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GLOBAL FUNCTION FIELDS WITH MANY
RATIONAL PLACES OVER THE QUINARY FIELD

1. Introduction

Let ¢ be an arbitrary prime power and let K be a global function field
with full constant field Fy, i.e., with F, algebraically closed in K. We use the
notation K /I, if we want to emphasize the fact that F, is the full constant
field of K. By a rational place of K we mean a place of K of degree 1. We
write g(K) for the genus of X' and N(XK') for the number of rational places
of K. For fixed g > 0 and ¢ we put

Nq(g) = max N(K),

where the maximum is extended over all global function fields K /F, with
g(K) = g. Equivalently, N,(g) is the maximum number of F,-rational points
that a smooth, projective, absolutely irreducible algebraic curve over F, of
given genus g can have. The calculation of Ny(g) is a very difficult problem
in algebraic geometry, so usually one has to make do with bounds for N,(g).

Global function fields K/F, with many rational places, that is, with
N(K) reasonably close to N,(g(K)) or to a known upper bound for
Ny(g(K)), have received a lot of attention in the literature. Quite a number
of papers on the subject have also been written in the language of algebraic
curves over finite fields. The first systematic account of the subject was given
by Serre [14], and for recent surveys we refer to Garcia and Stichtenoth [1]
and Niederreiter and Xing [11]. The construction of global function fields
with many rational places, or equivalently of algebraic curves over F, with
many F,-rational points, is of great theoretical interest. Moreover, it is also
important for applications in the theory of algebraic-geometry codes (see
[15], [16]) and in the recent constructions of low-discrepancy sequences in-
troduced by the authors (see [5], [7], [10], [17]).

For the practical aspects of these applications it is important that the
constructions of global function fields with many rational places be as ex-
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plicit as possible. In the ideal case, one would like to have descriptions of
the global function fields in terms of generators and defining equations. The
constructions by Serre [14] use class field theory and are thus not explicit.
More attention is now devoted to the desideratum of obtaining explicit con-
structions, see e.g. the recent papers of Niederreiter and Xing [6], [8] and
the references given there.

The present paper can be viewed as a continuation of the work in [6] and
[8] which led to catalogs of global function fields with many rational places
for the cases ¢ = 2, 3,4, 5and to many explicit constructions. We concentrate
here on the case ¢ = 5 and extend the list of constructions in [8, Section
5]. The motivation for this is the following one. For the construction of s-
dimensional low-discrepancy sequences in a given base ¢ by means of rational
places (see e.g. [5]) we need a global function field K/F, with N(K) >
s+ 1. In order to cover the standard range 1 < s < 50 of applications of
low-discrepancy sequences in an efficient manner, we need to find, for each
dimension s in this range, a global function field K/F, of relatively small
genus with N(K) > s+ 1. For ¢ = 5 the constructions in [8, Section 5]
allow us to cover only the range 1 < s < 29, whereas the new results in the
present paper cover the full range 1 < s < 50.

In Section 2 we review some background and establish a new method of
constructing global function fields with many rational places. In Section 3
we present our new examples for the case ¢ = 5. Some of these examples
are quite straightforward, but others require detailed arguments to validate
them. The majority of the examples is based on explicit constructions.

2. Background for the constructions

Let Fy(z) be the rational function field over F,. We will often use the
convention that a monic irreducible polynomial P over F, is identified with
the place of F,(z) which is the unique zero of P, and we will denote this
place also by P. It will also be convenient to write oo for the “infinite place”
of Fy(z), that is, for the place of Fy(z) which is the unique pole of z. For an
arbitrary place () of a global function field K we write vg for the normalized
discrete valuation corresponding to Q. For any z € K* let () denote the
principal divisor of z.

Several examples in Section 3 are based on Artin-Schreier extensions and
Kummer extensions. We will not review the theory of these extensions here
since an excellent account of it is available in the book of Stichtenoth [15,
Section IIL.7].

