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L?-ANALYSIS OF FINITE ELEMENT EIGENFUNCTION
APPROXIMATION WITH NUMERICAL INTEGRATION

1. Introduction
The effect of numerical integration on the finite element approximation
of eigenfunctions of the eigenvalue problem

_ =801 05(aij(2)0ip) = Mg in 2,
(1.1) Ly {30=OJ 1% on 00,

where {2 is a convex polygonal domain in #2, will be considered.

Similar problems have been studied by Fix [10], Babuska and Osborn [2],
Banerjee and Osborn [3], [4], Banerjee and Suri [5], Lewifiska [11], Vanmaele
and Van Keer {12], [13], Andreev, Kascieva and Vanmaele [1] and others.
In [3], [4] there were obtained the optimal estimates for eigenvalues and
for eigenfunctions of (1.1) in the space H3(f2). Another approach using the
maximum norm estimates for FEM was presented in [11].

This paper is devoted to the eigenfunction estimates in the space L%(£2).
We show for the finite element space of piecewise polynomials of a degree
k > 2 that, if the precision of the numerical integration is like that for
the source linear boundary value problem, the eigenfunction estimates in
L%(£2) are optimal (like those for the finite element approximation without
numerical integration). In the case of piecewise linear finite elements (k = 1)
a slight loss in the order of convergence for eigenfunctions takes place despite
the assumed increased accuracy of the quadrature rule. Our method of proof
makes use of the L™ estimates for FEM and in that it differs from the
approaches of other authors. In Sec.2 notation and the problem are set up.
In Sec.3 the convergence results are established. Sec.4 contains our main
result and final remarks.

1991 Mathematics Subject Classification: 65N25, 65N30.
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2. Problem setting and notations
The variational formulation of (1.1) is:

(2.1) Find (A,¢) € R x HF(£2) such that ¢ # 0 A a(p,v) = Ab(p,v)
Vo € HY(R) with a(u,v) = [, 37 . @i ;(8:u)(d;v) dz, b(u,v) =
(o uvdz.

We assume that the coefficients a;; are sufficiently smooth, that a;; = aj;
Vi, 7 and

2 2
Fa>0:Vee N Y aij(w)b; 20y & (&, 6) € R
i,j=1 i=1
These assumptions imply the symmetry of the form a and its H}(£2)-ellip-
ticity, i.e.
(2.2) Ja > 0:a(v,v) > allv|} Vv e HY(RQ).
The approximate space for V = H}(2) will be
Vi = {vn € C(12) : vnlon = 0 A (valk € Px(K) VK € 1)},

where Pi(K) are polynomials of a degree k on a triangle K of a uniformly
regular triangularization 73, of 2. Thus about 7, we assume

(2.3) dv > 0:vh<ox <hg <hVK €Ty, thho,

where hg = diam K; pg = sup{diam .5 : Sis a ball contained in K}; h =
max hg. Also as it is usual we will require that no vertex of any closed
triangle K belonging to 7, lies on the interior of a side of another triangle
and that the union of all the triangles gives f2. _

The quadrature rule is first defined on a reference element K as

| F@ydE~ 3 w6
> =1

K

with weights w; > 0 and knots 1;1 _
Let FxZ = BgZ+bg be an affine mapping from K onto K. The quadra-
ture rule is transferred onto each element K € 7, by
L
S f(.T)d:L‘ ~ Zwl,Kf(bl,K) with WK = |det BKI(TJ[,bl,K = FK(b[) € K.
K =1
We denote by Ex(f) an error of the quadrature rule for the element K € 7,
ie. '

L
Ex(f) =\ f(z)dz =Y wix f(bix).

K =1
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The approximate forms ay : Vi, x Vi, — R and b, : C(R2) x C(2) — R are
obtained by applying the above quadrature to the forms a,b respectively,
ie.

L 2
an(Un,vn) = Z ZWI,K Z (ai;(0:un)(0jvn))(b1,x) Vun,vn € Vi

Ker, I=1 i,j=1

and

L
ba(u,v) = Y > wix(w)(bix) Vu,veC(R).
K=m, |
Throughout the text we assume that the quadrature is exact for the poly-
nomials of a degree 2k — 2, i.e.

(2.4) Ef}(f) =0 Vfe Py_o(K).
By [7, Th. 4.1.2] the assumption (2.4) implies the uniform Vj,-ellipticity of
the forms ay, i.e.
(2.5) 38 > 0 : an(vr,vs) > Bllonll> VA < ko Yoy, € Vi
Thus the approximate problem will be
(2.6) Find (A, ¢n) € R x V3 such that i # 0 A ap(@hn,vn)
= Abn(@n, vi) Yo, € V.

