 , . . . , n . 

Then K is called a proportional matrix of a Markov chain on {1, . . . , n} with 
transition matrix P = ( p i j ) , if 
(6) Vi = 1 , . . . , n 3ci > 0 : p^ = Cikij for all j ^ i, 
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i.e. each probability pij of transition from state i to state j is proportional 
to k{j* 

THEOREM 3.1. All Markov chains with proportional matrix K are given 

by 

(7) P / ( ( c i , . . . , c n ) = E + 6iag(ci,...,cn)K, 

where 0 < C{ < (if &ij > for a^ * and d iag (c i , . . . , c „ ) 
is the n X n-diagonal matrix with diagonal elements c i , . . . , c„. 

The proof of this result is obvious from (5), (6) and the fact that Pk is 
a stochastic matrix (i.e. pij > 0 and Y l j P i j — 1 f ° r h i ) - • 

Now let K = (kij) be a matrix as defined in (5) and let a = (a; ) > 0 
be a positive n-dimensional vector. Furthermore, let Gk = (V, E) be the 
directed graph with vertex set V = { 1 , . . . , n } and edges E C V2 such that 

ij e E o k^ > 0. 

The following result gives a description of all regular Markov chains with 
transition behaviour determined by K and a limiting distribution propor-
tional to vector a. 

THEOREM 3.2. Let K be any matrix as defined in (5) and let a > 0 be any 

positive vector. Then there exists a regular Markov chain with proportional 

matrix K iff the graph Gk corresponding to K is strongly connected. In this 

case K has exactly one left eigenvector u = (ui) > 0 corresponding to the 

eigenvalue A = 0, and all regular Markov chains with proportional matrix I( 

and limiting distribution proportional to vector a are given by 

(8) P i i , a ( c ) = E + cdiag ( — , . . . , 
V a l a n J 

where 0 < c < min^ ^ ( X ^ j • 

P r o o f . If Gk is not strongly connected this is also true for any graph 
Gp corresponding to any Markov chain P with proportional matrix K, and 
P cannot be regular by Theorem 2.2. 

If, however, Gk has only one communicating class then there exists a 
nonsingular matrix C such that P = E + CK is regular. Observe that for 
any left or right eigenvector of P belonging to the eigenvalue A = 1 there 
exists a corresponding eigenvector of K with respect to the eigenvalue A = 0 
and vice versa, since 

Px = x <£> Kx = 0 and yP = y & (yC)K = 0. 

In particular, for any regular P there exists exactly one left eigenvector 
u > 0 of K corresponding to A = 0. 
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Now let P be any regular Markov chain with proportional matrix K and 
limiting distribution proportional to a, i.e. aP = a. Then P = Pk(ci, ..., cn) 
by Theorem 3.1 and 

aP = a(E + d i a g ( c i , . . . , cn)K) - a a d i a g ( c i , . . . , cn)K = 0. 

Therefore, a d i a g ( c i , . . . , cn) is a left eigenvector of K corresponding to A = 0 
and hence proportional to u. It follows that Cj = c(-ii;/a,) for i — 1 , . . . , n 
and some c > 0. Thus we have 

P = P k M = E + c & 3 Z ( - , - - ; — ) K 
V«1 anJ 

where 0 < c < mini f H S j ^ i a s claimed in (8). (The regularity of P 
guarantees that Ylj^i kij > 0 f ° r any i). 

Conversely, any regular Markov chain Pi(<a(c) has a limiting distribution 
proportional to vector a since 

( UL\ un \ 

— , . . . , — I K ) = o + cuK = a 
a\ an J which completes the proof of Theorem 3.2. • 

Finally let us consider a regular Markov chain with symmetric propor-
tional matrix K and a uniform limiting distribution a = ( 1 , . . . , 1 ) which 
implies u = ( 1 , . . . , 1 ) . This is a reasonable assumption in the context of 
certain cellular automata models where transitions from one cell to another 
do not depend on the direction of movement, and eventually each cell can 
be reached with the same probability. According to (8) it follows that 

PKtl(c) — E + cK = ( p i j ) w i t h pij = ckjj for i ^ j a n d pa = 1 - c ^ 

with 0 < c < (maxj S j ^ i If w e set p = cmaxj X ^ j ^ij then 0 < p < 
1 and 

Pij = pkij ( max kij^J 
j^i 

is the probability of a transition from state i to state j (i ^ j) whereas 

Pa = 1 - V k*i ( m f x 

j^i j^i 

is the probability that no transition from state i to any other state occurs. 
Thus, 1 — p > 0 can be interpreted as the minimal probability of remaining 
within any state. 
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