We recall some pertinent facts about Hilbert class fields. A convenient
reference for this topic is Rosen [13]. Let K be a global function field and
S a finite nonempty set of places of K. The Hilbert class field Hs of K
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with respect to § is the maximal unramified abelian extension of K (in a
fixed separable closure of K') in which all places in § split completely. The
extension Hg/K is finite with Galois group

Gal(Hs/K) ~ Cls,

where Clg is the S-divisor class group of K, i.e., the quotient of the group
of all divisors of K of degree 0 with support outside S by its subgroup of
principal divisors. If S = {P} is a singleton, then we also write Hp instead
of Hg. If P is a rational place of K, then we also have

Gal(Hp/K) ~ Div®(K),

the group of divisor classes of K of degree 0. In particular, we have [Hp :
K] = h(K), the divisor class number of K. The divisor class numbers ap-
pearing in Section 3 are calculated by the standard method based on the
results in [15, Section V.1]. Furthermore, Div®( K) is isomorphic to the frac-
tional ideal class group Pic(A), where A is the P-integral ring of K, i.e., A
consists of the elements of K that are regular outside P. There is a standard
identification between places of K and prime ideals in A. The following new
result is based on these concepts.

THEOREM 1. Let K/F,; be a global function field and L/F, a finite sep-
arable extension of K. Let S = {P, Py,...,P,} with P a rational place of
K and Py,..., P, arbitrary places of K different from P. Suppose that S
satisfies the following condition: either some place of K not in S is totally
ramified in L/ K or some place in S is inert in L/K. Let T be the set of
places of L lying over those in S and assume that the number n of rational
places in T is positive. Then there ezists a global function field F/F, with

Q(F)ZM(Q(I‘)—U-*—I and N(F)> h(llél)n’

(&
where G s the subgroup of Divo(K) generated by the divisor classes of
P, — deg(P)P,..., Py, — deg(Pn,)P.

Proof. Let Div(K) be the group of divisor classes of K and let D be the
subgroup of Div(K) generated by the divisor classes of P, Py,..., P,. Since
S contains the rational place P, the group Div(K) is generated by Div®(K)
and D. Thus, from the exact sequence

(0) - Div®(K)/(D N Div®(K)) - Cls — Div(K)/Div’(K)D — (0)
in the proof of [13, Lemma 1.2] we obtain

Cls ~ Div’(K)/(D n Div’(K)),
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where Clg is the S-divisor class group of K. It follows that
h(K)
16l

From [13, Proposition 2.2] and the condition on S we deduce that r divides
|Clp|, where Clr is the T-divisor class group of L. Let Hr be the Hilbert
class field of L with respect to T. Then Gal(Hr/L) ~ Clr and F, is the
full constant field of Hr since n > 1 (see [13, Theorem 1.3]). Let F/F,
be a subfield of the extension Hp/L which is obtained as the fixed field of
a subgroup of Clr of order 1|Ciz|. Then [F : L] = 7. Since Hr/L is an
unramified extension, the Hurwitz genus formula yields

o(F) = 1= r(g(1)~ 1) = “Ea(r) - .

=|Cls| =

Furthermore, all places in T split completely in F'/L, hence N(F) > rn. =

Finally, we collect some facts about Drinfeld modules and narrow ray
class extensions. The book of Goss [2] and the survey article of Hayes [4]
are suitable references for the theory of Drinfeld modules. Let K /F; be a
global function field with N(K) > 1 and distinguish a rational place P of
K. Let Hp be the Hilbert class field of A with respect to P and let A be the
P-integral ring of K. Now let ¢ be a sign-normalized Drinfeld A-module of
rank 1. By [4, Section 15] we can assume that ¢ is defined over Hp, i.e., that
for each y € A the F;-endomorphism ¢, is a polynomial in the Frobenius
with coefficients from Hp. If Hp is a fixed algebraic closure of Hp and M
is a nonzero integral ideal in A, then we write Ays for the A-submodule of
Hp consisting of the M-division points. Let Eps := Hp(Apr) be the subfield
of H p generated over Hp by all elements of Aps. Then Epr/K is called the
narrow ray class extension of K with modulus M.

