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RATIONAL PLACES OVER THE QUINARY FIELD 

1. Introduction 
Let q be an arbitrary prime power and let K be a global function field 

with full constant field F?, i.e., with Fg algebraically closed in K. We use the 
notation K/¥q if we want to emphasize the fact that F9 is the full constant 
field of K. By a rational place of K we mean a place of K of degree 1. We 
write g(K) for the genus of I( and N(K) for the number of rational places 
of K. For fixed g > 0 and q we put 

Nq(g) = maxN(K), 
where the maximum is extended over all global function fields K/Wq with 
g{K) = g. Equivalently, Nq{g) is the maximum number of F?-rational points 
that a smooth, projective, absolutely irreducible algebraic curve over Wq of 
given genus g can have. The calculation of Nq(g) is a very difficult problem 
in algebraic geometry, so usually one has to make do with bounds for Nq(g). 

Global function fields K/Fq with many rational places, that is, with 
N(K) reasonably close to Nq(g(K)) or to a known upper bound for 
Nq(g(K)), have received a lot of attention in the literature. Quite a number 
of papers on the subject have also been written in the language of algebraic 
curves over finite fields. The first systematic account of the subject was given 
by Serre [14], and for recent surveys we refer to Garcia and Stichtenoth [1] 
and Niederreiter and Xing [11]. The construction of global function fields 
with many rational places, or equivalently of algebraic curves over F, with 
many Fg-rational points, is of great theoretical interest. Moreover, it is also 
important for applications in the theory of algebraic-geometry codes (see 
[15], [16]) and in the recent constructions of low-discrepancy sequences in-
troduced by the authors (see [5], [7], [10], [17]). 

For the practical aspects of these applications it is important that the 
constructions of global function fields with many rational places be as ex-
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plicit as possible. In the ideal case, one would like to have descriptions of 
the global function fields in terms of generators and defining equations. The 
constructions by Serre [14] use class field theory and are thus not explicit. 
More attention is now devoted to the desideratum of obtaining explicit con-
structions, see e.g. the recent papers of Niederreiter and Xing [6], [8] and 
the references given there. 

The present paper can be viewed as a continuation of the work in [6] and 
[8] which led to catalogs of global function fields with many rational places 
for the cases q = 2, 3 ,4,5 and to many explicit constructions. We concentrate 
here on the case q — 5 and extend the list of constructions in [8, Section 
5]. The motivation for this is the following one. For the construction of s-
dimensional low-discrepancy sequences in a given base q by means of rational 
places (see e.g. [5]) we need a global function field K/Wq with N ( K ) > 
s + 1. In order to cover the standard range 1 < s < 50 of applications of 
low-discrepancy sequences in an efficient manner, we need to find, for each 
dimension s in this range, a global function field K/F9 of relatively small 
genus with N(K) > s + 1. For q = 5 the constructions in [8, Section 5] 
allow us to cover only the range 1 < s < 29, whereas the new results in the 
present paper cover the full range 1 < s < 50. 

In Section 2 we review some background and establish a new method of 
constructing global function fields with many rational places. In Section 3 
we present our new examples for the case q = 5. Some of these examples 
are quite straightforward, but others require detailed arguments to validate 
them. The majority of the examples is based on explicit constructions. 

2. Background for the constructions 
Let Fg(a;) be the rational function field over Fg . We will often use the 

convention that a monic irreducible polynomial P over ¥q is identified with 
the place of F9(a:) which is the unique zero of P , and we will denote this 
place also by P. It will also be convenient to write oo for the "infinite place" 
of F9(a;), that is, for the place of Fg(a>) which is the unique pole of x. For an 
arbitrary place Q of a global function field K we write UQ for the normalized 
discrete valuation corresponding to Q. For any z € K* let (z) denote the 
principal divisor of z. 

Several examples in Section 3 are based on Artin-Schreier extensions and 
Kummer extensions. We will not review the theory of these extensions here 
since an excellent account of it is available in the book of Stichtenoth [15, 
Section III.7]. 

