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ON A GRAPH THEORETIC DESCRIPTION
OF REGULAR MARKOV CHAINS
AND POSITIVE LINEAR SYSTEMS

Abstract. Regular Markov chains are widely used in stochastic modelling and ex-
hibit a well known limiting behaviour. This is also true for a certain class of positive linear
systems according to the Perron—Frobenius theorem. In our paper we give a characteriza-
tion of regularity by graph theoretic properties. Moreover, we describe all regular Markov
chains with given transition and limiting behaviour.

1. Introduction

Markov chain models represent an important class of stochastic dynamic
systems. Consider a finite Markov chain with state set S = {5},...,S5.},
n € N, and stationary transition probabilities p;; > 0, ¢,7 = 1,...,n.
Whereas onestep transitions from state S; to state 5; are determined by the
transition matrix P = (p;;), the probabilities for m-step transitions pgn),
m € N, are given by the elements of P™. In order to obtain a classification

of Markov chains a binary relation g on the state set S can be defined by

SipSj & i=j or pﬁ;")
i.e. S;05; holds iff §; can be reached from S;. From the algebraic point of
view p is a quasi-ordering relation and implies an equivalence relation € on

S according to

> 0 for some positive integer m,

S,-0Sj ~ (SiQSj) and (Sng,-).

The corresponding partition divides the set of all states into communicating
classes. A special case occurs if there is only one class whose states are all
aperiodic, i.e. every state in S can be reached from every other state by a
fixed number of transitions. In this case the Markov chain is called regular
(see e.g. [3], [5] for more details).

Regular Markov chains have a wide variety of applications. Let us con-
sider a discrete stochastic process z;47 = z,P for t = 0,1,2,... where z;
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denotes the probability distribution vector of the process and P is the transi-
tion matrix corresponding to a regular Markov chain. Then according to the
basic limit theorem for Markov chains, the long-term probabilities converge
to a limiting distribution which is independent of the initial conditions. To
be more precise, lim;_.., £; = a, where a is a left eigenvector of P corre-
sponding to the eigenvalue A = 1. Moreover, the matrix P® approaches a
matrix each of whose rows is equal to @, if £ — o0. Our aim is to give a
description of regularity by graph theoretic properties.

In close connection to Markov chains there are positive linear systems, i.e.
dynamic systems in which the state variables are always positive (or at least
nonnegative). These arise frequently in many real systems. Let us consider
a discrete dynamic system z:43 = Az, where z; denotes the state vector at
time ¢t and A is real n x n-matrix with 4 > 0. If A is strictly positive, i.e.
A > 0, or more generally A > 0 and A™ > 0 for some m € N, according to
the Perron—Frobenius theorem (cf. [5]) there exists a dominant eigenvalue
A af A of largest absolute value which is in fact positive and simple, and a
corresponding positive eigenvector a. Furthermore the state vector z; tends
to be aligned with A'a as ¢ — oco. Thus the system approaches a stable
relative distribution. In section 2 we give a description of positive systems
which behave in that way.

Moreover, we characterize regular Markov chains with transition proba-
bilities proportional to given transition numbers and with a given limiting
distribution in section 3. This problem is of interest in the context of random
walk models and cellular automata.

2. A characterization of graphs corresponding to regular Mar-
kov chains

Let P = (p;;) be the transition matrix of a finite Markov chain with state
set § = {S1,..., 59} and define a corresponding directed graph Gp = (V, E)
with vertex set V = {1,...,n} and edge set E C V? such that
(1) ijeEE & p; >0
(where ij denotes the edge (3, j)). Then clearly state .S; can be reached from
state S; iff there exists a directed walk in Gp which connects vertex i to
vertex j. The communicating classes of the Markov chain correspond to the
connected components of G. In particular P is regular iff any two vertices
in Gp can be connected by a directed walk of fixed length.

On the other hand, let A > 0 be any nonnegative real n X n-matrix and
define a directed graph G4 = (V, E) with vertex set V = {1,...,n} and
edge set E C V? such that

(2) ije.E@a,'j>0
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just as above. Then the elements of the matrix A™ correspond to the directed
walks of length m in G4 (m € N), and A™ > 0 for some positive integer
m holds iff again two vertices in G4 can be connected by a directed walk of
fixed length.

If the transition matrix P or the matrix A is symmetric, the correspond-
ing graphs may be considered as nondirected instead of directed graphs. The
question whether a Markov chain is regular or not, the question whether a
positive linear system approaches a stable distribution or not, carries over to
the problem under which conditions any two vertices in the corresponding
(directed or nondirected) graph can be connected by a walk of some fixed
length. This question is answered by the following two theorems.

THEOREM 2.1. Let G = (V, E) be a finite, nondirected graph. Then the
following conditions are equivalent:

(i) There exists a positive integer m € N such that any two vertices
v,w € V can be connected by a walk of fized length m.

(ii) G is connected and has a cycle of odd length.