The following facts on narrow ray class extensions can be found in [2,
Section 7.5], [4, Section 16]. First of all, Apr >~ A/M as A-modules, so in
particular Aps is cyclic. The field Fps is independent of the specific ch01ce
of the sign-normalized Drinfeld A-module ¢ of rank 1. Furthermore, Epr/ K
is a finite abelian extension with

Gal(Ep/K) ~ Picpr(A) := Tar(A)/Prm(A),

where Zpr(A) is the group of fractional ideals of A that are prime to M and
Pr(A) is the subgroup of principal fractional ideals that are generated by
elements z € K with 2 = 1 mod M and sgn(z) = 1 (here sgn is the given
sign function). We have Gal(Ep/Hp) ~ (A/M)*, the group of units of the
ring A/M. If M = Q™ with a nonzero prime ideal ) in A and n > 1, then
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the order &,(Q™) of (A/Q™)* is given by

8,(Q™) = (¢* - 1) "7V,

where d is the degree of the place of K corresponding to Q. Again in this
situation, Eps/K is unramified away from P and () and the decomposition
group Dp of P in Epr/K is the subgroup Dp = {c+M : c € F;} of (A/M)".
Moreover, every place of Hp lying over @ is totally ramified in Epr/Hp.

In the special case where K = Fy(z), the theory of narrow ray class
extensions reduces to that of cyclotomic function fields as developed by
Hayes [3]. We note that cyclotomic function fields and narrow ray class
extensions have already been used by Niederreiter and Xing [6], 8], [9],
Quebbemann [12], and Xing and Niederreiter [18], [19] for the construction
of global function fields with many rational places.

3. Constructions for the case ¢ =35

In this section we construct examples of global function fields F’ with full
constant field Fs and many rational places. A list of such examples for the
genera 1 < g < 12 was provided in [8, Section 5]. Now we consider the range
13 < g < 22 and we also improve on the examples in [8] for ¢ = 7,9, 10,
and 11. Note that together with the results in [8] this yields lower bounds
for N5(g) for 1 < g < 22. The notations and conventions introduced in
Section 2 are used without further mention. We summarize the results in
the following table.

Table 1

g(F)| 719 |10[11]13{14|15|16}17(18{19|20|21 |22
N(F)|[22]26(27]|32(36(39(32|40{42]32|41|3048|51

ExaMPLE 1. g(F)=7,N(F) =22, F = F5(z,y) with
yt = (2 + 2)(z* — 222 - 2).

The place oo splits into two rational places in the Kummer extension
F/Fs5(z), each with ramification index 2. The only other ramified places
of F are those lying over 22 + 2 or z* — 222 — 2. All rational places of Fs(z)
different from oo split completely in F/Fs5(z).

ExAMPLE 2. g(F)=9,N(F) = 26, F = Fs(z, %, y2) with
n=2z-1)=-2), HB-%=(E+2un
Note that K = Fs(z,y;) satisfies g(K) = 1 and N(K) = 8. If Py is the



924 H. Niederreiter, C. Xing

place of K lying over oo, then
5
VP, ((x +2)y1 - (i—l) + %) =vp,(y1) = =3,

and so P, is totally ramified in the Artin-Schreier extension F/K. There
are no other ramified places in F/K. Over each of z,z — 1, and z — 2 there
is exactly one place of K, and each of these splits completely in F//K. The
two places of K lying over z + 2 also split completely in F/K.

ExamPLE 3. g(F) = 10, N(F) = 27. Consider the function field K =

Fs(z,y) with
y? = z(z ~ 1)(23 - 2z — 2).

Then g(K) =2, N(K) =7, and K has 13 places of degree 2, hence h(K) =
36. In K we have (z) = 2Py — 2P, and (z — 1) = 2Py — 2P,,. Now F is
obtained from Theorem 1 with L = K and § = {Ps, P1, P»}. Note that
|G| = 4 follows with the help of the Weierstrass gap theorem.