We recall some pertinent facts about Hilbert class fields. A convenient 
reference for this topic is Rosen [13]. Let K be a global function field and 
S a finite nonempty set of places of K. The Hilbert class field Hs of K 
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with respect to S is the maximal unramified abelian extension of K (in a 
fixed separable closure of K) in which all places in S split completely. The 
extension Hs/K is finite with Galois group 

G a l ( H s / K ) ~ Cls, 

where Cls is the S-divisor class group of K, i.e., the quotient of the group 
of all divisors of K of degree 0 with support outside S by its subgroup of 
principal divisors. If S — {P} is a singleton, then we also write Hp instead 
of Hs- If P is a rational place of K, then we also have 

Gal(Hp/K) ~ Div°(/i), 

the group of divisor classes of K of degree 0. In particular, we have [Hp : 
K] = h(I(), the divisor class number of K. The divisor class numbers ap-
pearing in Section 3 are calculated by the standard method based on the 
results in [15, Section V.l]. Furthermore, Div°(/i') is isomorphic to the frac-
tional ideal class group Pic(A), where A is the P-integral ring of K, i.e., A 
consists of the elements of K that are regular outside P. There is a standard 
identification between places of K and prime ideals in A. The following new 
result is based on these concepts. 

T H E O R E M 1. Let K/¥q be a global function field and L/Wq a finite sep-
arable extension of K. Let S = {P, Pi,..., Pm} with P a rational place of 
K and P\,..., Pm arbitrary places of K different from P. Suppose that S 
satisfies the following condition: either some place of K not in S is totally 
ramified in L/K or some place in S is inert in L/K. Let T be the set of 
places of L lying over those in S and assume that the number n of rational 
places in T is positive. Then there exists a global function field F/¥q with 

9 ( F ) = M | l ( 9 ( i ) - l ) + l and N{F)> 

where G is the subgroup of Div°(.if) generated by the divisor classes of 
Pi - deg(Pi )P , . . . > Pm deg ( P m ) P . 

P r o o f . Let Div(iir) be the group of divisor classes of K and let D be the 
subgroup of Div(if) generated by the divisor classes of P, P i , . . . , Pm. Since 
S contains the rational place P , the group Div(ii') is generated by Div°(/i') 
and D. Thus, from the exact sequence 

(0) Div°(K)/(D n Div°(JO) Cls -» Div(K)/Div°(K)D (0) 

in the proof of [13, Lemma 1.2] we obtain 

Cls ^ Div°(K)/(D n Div°(A")), 
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where Cls is the ¿'-divisor class group of K. It follows that 

h(K) 
r := \Cls\ = 

\G\ 
From [13, Proposition 2.2] and the condition on S we deduce that r divides 
\ClT\, where CIT is the T-divisor class group of L. Let Hj be the Hilbert 
class field of L with respect to T. Then Ga\(HT/L) ~ CIT and F, is the 
full constant field of HT since n > 1 (see [13, Theorem 1.3]). Let F/¥q 

be a subfield of the extension H ? / L which is obtained as the fixed field of 
a subgroup of CIT of order J\CIT\- Then [F : L] = r. Since HT/L is an 
unramified extension, the Hurwitz genus formula yields 

g(F)-l = r(g(L)-l)=f^-(g(L)-l). 

Furthermore, all places in T split completely in F/L, hence N(F) > rn. • 

Finally, we collect some facts about Drinfeld modules and narrow ray 
class extensions. The book of Goss [2] and the survey article of Hayes [4] 
are suitable references for the theory of Drinfeld modules. Let K/Wq be a 
global function field with N(K) > 1 and distinguish a rational place P of 
K. Let Hp be the Hilbert class field of K with respect to P and let A be the 
P-integral ring of K. Now let ^ be a sign-normalized Drinfeld A-module of 
rank 1. By [4, Section 15] we can assume that <f> is defined over Hp, i.e., that 
for each y £ A the Fg-endomorphism cf>y is a polynomial in the Frobenius 
with coefficients from Hp. If Hp is a fixed algebraic closure of Hp and M 
is a nonzero integral ideal in A, then we write Am for the A-submodule of 
Hp consisting of the ili-division points. Let Em '•= Hp(Am) be the subfield 
of Hp generated over Hp by all elements of AM- Then EM/K is called the 
narrow ray class extension of K with modulus M. 