The eigenvalue problems (2.1), (2.6) can be transformed to an operator form
with the help of the solution operators T : L*(£2) — V and T} : C(£2) — V,,

defined as
(2.7) a(Tu,v) = b(u,v) Yo €V Vu € L}(2),
(2.8) an(Thu,v) = bu(u,v) Yo, € V, Vu € C(12).

By the Lax-Milgram theorem, T belongs to L{L?,V) but there arises the
problem of existence of T),. However let us observe that for each u € C (2)
the mapping bn(u, ) : Vs, — R is a linear functional on a finite dimensional
space V}, so by (2.5) and the Lax—Milgram theorem, Thu exists. At this
stage we leave open the question of boundedness of Ty :C (2) — V4. This
problem will be tackled later. N

With the introduction of the solution operators T',T} the eigenvalue
problems (2.1), (2.6) are equivalent to

(2.9) pe=Typ, @€V =Hj,
(2.10) pon = Thon, @n €Vh, p=1/A

Let us observe that in fact the operator T, which has a domain H = L%(#2),
can be treated as an operator from H into H (while in (2.9) T has been
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treated as an operator from V into V). The eigenvalue problem

(2.11) po=Tp, @peH=I?
has the same eigenvalues and eigenfunctions as (2.9) except for u = 0 since
Range T C V.

From now onward we will examine the relations between the eigenvalue
problem (2.11) and its approximation (2.10).

In our text we will often refer to the fact that the operator T : L2 — L2
is compact and that the boundary value problem (2.7) is "regular” in the
sense (see [7])

(2.12) Vue L*(R) TueVNH)Q)AT € L(L* HY).

At the end of this section let us complete setting up notations. Thus for
A C R? the norms and the seminorms in H*(A), W#9(A) will be denoted
by || le,as | lxq.a5 | le,a5 | |x,q 4- Sometimes subscripts will be omitted if it
causes no confusion. The norm in L? will be denoted either by || ||, or by
| |o- Also the norm

2
lvall;r = Z lonllix  Vor € Vi
I{ETh

will be frequently used as well as the a-projectors [], : V — Vj, defined by
the formula

(2.13) a(v~ Il u,vn) =0 Yu €V Vo, € V)
Throughout the.text C will stand for a generic constant.
3. Convergence results

Like Banerjee, Osborn in [4], we will apply classical results of Descloux,
Nassif, Rappaz [8]. The following conditions will thus have to be checked:

. . _ — — 2
(3.1) ’1113}) U:Ig,h lu —vpllg =0 Yue H=L*,
(32) tim (7~ Talv gy = O

The convergence (3.1) obviously takes place, since (3.1) does hold for every
v €V =H¢ and V is dense in H.
In order to establish (3.2) we will prove

LemMA 1. If El?(f) = OVf € Py(K), then
(3.3) [(b— bp)(up,vp)| < Chzluhll,nlvhh,n Yup,vn € V.

Proof. The technique presented in [9, pp.345-6] will be followed. Let
@, v belong to Px(K) and let ug, vy € R be their mean values, i.e.
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w = —=— \udz, vo=——= \vdz.
Wk Wk )

The following identity is obvious: %0 = (% — u)(V — vo) + uo(? — vo) + uwp.

Since the functions uo(? — v ), Uvp are polynomials of a degree k, by the

assumption of Lemma, Ex(uo(v — v)) = E(uve) = 0 and

Ez(uv) = Eg((@— uo)(? — w))

1 ~ g~ 1 ~ g~
S

<[ 165 - ) - )]+ | 355 - o) (B
e =1

S Iﬂ - UOlo’i{'l%— ’l)o,oj(' + IU(I()'E — U lO,oo,fflz bt vOlO,oo,I?'
In the finite dimensional space Pi(K) all the norms are equivalent so

|E()] < Cli - uoly 17— vol, -

Taking into account the fact that

i - woly 7 < Clil, 70 15— vl < C

1,K? 1,K°

we get
(3.4) |E=(@%) < Clal, %[9], V&% € Po(K).

1,k K

Assuming that u,v € Px(K) by the standard reference element technique
and by (3.4), we arrive at

|Ex (uv)| < CR?|ul; glvly ¢ Vu,v € Py(K) VK € 4.
The last result implies (3.3) since:

(b— b)(un,vn) = _ Ex(unlkvnlx) Vun,vn
K

and up|k,valk € Pe(K). m
Now we are in a position to prove (3.2).

