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Z2-ANALYSIS OF FINITE ELEMENT EIGENFUNCTION 
APPROXIMATION WITH NUMERICAL INTEGRATION 

1. Introduction 
The effect of numerical integration on the finite element approximation 

of eigenfunctions of the eigenvalue problem 

where ft is a convex polygonal domain in will be considered. 
Similar problems have been studied by Fix [10], Babuska and Osborn [2], 

Banerjee and Osborn [3], [4], Banerjee and Suri [5], Lewinska [11], Vanmaele 
and Van Keer [12], [13], Andreev, Kascieva and Vanmaele [1] and others. 
In [3], [4] there were obtained the optimal estimates for eigenvalues and 
for eigenfunctions of (1.1) in the space HQ{Q). Another approach using the 
maximum norm estimates for FEM was presented in [11]. 

This paper is devoted to the eigenfunction estimates in the space L2(Q). 
We show for the finite element space of piecewise polynomials of a degree 
k > 2 that, if the precision of the numerical integration is like that for 
the source linear boundary value problem, the eigenfunction estimates in 
X2(J?) are optimal (like those for the finite element approximation without 
numerical integration). In the case of piecewise linear finite elements (k = 1) 
a slight loss in the order of convergence for eigenfunctions takes place despite 
the assumed increased accuracy of the quadrature rule. Our method of proof 
makes use of the L°° estimates for FEM and in that it differs from the 
approaches of other authors. In Sec.2 notation and the problem are set up. 
In Sec.3 the convergence results are established. Sec.4 contains our main 
result and final remarks. 

(1.1) •¿,.7 = 1 UJ\"'V dj(aij(x)diip) = \<p in Ì2, 
on d f i , 
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2. Problem setting and notations 
The variational formulation of (1.1) is: 

(2.1) Find (A,<p) G R x Hl(Q) such that ^ / OA a{ip,v) = \b(<p,v) 

Vv € Hl(Q) with a(u,v) = \nY?i,j=iai,i(.diu)(.djv)dx-> Hu>v) = 

\ n u v d x . 

We assume that the coefficients sufficiently smooth, that a.ij = aji 
Vi,j and 

2 2 

3a > 0 : Vz G Q £ > « E £ 6 ^ 
«,j=i t=i 

These assumptions imply the symmetry of the form a and its Hq (J2)-ellip-
ticity, i.e. 

(2.2) 3a > 0 : a(v, v) > a||t;||} Vv G 

The approximate space for V = Hq(Q) will be 

vh = H G C ( f i ) :vh\ea = 0A (vh\K G P k { K ) VK G rh)}, 

where Pk{K) are polynomials of a degree A; on a triangle K of a uniformly 
regular triangularization r^ of Q. Thus about r^ we assume 

( 2 . 3 ) 3 v > Q : v h < e K < hK < h VK e r h \ / h < hQ, 

where h^ = diam A'; qk = sup{diam5" : 5is a ball contained in K}; h = 
maxhf t . Also as it is usual we will require that no vertex of any closed 
triangle K belonging to r^ lies on the interior of a side of another triangle 
and that the union of all the triangles gives Q. 

The quadrature rule is first defined on a reference element K as 
L 

J f ( x ) d x t a ^ 2 u t f ( b i ) 

K ' = 1 

with weights ui > 0 and knots 
Let Fkx — Bxx + bx be an affine mapping from K onto K. The quadra-

ture rule is transferred onto each element K G t^ by 
L 

$ f ( x ) d x « with ul<K = | det BK\uubltK = FK(bi) G K . 

I< 1=1 

We denote by E i < ( f ) an error of the quadrature rule for the element K G r h , 
i.e. 

L 

E k U ) = J ~ */(&/,*)• 
K 1=1 
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The approximate forms ah : Vh x Vh -> 3? and bh : C(Q) x C{Q) K are 
obtained by applying the above quadrature to the forms a, b respectively, 
i.e. 

L 2 

Kerh ¡=1 t, j=l and 
L 

bh(u,v)= ^ ^^iJ<{uv)ibi,K) Vu,v€C(i2). 

I<=rh i 
Throughout the text we assume that the quadrature is exact for the poly-
nomials of a degree 2k — 2, i.e. 

(2.4) Eg(f) = 0 V / € P 2 k - 2 ( K ) . 

By [7, Th. 4.1.2] the assumption (2.4) implies the uniform V^-ellipticity of 
the forms ah, i.e. 

(2 .5) 3/3 > 0 : ah(vh, vk) > p\\vh\\\ Mh < h0 Vvh e Vh. 