The following facts on narrow ray class extensions can be found in [2, 
Section 7.5], [4, Section 16]. First of all, Am — A/M as A-modules, so in 
particular Am is cyclic. The field Em is independent of the specific choice 
of the sign-normalized Drinfeld A-module (f> of rank 1. Furthermore, Em/K 
is a finite abelian extension with 

Gsl(EM/K) ~ PicM(A) := 1m(A)/VM(A), 

where Jm{A) is the group of fractional ideals of A that are prime to M and 
VM{A) is the subgroup of principal fractional ideals that are generated by 
elements z G K with z = 1 mod M and sgn(z) = 1 (here sgn is the given 
sign function). We have Gal (Em/Hp) ~ (A/M)*, the group of units of the 
ring A/M. If M = Qn with a nonzero prime ideal Q in A and n > 1, then 
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the order $q(Qn) of (A/Qn)* is given by 

$q(Qn)= {i4-1) qd{n~l), 

where d is the degree of the place of K corresponding to Q. Again in this 
situation, Em/K is unramified away from P and Q and the decomposition 
group Dp of P i n EM/K is the subgroup D P = {c + M : c e F*} of (A/M)*. 
Moreover, every place of Hp lying over Q is totally ramified in EM/Hp. 

In the special case where K = F,(x) , the theory of narrow ray class 
extensions reduces to that of cyclotomic function fields as developed by 
Hayes [3]. We note that cyclotomic function fields and narrow ray class 
extensions have already been used by Niederreiter and Xing [6], [8], [9], 
Quebbemann [12], and Xing and Niederreiter [18], [19] for the construction 
of global function fields with many rational places. 

3. Constructions for the case q = 5 
In this section we construct examples of global function fields F with full 

constant field F5 and many rational places. A list of such examples for the 
genera 1 < g < 12 was provided in [8, Section 5]. Now we consider the range 
13 < g < 22 and we also improve on the examples in [8] for g = 7,9,10, 
and 11. Note that together with the results in [8] this yields lower bounds 
for NS(g) for 1 < g < 22. The notations and conventions introduced in 
Section 2 are used without further mention. We summarize the results in 
the following table. 

Table 1 

9(F) 7 9 10 11 13 14 15 16 17 18 19 20 21 22 
N(F) 22 26 27 32 36 39 32 40 42 32 41 30 48 51 

E X A M P L E 1 . g(F) = 7,N(F) = 2 2 , F = W5(x,y) with 

y4 = (x2 + 2)(x4 - 2z2 - 2). 

The place 00 splits into two rational places in the Kummer extension 
F/¥5 (X), each with ramification index 2. The only other ramified places 
of F are those lying over x2 + 2 01 x4 — 2x2 — 2. All rational places of F5 (x) 
different from 00 split completely in F/Fs(x). 

E X A M P L E 2 . g(F) = 9,N(F) = 26,F = Fs(x,y1,y2) with 

y\ = x{x - l ) (x - 2), y\ - y2 = (x + 2)Vl. 

Note that K = Fs ta : ,^ ) satisfies g{K) = 1 and N(K) = 8. If P i s the 
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place of K lying over oo, then 

^ + 2 ) ^ - ( | ) 5 + = p p M = - 3 , 

and so Poo is totally ramified in the Artin-Schreier extension F/K. There 
are no other ramified places in F/K. Over each of x, x — 1, and x — 2 there 
is exactly one place of K, and each of these splits completely in F/K. The 
two places of K lying over x + 2 also split completely in F/K. 

E X A M P L E 3. g(F) = 10 ,N(F) = 27. Consider the function field I( = 
F 5 ( x , y ) with 

y2 = x(x - l)(z3 - 2x - 2). 

Then g(K) = 2, N(K) = 7, and K has 13 places of degree 2, hence h(K) = 
36. In K we have (x) = 2PX - 2P(X> and (x - 1) = 2P2 - 2Pao. Now F is 
obtained from Theorem 1 with L — K and S = {P^, P\, P2}. Note that 
|G| = 4 follows with the help of the Weierstrass gap theorem. 