EXAMPLE 4. g(F) =11,N(F) =32, F = Fs(z, 41, y2) with
zt -1
p—1
Note that K = Fs(z,y;) satisfies g(K) = 1 and N(K) = 10. Let P, be
the place of K lying over oo and let P, = (3,1) and P, = (4,1), where

P = (a,b) is the rational place of K determined by (z,y1) = (a,b) mod P.
Since vp_ (y1) = —3, the principal divisor of y; — 1 in K is given by

(31 —1)=2P1 + P, — 3Ps.
Since z — 1,z — 2,z + 1, and z + 2 split completely in K/Fs(z), we have

y=2(z*-2), B-p=

8
(z'—=1)= > P - 8P,
=1

and so

4 8
(”" 1) =Y P, — P~ 5Ps.

- 1 i=3
Thus, P, is totally ramified in the Artin-Schreier extension F//K. A straight-
forward calculation shows that

4 _ 1 5
llpoo (.’l) — (y_1> + y_1> — _2,
y1 — 1 z x
and so Py is also totally ramified in F'/ K. The rational places P;,3 <1 < 8,
split completely in F/K.
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EXAMPLE 5. g(F) = 13, N(F) = 36. Consider the function field K =
Fs(z,y) with
y? = z(z - 1)(z + 22 + 1).
Then g(K) = 2, N(K) = 9, and K has 8 places of degree 2, hence h(K) = 48.
In K we have (z) = 2P, —2P,, and (¢ — 1) = 2P, —2P,,. Now F is obtained
from Theorem 1 with I = K and S = {Pw, Py, P2}, where we also note
that |G| = 4.

EXAMPLE 6. g(F) = 14, N(F) = 39. Consider the function field K =

Fs(z,y) with
y? =z(e — 1)z —z + 2).

Then g(K) =2,N(K) =9, and K has 12 places of degree 2, hence h(K) =
52. In K we have (z) = 2P, — 2Py and (z — 1) = 2P, ~ 2P. Now F' is
obtained from Theorem 1 with L = K and S = {P, P1, P, }, where we also
note that |G| = 4.

EXAMPLE 7. g(F) =15, N(F) = 32, F = Fs(z, 41, y2, y3) with

v =3(z"+2), y3=2(c-2), y3=(c+1)(c"+22-1)

The field K = Fs(z,y;) is that in [8, Example 5.1} and satisfies g(K) = 1
and N(XK) = 10. The place o is inert in K/F5(z). If L = Fs(z,y1,92), then
the places of L lying over z,2% — 2, or 0o are the only ramified ones in the
Kummer extension L/K and the places of L lying over z — 1,2 — 2,2 + 1,
or z + 2 split completely in L/K. Thus we have g(L) = 5 and N(L) = 18.
The only ramified places in the Kummer extension F'/L are those lying over
z+ 1 or 22 + 2z — 1. The places of L lying over z,z — 1,z —2, or z + 2 split
completely in F/L, hence N(F)=3-8+2-4=32.

ExAMPLE 8. g(F) = 16, N(F) = 40. Consider the function field K =
Fs(z,y1) with
vi = z(z — 1)(z + 2)(z* + 2z - 1).
Then g(K) =2, N(K) = 8,and K has 9 places of degree 2, hence h( K') = 40.
In K we have (z) = 2P, —2P,,(z-1) = 2P,—2P,,, and (z+2) = 2P;-2P,,.
Furthermore, let L = K(y;) with

v: = (z+1)(z® + 2z - 1).