THEOREM 1. Suppose Eﬁ(f) = OVf € Pyp_a(K)U Py(K). Then

(3.5) 1T = Tonlly < Chlloally Von € Vi
Proof. Making use of the a-projectors defined in (2.13) we get
(3.6) 1T = Tayonllo < I fukllo + Il fanllo

with fin = (I = [[,)Tvs, for = (I[,T - Th)vn. By classical results and by
(2.12), || finlly £ Ch*|Twpl, < Ch2||vnlly- By (2.5), (2.13), (2.7), (2-8):

3.7) Bllfanlli < ea((TILT — Ta)vn, fan)
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= (an — a)(I1, Tk, for) + &{I1,T0n, fon) — an(Thon, fan)
= (an ~ a)(I1,Tvn, fon) + (b = br)(vn, fan)-

Lemma 1 and inverse inequalities allow us to write

(3.8) |(b = b8 ) (v, fan)| < Ch?Jon)y] fonly < Chllvnllo] fonly-

From [7, Th. 4.1.4], inverse inequalities and the uniform boundedness of the
a-projectors [[, in L(H{) there follows

(3.9)  [(an — a)(I1,Tvn, far)l < CEF|TT,T okl k,m 1 20l
< Chkhl_k”HhT”hul||f2h||1
< Chl|Tvpll | forlly < llwnlloll farlly-

Combining (3.7)-(3.9) we arrive at: [fanlly, < lIf2rll; £ Chllvnlly, Which
together with (3.6) yields (3.5). m

4. Estimates for eigenfunctions

Let the spaces H,V, and the operators T, Th,ThH 5, be complexified in
the usual manner. Having established (3.1) and (3.2), we can apply the
classical results on eigenvalue approximation from [8]. Let o # be an eigen-
value of T' with a finite multiplicity m. Let us observe that the operator
T : L? — L? is selfadjoint with respect to the scalar product a, because for
any u,v € H we have a(Tu,v) = b(u,v) = b(v,u) = a(Tv,u) = a(u,Tv).
Thus the invariant subspace M for T and po # 0 is equal to the eigenspace,
so M = Ker(uo — T).

Let I' = O(po,7) be a circle with a centre pp and a radius r < 0. Let
I lie in the resolvent set po(T') and enclose no other points of the spectrum
o(T). By [8], inside I' there lie exactly m eigenvalues Lin,l2n, -y Bmn Of
rfh|v,, counting their multiplicities. Also for any compact set F C o(T)

(4.1) 1 Ro(Th)vnll, < Constlvnll, Yon € V4 Vz € F

~ ~ -1
for h sufficiently small with R,(Ts) = (2 — Th|v,) denoting the resolvent
operator for T|v, .

Let M, » be an algebraic sum of invariant subspaces for ;5 and ’fh. Let us
observe that T}, is selfadjoint with respect to the scalar product a;, because

an(Thun, vn) = ba(tn, &) = br(vh, un) = an(Thvn) = an(un, Thon).
Therefore invariant subspaces are equal to eigenspaces, so

(4.2) { My, = Ker(jitn — Tn) + Ker(fign — Th) + - . . Ker(fimn — Th),
M = Ker(po — T).
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It is known that the so-called gap gH(M , Mh) is a good measure of the
eigenfunction approximation. Let us recollect that

8r(M, My,) = max{8u(M, Mp), (M, M)},
(43)  6u(M, M) = sup{inf,, em, lo — eally : 0 € M A (llelly = 1)},
8i(Mpy, M) = sup{infyen llon — @llo o1 € Ma A (@l = 1)}

By (3.1), (3.2) and [8], we get 6H(M, Mh) — 0. Hence for h sufficiently small
(44) 6r(M, My) = 65r(M, My) = 85 (M, M).

Now we will pass to the estimate of §g(M, Hh) which seems much eas-
ier than an evaluation of 6H(Mh,M), because in the definition (4.3) of
ou(M, Hh) the supremum is taken over ¢ € M and we can assume that
the functions ¢ € M are sufficiently smooth. Therefore a high convergence
rate can be expected. In the definition (4.3) of 6 H(M h, M) the supremum is
taken over ¢y € M, being continuous and no more. Thus, let us introduce
spectral projections

P:VoV forT:V -V, P=—\R.(T)dz,
21
~ 1 ~

Py:V oV for ThIl,:V =V, Ph_%SRz(ThHh)dz,
r

]Bh : Vh d Vh for ThIVh . Vh - Vh, ﬁh = 2% SRZ(Th) dz.
1
r

In [6, pp. 184, 238—9] the following is proved

~ 1
(45)  R(Twlls) = R(I14Twll4) = R(Tw)Ia + S =TIk,
(4.6) Range P,V = Range ﬁth = ﬁh.
Therefore Prp € M, for any ¢ € M and we can write