E X A M P L E 4 . g(F) = 1 1 ,N(F) = 32, = F 5(«,3/1 ,2/2) w i t h 

2 / 2 ^ 1 
2/i = - 2), ?/2 - 2/2 = r -

i/i - 1 
Note that i f = F5(®, 3/1) satisfies g(K) = 1 and iV(iii) = 10. Let P^ be 
the place of /if lying over 00 and let P\ = (3 ,1 ) and P2 = (4 ,1 ) , where 
P = (a, 6) is the rational place of K determined by (x,y\) — (a,b) mod P. 
Since vp^iy 1) = —3, the principal divisor of 2/1 — 1 in K is given by 

(2/1 - 1) = 2P\ + P2- 3Poo. 

Since 1, and x + 2 split completely in K/W$(x), we have 

8 

i = l 

and so 

V - 1 / fe 
Thus, Pi is totally ramified in the Artin-Schreier extension F/K. A straight-
forward calculation shows that 

and so P ^ is also totally ramified in F/K. The rational places Pi, 3 < i < 8, 
split completely in F/K. 
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EXAMPLE 5. g(F) = 1 3 , N ( F ) = 36. Consider the function field K = 
W5{x,y) with 

y2 = x(x - l)(z3 + 2x + 1). 

Then g{K) = 2, N(K) = 9, and K has 8 places of degree 2, hence h(K) = 48. 
In K we have (x) = 2P 1 - 2P«, and (x - 1 ) = 2P2 - 2P<x,. Now F is obtained 
from Theorem 1 with L = K and S = {Poo, Pi, Pi), where we also note 
that |G| = 4. 

EXAMPLE 6. g(F) = 1 4 , N ( F ) = 39. Consider the function field K = 
W5(x,y) with 

y2 = x(x - l ) ( x 3 - x + 2). 

Then g(K) - 2, N(K) = 9, and K has 12 places of degree 2, hence h(K) = 
52. In K we have (a) = 2P1 - 2Poo and (x - 1) = 2P 2 - 2P(X). Now F is 
obtained from Theorem 1 with L = K and S = {Poo, P\,Pi}, where we also 
note that |G| = 4. 

E X A M P L E 7 . g(F) = 15, N(F) = 32, F = ¥5{x,yuy2,y3) w i t h 

y\ = 3(x 4 + 2), y2 = x(x2 - 2), y23 = (x + l)(x2 + 2x - 1). 

The field K = Fs (a:, T/J ) is that in [8, Example 5.1] and satisfies g(K) = 1 
and N(K) = 10. The place oo is inert in K/W5(x). If L = ¥5{x,y1,y2), then 
the places of L lying over x,x2 — 2, or oo are the only ramified ones in the 
Kummer extension L/K and the places of L lying over x — 1, x — 2, x + 1, 
or x + 2 split completely in L/K. Thus we have g(L) = 5 and N(L) = 18. 
The only ramified places in the Kummer extension F/L are those lying over 
x + 1 or x2 + 2x — 1. The places of L lying over x, x — 1, x — 2, or x + 2 split 
completely in F/L, hence N(F) = 3 • 8 + 2 • 4 = 32. 

EXAMPLE 8. g(F) = 1 6 , N ( F ) = 40. Consider the function field K = 
F s (a : , y i ) with 

y\ = x(x - l)(z + 2){x2 + 2 x - 1). 

Then g(K) = 2, N(I() = 8, and K has 9 places of degree 2, hence h(K) = 40. 
In I( we have (ar) = 2P1-2P00,(x-l) = 2P2~2Poo, and ( x + 2 ) = 2P3-2Poo-

Furthermore, let L = K(y2) with 

yj = {x + l)(x2 + 2x - 1). 

The only ramified places in the Kummer extension L/K are the two places 
of K lying over x + 1, hence g(L) = 4. Now F is obtained from Theorem 
1 with S = {Poo Pi?p25 P3}- Note that the condition on S in Theorem 1 is 
satisfied since the two places of K lying over x + 1 are totally ramified in 
L/K. Furthermore, we have n = 8 since all places in S split completely in 
L/K, and also |G| = 8. 
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E X A M P L E 9 . g ( F ) = 1 7 , N ( F ) = 42,F = ¥ 5 ( x , y i , y 2 ) with 

y\ = x(x2 - 2), y l ~ y 2 = - . 