The only ramified places in the Kummer extension L/K are the two places
of K lying over z + 1, hence g(L) = 4. Now F is obtained from Theorem
1 with § = {P, P1, P2, P;3}. Note that the condition on § in Theorem 1 is
satisfied since the two places of K lying over z + 1 are totally ramified in
L/K. Furthermore, we have n = 8 since all places in S split completely in
L/K, and also |G| = 8.
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EXAMPLE 9. g(F) =17, N(F) = 42, F = F5(z, y1, y2) with

t -1
yi=2(2"-2), Y-p= :
Y
Note that K = Fs(z,y;) satisfies g(K) = 1 and N(K) = 10. For the place
P, of K lying over oo we have vp_(y;) = —3. The principal divisor of i

in K is given by

(1) = P+ Q2 — 3P,
where P is the rational place of K lying over z and ), is the place of K
of degree 2 lying over z% — 2. It follows that P and @, are totally ramified
in the Artin-Schreier extension F/K. A straightforward calculation shows

that

4 _ 1 5

- ( R y_l) = -1,

(Nl z z
and so Py, is also totally ramified in F/K. The places z — 1,2 — 2,z + 1,
and z + 2 split completely in F//Fs(z), hence N(F)=4-10+ 2 = 42.

ExaMPLE 10. g(F) =18, N(F) = 32,F = F5(.’E,y1,y2) with
yi=(2"+2)(a" -22*~2), y-p=(y- 1)

The field K = Fs(z,y1) is that in [8, Example 5.2] and satisfies g(K) = 2
and N(K) = 12. All rational places of Fs(z) split completely in K/Fs(z).
Let @ and R be the two places of K lying over co. Then with an appropriate
ordering of these two places,

y=¢"+0(c7!) atQ,
1 =—22 +0(z7!) atR,

and so
vg (3 — )z? —2° + ) = -2,

vr (11 — D)z® + 2° — z) = -2.
It follows that ¢} and R are totally ramified in the Artin-Schreier extension
F/K, and these are the only ramified places in F/ K, hence g(F) = 18. The
following rational places of K split completely in F//K: the two places lying
over z and those four places P lying over z — 1,2z — 2,z + 1, or = + 2 with
y1 = 1 mod P. Therefore N(F)=6-5+2=32.
ExaMmpLE 11. g(F) =19, N(F) =41, F = Fs(z, y1, y2) with
Yom=2'-1 y=2-2"-z-2
For K = Fs(z,y;) we have g(K) = 6 and N(K) = 21. The place oo is totally

ramified in the Artin-Schreier extension K/Fs(z) and ¢ — 1,2 —2,2+ 1, and
z+2 split completely in K /F5(z). The places of K lying overz—1,z—2,2+1,
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or z + 2 split completely in the Kummer extension F/K and the place of K
lying over oo is totally ramified in F//K. The only other ramified places in
F/K are those places of K lying over 23— 222 —z - 2.

ExaMPLE 12. g(F) = 20, N(F) = 30, F = Fs5(z, 41, y2) with

5 et -1 2 2
i-n=—/ ys =2(z*+2+1).

The field K = Fs(z,y;) is that in [8, Example 5.8] and satisfies g(K) = 8
and N(K) = 22. The places z — 1,z — 2,z + 1, and = + 2 split completely
in K/Fs(z) and z and oo are totally ramified in K /Fs(z). The places of K
lying over z — 1,z — 2, or = + 2 split completely in the Kummer extension
F/K and the only ramified places in F/K are those lying over 2% + z + 1.

ExAMPLE 13. g(F) = 21, N(F) = 48. Consider the function field K =
Fs(z,y) with

y? = 2z(2? + 22 — 1).

Then g(K) = 1, h(K) = 8, and the place  — 2 is inert in K/Fs(z). In K
we have (z — 2) = @ — 2P and (¢) = 2P, — 2P, where deg(Q) = 2 and
deg(P) = deg(P1) = 1. We distinguish the rational place P of K and denote
by A the P-integral ring of K. Let Eg/K be the narrow ray class extension
of K with modulus @, then [Eg : K] = ®5(Q)h(K) = 192. Let < P; >
be the cyclic subgroup of Picg(A) ~ Gal(Eqg/K) generated by the residue
class Py of P; modulo Pg(A). Since P? = zA and ¢ = 2 mod Q, we have
| < Py > | = 8. Let F be the subfield of Eg/K fixed by < P; >, then
[F: K] = 24. Again from z = 2 mod @ we deduce that the decomposition
group of P in Eq/K is contained in < P; >, and so P splits completely in
F/K. By considering the Artin symbol, we see that P; also splits completely
in F/K, hence N(F) > 48. The only ramified place in F/K is Q. Let R be
a place of F lying over (). Then the inertia group of R in Eg/F is I N
Gal(Eq/F), where I = Gal(Eq/Hp) ~ (A/Q)*. Now