(47)  6u(M, M) = sup{ inf_ |lp— ally: 9 € M A(llolly = 1)}
@r €My

< sup{llp — Paeplly : 0 € M A (Jlello = 1)}-
Examining the quantity [[¢ — Prel}, we will establish:

LEMMA 1. By the assumptions of Theorem 3.1
(4.8) Sa(M, My) < C(sup{Wi(p) : o € M A ||}y = 1}
+sup{Wa(p) : ¢ € M Algllo = 1})
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with
W) = (1 - el Wale) = I(TT.T — Tall)ello-
Proof. Since M = PV, then

¢ — Pup=Pp~ Prp= {% V[RoAT) - R(TWIT)) dz}</>
r

= o | B(BII) - Tl RAT)p dz.
r

By the formula (4.5)

(4.9) p— Prp= 5— S R, (Th)Hh(T ThHh)Rz(T)‘P dz

+ (= TI(T - Tl g § SR(Dp i
r

Since R,(T)p = 2_1“
IR=(Th)(IT,T = TITn)R=(T)ello

for ¢ € M, by the property (4.1) we have

~ ~ 1
<l [LEEES AEEE |
< Cmeaf,‘ |Z l”(HhT ThHh)wllo < CW?(SO)

Thus the first term in (4.9) is bounded by CW3(). As to the second term
is concerned, let us observe that (I — [[ (T — TxII,) = (I = [[,)T, while

1 1 ¢1 1 1
TYypdz = —_ dz = ——o.
omi S Ro(T)pdz = 27rz§z z—,u0<'0 g uo(P

Therefore the second term in (4.9) is equal to (/ — Hh)T(ul_o‘P) =T -TI,)e.
The above analysis together with (4.9), (4.7) and (4.4) prove (4.8). »

LEMMA 2. Suppose Eﬁ(f) =0Vfe P2k_k(1?). Then
(4.10) 3C 2 0: | Trlipc@yvy € VA < ho.

Proof. Since 37 w;,x = p(K) and since by (2.3), u(K) < Ch?, we have
for any u € C(02),vp € V!

[bn(u, o)l < llullem) Zsz llvallo sox < CRlullcem, D 10l o k-
K

. ) ) )
From the Holder inequality 3y [[vallp oo < V2K 12\/21{ vnllo, 00,5 -

The sum Y j 1% is equal to the number of triangles K in 7. According
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to the assumption (2.3), it is not greater than ch By inverse inequalities
||vh|0,°o,K < ﬁ””huo,zK and consequently

C Cc?
(4.11) [ba(u,ve)| < Ch2||u||c(§)\/ ﬁ\/z h—2||vh||3,2,1< < Cllullgegllvallo-
K

By (2.5), we have ﬂ||fhu||i < ah(fhu,f’u) = bh(u,Thu) for any u € C(92).
Now a quick glance at (4.11) is enough to draw the conclusion (4.10). =

Lemmas 1, 2 enable us to prove our main result.

THEOREM 1. Suppose Eﬁ(f) =0Vfe ng_z(f() U P(K) and M =
Ker(up — T) C H}(£2) N W) 2), where r = max(k + 1,2k — 1). Then
(4.12) 5u(M, M) < Ch?
wherep=k+1 fork<2andp=2-¢ for k=1 with any ¢ > 0.

P roof. Throughout the proof we will consider ¢ € M such that |||, =
1. Since in the finite dimensional space M all the norms are equivalent, we

will be able to bound ||,y 15 19llk41,000 1€ll2k—1,000 llly 3 by a constant
C. Lemma 1, the property (2.12) and the Aubin-Nitsche lemma imply

(413)  Wie) = I - TL)wl < Ch* il < CRFFL
Thus by (4.8), it is enough to estimate the term W;(¢). Let Wy(¢) be
splitted up into:
(4.14) Wa(p) < W3 () + Wi () + W3(e)
with
Wi (o) = (LT - T)ellyy WE@IT - Tlell,
W3 () = | Th( - 1a#)llo-

The term W} (p) may be estimated again by the Aubin-Nitsche lemma in
the following way

(4.15) W; () < CR*Y Ty, y, = CR¥ poplyyy < CREHL.