2 / i 
Note that K = F5(a:,yi) satisfies g(K) = 1 and N(K) = 10. For the place 
Poo of K lying over oo we have vpx(yi) = —3. The principal divisor of yi 
in K is given by 

( y i ) = P + Q2-3P00, 

where P is the rational place of K lying over x and Q 2 is the place of K 
of degree 2 lying over x2 — 2. It follows that P and Q2 are totally ramified 
in the Artin-Schreier extension F/K. A straightforward calculation shows 
that 

and so Px> is also totally ramified in F/K. The places x — l,x — 2,x + 1, 
and x + 2 split completely in F/W5(x), hence N ( F ) - 4 • 10 + 2 = 42. 

E X A M P L E 10. g ( F ) = 18 , N ( F ) = 32 ,F = f 5 ( x , y i , y2) with 

y\ = (x2 + 2)(x4 - 2x2 - 2), y\ - y2 = ( V l - l ) x 2 . 

The field K = W5(x,yi) is that in [8, Example 5.2] and satisfies g ( K ) = 2 

and N ( K ) = 12. All rational places of W5(x) split completely in K/W5(x). 

Let Q and R be the two places of K lying over 00. Then with an appropriate 
ordering of these two places, 

y1 = x 3 + 0 ( x ~ 1 ) a t Q, 

yi = -x3 + 0 ( x - 1 ) at R, 

and so 

v q ((i/i - l ) x 2 - x5 + x) = - 2 , 

vr i(yi - l ) x 2 + x 5 - x ) = - 2 . 

It follows that Q and R are totally ramified in the Artin-Schreier extension 
F / K , and these are the only ramified places in F/K, hence g(F) = 18. The 
following rational places of K split completely in F/K: the two places lying 
over x and those four places P lying over x — l,x — 2,x + l , o r x + 2 with 
yi = l mod P . Therefore N(F) = 6 • 5 + 2 = 32. 

E X A M P L E 11. g ( F ) = 19,N(F) = 41,F = r 5(ar,yi ,y 2) with 

2/i - i/i = x* - 1, y\ = x3 - 2 x 2 - x - 2 . 

For K = Ws(x, yi) we have g(K) - 6 and N(K) = 21. The place 00 is totally 
ramified in the Artin-Schreier extension K/W^x) and x - l , x — 2,x + l , and 
x+2 split completely in K/W$ ( x ) . The places of K lying over x—l,x—2, x+1, 
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or x + 2 split completely in the Kummer extension F/K and the place of K 
lying over oo is totally ramified in F/K. The only other ramified places in 
F/K are those places of K lying over a:3 — 2a:2 — x — 2. 

E X A M P L E 12. g(F) = 20, N(F) = 30,F = F 5 ( x , y l , y 2 ) with 

2/i - 2/i = ^ v\ = 2{x2 + x + 1). x 
The field K = Fs(a;,?/i) is that in [8, Example 5.8] and satisfies g(K) = 8 
and N(I() = 22. The places x 1 ̂  x 2 ̂  x + 1, and x + 2 split completely 
in K/F$(x) and x and oo are totally ramified in K T h e places of K 
lying over x — 1, x - 2, or x + 2 split completely in the Kummer extension 
F/K and the only ramified places in F/K are those lying over x2 + x + 1. 

E X A M P L E 13. g(F) = 21 ,N(F) = 48. Consider the function field K = 
Fs(s,y) with 

y2 = 2x(x2 +2x- 1). 

Then g(K) = 1, h(K) = 8, and the place x - 2 is inert in K/W^x). In K 
we have (x - 2) = Q - 2P and (x) = 2PX - 2P, where deg(Q) = 2 and 
deg(P) = deg(Pi) = 1. We distinguish the rational place P of K and denote 
by A the P-integral ring of K. Let EQ/K be the narrow ray class extension 
of K with modulus Q, then [EQ : K] = $5(Q)h(K) = 192. Let < P j > 
be the cyclic subgroup of Picg(A) ~ Gal (EQ/K) generated by the residue 
class P i of Pi modulo VQ(A). Since P 2 = xA and x = 2 mod Q, we have 
| < PL > | = 8. Let F be the subfield of EQ/K fixed by < P i > , then 
[P : K] = 24. Again from x = 2 mod Q we deduce that the decomposition 
group of P in EQ/K is contained in < Pi > , and so P splits completely in 
F/K. By considering the Artin symbol, we see that Pi also splits completely 
in F/K, hence N(F) > 48. The only ramified place in F/K is Q. Let R be 
a place of F lying over Q. Then the inertia group of R in EQ/F is I n 
G a l ( E Q / F ) , where I = G a l { E Q / H P ) ~ (A/Q)*. Now 

\InGal(EQ/F)\ = \(A/Q)* n < P j > | = 4, 

and so the ramification index of Q in F/K is 

±[EQ : HP] = = 6. 