Observe that if condition (i) holds for any particular m, then it also holds
for all m’ with m’ > m. Furthermore, condition (ii) holds if G is connected
and there exists at least one edge vv € E for some v € V.

Proof: (i) = (i) Condition (i) clearly implies that G is connected. Next
let us assume that all proper cycles and hence all loops have even length.
Then for any vw € E let p; and p, be two walks of length m connecting v
to v and w to v, respectively. Then p = p; + vw + p; forms a loop of length
2m + 1 which is a contradiction.

(1i) = (i) Let p; be any cycle of odd length I(p;) = I passing through
w1 € V and let p; = ujuyu; be a loop of length 2. Then by combining py
and ps, loops of arbitrary length > {; through u; can be generated.

Now let v,w € V be any two vertices and let dg be diameter of graph
G. Since G is connected there exist walks vu; and u;w connecting v to uy
and u; to w, respectively, of lengths I(vu;) < dg, I(u1v) < dg. Moreover,
there exists a loop uju; of length

l(wuy) =11 + (dg = l(vwr)) + (dg — H(uww)) > I

as stated before. It follows that p = vu; + wju; + uw,w represents a walk
which connects v to w and has length {(p) = 2dg + I; =: m, where m does
not depend on the vertices v and w, as claimed in (i). =

THEOREM 2.2. Let G = (V,F) be a finite, directed graph. Then the
following conditions are equivalent:

(i) There ezists a positive integer m € N such that any two vertices
v, w €V can be connected by a directed walk of fized length m.
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(ii) G is strongly connected and there ezist two directed loops p,ps such
that ged(l(p),(p2)) = 1.

All remarks made subsequent to Theorem 2.1 also hold in the case of
directed graphs. In addition we note that condition (ii) clearly holds if there
are two proper cycles py,ps in G such that ged(I(p1),{(p2)) = 1; the latter
condition, however, is not necessary (e.g. consider a graph G which consists
of three connected cycles of lengths 6, 10 and 15, respectively). It seems to
be reasonable to replace condition (ii) by the demand that G is strongly
connected and the greatest common divisor of the lengths of all cycles in G
equals to 1. This, however, remains as an open question.

Proof: (i) = (ii) Obviously G is strongly connected if condition (i) holds.
In order to prove the existence of two directed loops with relative prime
lengths take any edge vw € F and choose two walks p; = vv from v to v
and pj) = wv connecting w to v according to (i) such that I(p;) = I(p}) = m.
Then p; and p; = vw + p} both are loops and

ged(l(p1),l(p2)) = ged(m,m+ 1) = 1.
(1t) = (i) Let p; and p; be two directed loops passing through uy,u; € V,
respectively, of lengths {(p1) = I3, I(p2) = I3 with ged(l1,13) = 1. Then there

exist zg,yo € Z such that lyz¢ + loyo = 1. We consider the Diophantine
equation

(3) hze+ly=m' form' e N

and ask for solution z,y > 0. The solutions of equation (3) in Z are given
by
z=m'zg+kly, y=m'yo —kly, k€ Z

whence z > 0, y > 0 iff £ belongs to the interval —m/z¢/l; < k < m'yo/l
of length m'/(l112). So if m' > I;l5 this interval contains at least one integer
k and hence nonnegative solutions of equation (3) exist. (In fact equation
(3) has nonnegative solutions if m’ > (I3 — 1)(Iz — 1). This is known as
the postage stamps problem [6] which is also connected to the notion of
Frobenius numbers of certain semigroups [4]). Let ¢ and y be solutions of
equation (3) with

m' Z 1112 + (dG - l(ul’ltz)) + (dG - l(U2U1)) Z lllg.

It follows that p = zp; + uyus + yp2 + usu; forms a directed loop of arbi-
trary length I(p) > l1l2 + 2dg passing through u; (where zp; denotes the
loop generated by z repetitions of p;, and yp. is defined in the same way).
Therefrom we conclude just as in the nondirected case that any two vertices
v,w € V can be connected by a directed walk of length m = l;l; + 4dg.
This completes the proof of Theorem 2.2. =
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In order to give an example let us consider the cohort population model
of population biology (cf. [5] and [7]) describing the growth of a population
which is divided into age groups according to

fl .f2 fn
81 0 ...0

(4) IL‘t+1=A$t with A = . . .. : ,t:0,1,2,...
0 cee Sp-1 0

where z; denotes the population distribution at time ¢, f; > 0 is the fertility
rate and s; > 0 is the survival rate of the i-th age group for ¢ = 1,...,n.
The graph G 4 corresponding to A looks as follows:

5 52 53 Sn-1
Ol—» 2— 3 — ... n-1— n

fi W!& S %

According to Theorem 2.2 the population approaches a stable age dis-
tribution, determined by the dominant eigenvector of A, if and only if there
are two age groups ¢ and j such that f; > 0, f; > 0 and ged(7, ) = 1. This
is in particular true if f; > 0 and f;4; > 0 for some i < n.