From Lemma 2 the approximate solution operators fh are uniformly

bounded in L(C($2), H}), so W3 () < [[Tale — ITneelly < Clip = Il oo-
The classical L*-estimates in FEM (see [7]) account for

(4.16) W3 (p) < Clly = IT#llg oo
{Ch"“l(plkH,oo < Ch*1 for k> 2,

<
Ch*~¢pl, ., < Ch*™¢ for k= 1.
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The only point remaining concerns the behaviour of the term W2 (). By [7,
Exc. 4.1.3]

@17 W) < sup o it {CITe = Tugl g - wall

”9“0
+1(a = an)(Ta, va)] + |(b = bx)(, v ) }-

Again there are three terms to be estimated. At first let us remind that by
[7, Th. 4.1.6]:

IT¢ = Taglh,o < CRAIT@lless + lells,) with ¢>2, k> 2/q.

Setting ¢ = 2 for £ > 2 and ¢ = 3 for ¥ = 1 and making use of the
equivalence of norms in M, we see that

(4.18) ITe = Taplly 0 < Ch*.

For any ¢ € H = L* we choose v, = J,(Tg) in (4.17) with J,(Tg) being
an interpolant of T'g. The interpolant is well-defined since by (2.12), T'g €
H? C C(R2). Thus ||Tg — Ju(T9)|l; < Ch|Tgl|, < Chlgly. The last inequality
together with (4.18) yield

(4.19) IT% = Tuell ITg = oally < Ch**gl.

As the second term in (4.17) is concerned, we get from [3, Lemma 3.2, p.
149]

'(G, - a'h)(Th(P, ’Uh)] < Ch2k_1 ”Th(p”k \Th ”vh“k JTh®

By inverse inequalities [|vp ], ,, < Ch*~ k||vh||2 .- BY the classical interpo-
lation theory and (2.12): [lonll ., = IJa(T0)llyny < I5(Tg)— Tall, +
||Tg||2,n < C||Tg||2,9 < Clgly- Hence

(4.20) (@ = an)(Tae, vn)| < CH** Y| Thgl, 1, 19lo-

To establish the uniform boundedness of the term | T4¢| k,m, 2 We can write

1Tl ., < IWTh = T1,Tel, ., + LT,
< CR#||(Th = TIA D¢l + ITTa(ko@) .,
< CRYH(I(Th = Telly + I - T1,)Telly)
+ poll(T1, = Deelly , + pollellx
< CR*(||(Th = T)eplly + H*ITlxp1) + HoChIPlkyq + pollll

Bearing in mind (4.18), we actually state that ”Thgollk,n < C, which to-
gether with (4.20) gives
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(4.21) (@ — an)(The, va)| < Ch**1g],.

To determine the third term in (4.17), once again from Banerjee [3, Lemma
3.2, p.149], we get

(b= bi)(vn)l = | Ex(elx - Uk - Jn(T)l k)l
K

S Cth—l ”(p”ﬂc—l,oo ”]'Hk,‘rh ”Jh(Tg)”k,Th
< CR*Y|In(Tg)lg, 7,

In the application of the result of Banerjee there is a certain trick. Since two
piecewise polynomials are needed while we have only one v, = J,(Tg) (¢ is
not), we choose the constant function 1 to be the second piecewise polyno-
mial. Above ¢ stands for a coefficient which should belong to W2k=1:20( ).
Hence our assumption is: M C W2F=1:°°( ). From inverse inequalities, the
classical interpolation theory and (2.12), we get

IIW(T k7, < CH*HIIMT G, < CH* Tl < Ch2F gl

Thus

(4.22) (b= b1 )(, va)| < CR** gl

The formulae (4.19), (4.21), (4.22) applied in (4.17) yield
(4.23) Wi(p) < ChF+L,

Combining (4.23) with (4.14)-(4.16),(4.13) and (4.8) we obtain our assertion
(4.12). m

Final remarks:

1) About the smoothness of eigenfunctions in general case it is only
known that the eigenspace M is a subset of H} N H?. No better regularity
result is available for §2-a polygon. However in a specific case M may be a
set of very smooth functions. For example for the square 2 = (0,7) x (0, )
and laplacian L, the operator T = L1 has eigenvalues ., = 1/(n? + m?)
with eigenfunctions ¢ = (sin nz)(sin mz) of class C®.

2) For k > 2, max(2k — 2,k) = 2k — 2, so our assumption about the
precision of the quadrature is like that for the corresponding source lin-
ear boundary value problem. Besides that for k > 2 the estimate of the
gap 6 is optimal in the sense that it does also hold for the classical fi-
nite element approximation (i.e. without numerical integration). For k = 1,
max(2k — 2,k) = 1, so we assume that the quadrature is exact for all the
linear functions. For the corresponding source BVP the quadrature is as-
sumed to be exact for constans only. Simultaneously for £ = 1 the thesis of
Theorem 1 states a slight loss in the order of convergence.
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