Consequently, Q is tamely ramified in F/K, and so the Hurwitz genus for-
mula yields 2g(F) - 2 = 24 • (2 - 2) + (6 - 1) • 8, that is, g(F) = 21. Now 
JV5(21) < 58 by Serre's method (see [15, Proposition V.3.4]), and so we must 
have N{F) = 48. 
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EXAMPLE 14A. g(F) = 22, N(F) = 51, F = F5(®, yi, 2/2) with 

2/i = z5 — £ + 1, yl ~V2 = (x5 - x)yi. 

For K - F5(a;, y{) we have g(K) = 2 and iV(/iT) = 11. The place 00 is totally 
ramified in the Kummer extension K/W5 (x) and all other rational places of 
F5(2) split completely in K/W5(x). The places of K lying over the latter 
places split completely in the Artin-Schreier extension F/K. Let P^ be the 
unique place of K lying over 00, then vpx{y\) = —5. A simple calculation 
shows that 

„ , _ ( < , • - , > „ - ( * ) ' + * ) = - 7 . 

Thus, Poo is totally ramified in F/K and it is the only ramified place in 
F/K. 

EXAMPLE 14B. g(F) = 2 2 , N ( F ) = 51. Let K = F5(a;) and let EM = 
A'(AM) be the cyclotomic function field with the modulus M being the 
principal ideal in F5 [®] generated by xA and with the distinguished rational 
place 00 of K. Then [EM K] = $5(M) = 500. Let D00 be the decompo-
sition group of 00 in EM/K and let H be the subgroup of Gal(i?M/K) ~ 
( F 5 [ X ] / M ) * generated by D^ and x + 1 + M. Since pool = |F | | = 4 and 
x + 1 + M has order 5 in (F5[a:]/M)*, we have \H\ = 20. Let F be the sub-
field of EM/K fixed by H, then [i7 :1(] = 25. The places 00 and x + 1 split 
completely in F/K by the construction of F and the place P = x is totally 
ramified in F/K, thus N(F) = 2 • 25 + 1 = 51. Since P is the only ramified 
place in F/K, it suffices to calculate its different exponent dp(F/K) to ob-
tain g(F). First of all, we have dP(EM/K) = 15 • 53 by [3, Theorem 4.1]. 
We can write H = G a \ ( E M / F ) as 

H = {c(x + l)j + M : c e 0 < j < 4}. 

Let Q be the place of F lying over P and R the place of EM lying over P. 
If A G EM is a generator of the cyclic F5 [x]-module AM, then VR(\) = 1 
is shown in the proof of [3, Proposition 2.4]. Therefore, by [15, Proposition 
III.5.12] we obtain 

dQ(EM/F)= Y , ^ - M A))> 
feH\{i+M} 

where (f>f denotes the action of the underlying Drinfeld module, which in 
this case of a cyclotomic function field is a Carlitz module (see [3]). From 
A G A M w e get 4>M(A) = 0, and so it suffices to consider the system of 
representatives c(x + 1 c G F^O < j < 4, of H. A simple calculation 
shows that 
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vR(X - <j>f(\)) = 5 if c = 1 and j ^ 0, 

i f c ^ l , 

and so dQ(EM/F) = 4 • 5 + 15 • 1 = 35. Now the tower formula for different 
exponents implies that 

, dP(EM/K)-dQ(EM/F) _ 15 • 53 — 35 _ 
M F / K ) = eQ(EM/F) " 20 - 9 2 ' 

where 6Q(EM/F) is the ramification index of Q in EM/F. Finally, the Hur-
witz genus formula yields 2 g ( F ) - 2 = - 2 • 25 + 92, that is, g(F) = 22. 
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