3. Transitions in Markov chain models

In this last section we consider an important question concerning the
construction of Markov chain models. In many applications, e.g. in the con-
text of random walks or cellular automata (cf. [1], [2]), transition probabil-
ities are expected to be proportional to the lengths (or areas) of common
boundaries between cells, and limiting probabilities are assumed to be pro-
portional to the areas (or volumes) of cells. In general, we are interested in
Markov chains with given transition and limiting behaviour. In the sequel a
characterization of these processes is given.

First of all we introduce the notion of a proportional matrix belonging
to a Markov chain. Let K = (k;;) be any real n X n-matrix such that

(5) kijZOforiyéjandk,-i=—Zk,~j, ,j=1,...,n.
J#i
Then K is called a proportional matrix of a Markov chain on {1,...,n} with
transition matrix P = (p;;), if
(6) Vi=1,...,n3c; >0: pij = c;ky; forall j #£71,
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i.e. each probability p;; of transition from state ¢ to state j is proportional
to k,‘j.

THEOREM 3.1. All Markov chains with proportional matriz K are given
by

(7) Px(cy,...,cn) = E 4 diag(er,...,cn)K,
where 0 < ¢; < (32,4 ki)™t (if > izikij > 0) for all i and diag(cy, - .., ¢n)
is the n X n-diagonal matriz with diagonal elements ¢q,...,¢y,.

The proof of this result is obvious from (5), (6) and the fact that Pk is
a stochastic matrix (i.e. p;; > 0 and -, p;; = 1 forall 7,5). m

Now let K = (k;;) be a matrix as defined in (5) and let @ = (a;) > 0
be a positive n-dimensional vector. Furthermore, let Gg = (V, F) be the
directed graph with vertex set V = {1,...,n} and edges E C V? such that

jEE S k,’j > 0.
The following result gives a description of all regular Markov chains with

transition behaviour determined by K and a limiting distribution propor-
tional to vector a.

THEOREM 3.2. Let K be any matriz as defined in (5) and let a > 0 be any
positive vector. Then there erists a reqular Markov chain with proportional
matriz I iff the graph G corresponding to K is strongly connected. In this
case K has ezactly one left eigenvector u = (u;) > 0 corresponding to the
eigenvalue A = 0, and all reqular Markov chains with proportional matriz K
and limiting distribution proportional to vector a are given by

(8) PI{,G(C)’:E+Cdia’g (5_1_77_')1(7
1

where 0 < ¢ < min; %}(Zm kij)_l'

Proof. If Gk is not strongly connected this is also true for any graph
G p corresponding to any Markov chain P with proportional matrix KX, and
P cannot be regular by Theorem 2.2.

If, however, G has only one communicating class then there exists a
nonsingular matrix C such that P = F 4+ CK is regular. Observe that for
any left or right eigenvector of P belonging to the eigenvalue A = 1 there
exists a corresponding eigenvector of K with respect to the eigenvalue A = 0
and vice versa, since '

Pr=¢< Kz=0 and yP=y & (yC)K = 0.

In particular, for any regular P there exists exactly one left eigenvector
u > 0 of K corresponding to A = 0.
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Now let P be any regular Markov chain with proportional matrix K and
limiting distribution proportional to a,i.e. aP = a. Then P = Pg(cy,...,¢n)
by Theorem 3.1 and

aP = a(E + diag(ci,...,cn)K) = a = adiag(cy,...,cq)K = 0.

Therefore, a diag(cy, - . ., ¢, ) is aleft eigenvector of K corresponding to A = 0
and hence proportional to u. It follows that ¢; = c(u;/a;) fori =1,...,n
and some ¢ > 0. Thus we have

P = Py 4(c) = E + cdiag (%Z—")A
1 n

where 0 < ¢ < min; (3, ; ki;)" as claimed in (8). (The regularity of P
guarantees that Z#Z kij > 0 for any 1).

Conversely, any regular Markov chain Pk ,(c) has a limiting distribution
proportional to vector a since

aPK,a(c) = a(E + cdiag (%' "2 ).K) =a+cuK =a
1 n

which completes the proof of Theorem 3.2. m

Finally let us consider a regular Markov chain with symmetric propor-
tional matrix K and a uniform limiting distribution @ = (1,...,1) which
implies v = (1,...,1). This is a reasonable assumption in the context of
certain cellular automata models where transitions from one cell to another
do not depend on the direction of movement, and eventually each cell can
be reached with the same probability. According to (8) it follows that

Pi1(c) = E + cK = (p;j) with p;; = ck;j fort # jand p;; =1 - cZkij
it
with 0 < ¢ < (max; E#i kij)_l. If we set p = cmax; Z#i kijthen0 < p <

1 and

pij = pkij ( max Z kij)

i#i
is the probability of a transition from state ¢ to state j (i # j) whereas
-1
pii=1 —szij(mgxz kij)
i i

is the probability that no transition from state ¢ to any other state occurs.

Thus, 1 — p > 0 can be interpreted as the minimal probability of remaining
within any state.

-1
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