[INGal(Eq/F)| =1(4/Q)" N < Py >| =4,

and so the ramification index of Q in F/K is
1 1
~[Eqg:Hp]l= =9 =6.
1lEe  Hpl= 195(Q) =6

Consequently, @ is tamely ramified in F//K, and so the Hurwitz genus for-
mula yields 2g(F) -2 =24-(2-2)+ (6 —1) - 8, that is, g(F) = 21. Now
N5(21) < 58 by Serre’s method (see [15, Proposition V.3.4]), and so we must
have N(F) = 48.
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EXAMPLE 14A. g(F) = 22,N(F)=51,F = Fs(z, y1, %) with
Y2 =2 —z 41, yg—y2:(m5—z)y1.

For K = Fs(z,y,) we have g¢(K) = 2 and N(K) = 11. The place oo is totally
ramified in the Kummer extension K /F5(z) and all other rational places of
F;(z) split completely in K/F5(z). The places of K lying over the latter
places split completely in the Artin-Schreier extension F/K. Let Py, be the

unique place of K lying over oo, then vp_(y1) = —5. A simple calculation
shows that
5 By, n
—oyp - (L) + 82 =7,
7 ((w o - (L) + )

Thus, P., is totally ramified in F/K and it is the only ramified place in
F/K.

ExAMPLE 14B. g(F) = 22, N(F) = 51. Let K = Fs(z) and let Epr =
K(Apr) be the cyclotomic function field with the modulus M being the
principal ideal in Fs[z] generated by z* and with the distinguished rational
place co of K. Then [Eps : K] = $5(M) = 500. Let Dy, be the decompo-
sition group of oo in Epr/K and let H be the subgroup of Gal(Ep/K) ~
(Fs[z]/M)* generated by Dy, and z + 1 + M. Since |Dy| = |F¥| = 4 and
¢+ 1+ M has order 5 in (Fs{z|/M)*, we have |H| = 20. Let F be the sub-
field of Fpr/ K fixed by H, then [F : K] = 25. The places oo and z + 1 split
completely in F/K by the construction of F' and the place P = z is totally
ramified in F/K, thus N(F)=2-25+1 = 51. Since P is the only ramified
place in F/K, it suffices to calculate its different exponent dp(F/K) to ob-
tain g(F). First of all, we have dp(Ep/K) = 15- 5% by [3, Theorem 4.1].
We can write H = Gal(Ep/F) as

H={c(z+1)Y +M:cecF;,0<j<4}.

Let @) be the place of F lying over P and R the place of Fjps lying over P.
If A € Epr is a generator of the cyclic F5[z]-module Aps, then vr(A) =1
is shown in the proof of [3, Proposition 2.4]. Therefore, by [15, Proposition
I11.5.12] we obtain

do(Em/F)= Y wvr(A-6;(\),

FEH\{1+M}

where ¢ denotes the action of the underlying Drinfeld module, which in
this case of a cyclotomic function field is a Carlitz module (see [3]). From
A € Apr we get ¢pr(A) = 0, and so it suffices to consider the system of
representatives c(z 4+ 1)7,¢ € F;,0 < j < 4, of H. A simple calculation
shows that
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vrR(A—¢s(A)=5 ifec=1andj#0,

I/R()\ - ¢f(/\) =1 ife 7é 1,
and so dg(Ep/F) =4-5415-1 = 35. Now the tower formula for different
exponents implies that
dp(Em/K) — do(Em/F)  15-5° — 35
eqQ(Em/F) - 20
where eq(En/F) is the ramification index of @ in Eps/F. Finally, the Hur-
witz genus formula yields 2g(F) — 2 = —2 - 25 + 92, that is, g(F) = 22.

=92,

dp(F/K) =
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