Thus the approximate problem will be 

(2.6) Find (A, <ph) eUx Vh such that <ph ± 0 A ah((ph, vh) 
= \bh(<fh,vh) \fvh 6 Vh-

The eigenvalue problems (2.1), (2.6) can be transformed to an operator form 
with the help of the solution operators T : L2(fi) —> V and Th : C ( l ? ) —• Vh 
defined as 

( 2 . 7 ) a(Tu, v) = b{u, v ) Vv E V Vu 6 L2(Q), 

(2 .8) ah(Thu, vh) = bh(u, vh) Vvh e Vft Vu € C(H). 

By the Lax-Milgram theorem, T belongs to L(L2,V) but there arises the 
problem of existence of Th- However let us observe that for each u 6 C{Q) 
the mapping bh(u, •) : Vh —> 3fJ is a linear functional on a finite dimensional 
space Vh so by (2.5) and the Lax—Milgram theorem, ThU exists. At this 
stage we leave open the question of boundedness of Th : C(Q) —• Vh- This 
problem will be tackled later. 

With the introduction of the solution operators T, Th the eigenvalue 
problems (2.1), (2.6) are equivalent to 

(2.9) W = tpeV = Hi, 

(2.10) Wh = Th<Ph, <Ph evh, n = 1/A. 

Let us observe that in fact the operator T, which has a domain H = L2(i2), 

can be treated as an operator from H into H (while in (2.9) T has been 
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treated as an operator from V into V). The eigenvalue problem 

(2.11) fi<p = T<p, (peH = L2 

has the same eigenvalues and eigenfunctions as (2.9) except for fx = 0 since 
Range T C V. 

From now onward we will examine the relations between the eigenvalue 
problem (2.11) and its approximation (2.10). 

In our text we will often refer to the fact that the operator T : L2 —• L2 

is compact and that the boundary value problem (2.7) is "regular" in the 
sense (see [7]) 

(2.12) Vu G L2(Ì2) Tu£V nH2(iì) AT £ L(L2,H2). 

At the end of this section let us complete setting up notations. Thus for 
A C the norms and the seminorms in Hk(A), Wk'q(A) will be denoted 
b y II \\k,A' II IIA,,,A> I IFC,A> I \k,q,A- Sometimes subscripts will be omitted if it 
causes no confusion. The norm in L2 will be denoted either by || ||0 or by 
| |0. Also the norm 

I H U = t / £ i M I 5 . * 
V k<eta 

will be frequently used as well as the a-projectors : V —• V/j defined by 
the formula 

(2.13) a(u - n h u , Vh) = 0 Vu G F V ^ G Vh. 

Throughout the.text C will stand for a generic constant. 

3. Convergence results 
Like Banerjee, Osborn in [4], we will apply classical results of Descloux, 

Nassif, Rappaz [8]. The following conditions will thus have to be checked: 

(3.1) lim inf ||u - wfc||0 = 0 \/u 6 H = L2, 
h-> o vhevh 

(3.2) l i m | | ( r - f , k J | L ( H ) = 0 . 

The convergence (3.1) obviously takes place, since (3.1) does hold for every 
u G V = HQ and V is dense in H. 

In order to establish (3.2) we will prove 

L E M M A 1. If E~(f) = 0 V / e Pk(K), then 

(3.3) \(b-bh)(uh,vh)\ < Ch2^ ,n\vh.\i,n G Vh-

P r o o f . The technique presented in [9, pp.345-6] will be followed. Let 
u,v belong to Pk{K) and let u<j,uo G be their mean values, i.e. 
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Wo J udx, vo = —— J vdx. 
H(K) I K K ) K 

The following identity is obvious: uv = (u - u0)(v - v0) + u0(v - u0) + uv0. 
Since the functions uo(v - v0), uv0 are polynomials of a degree k, by the 
assumption of Lemma, E~(uq(v - v0 j ) — E~(uv0) = 0 and 

E~(uv) = Er<{(u - u0)(v - «0)) 

L 

< I \ (u - U 0 ) ( v - v0) + I u0)(v - v0))(b,) 
T< 1=1 

< \u - uo\o r < \ v - Vo |o i 7 + n { K ) \ u - tto|0i00i^l» - H , o o , i r 

In the finite dimensional space Pk(K) all the norms are equivalent so 

\E~(uv)\ < C\u-u0\0 ~ \ v - v 0 \ 0 £ . 

Taking into account the fact that 

l « - « o | 0 , i ? < C \ \ s , \v — ^o|0 ^ < C \ \ ~ , 

we get 

( 3 . 4 ) | E ~ ( u v ) < C \ \ ~\v\i:^u,v G Pk(K). 

Assuming that u, v G Pk{K) by the standard reference element technique 
and by (3.4), we arrive at 

\Ek(UV)\ < Ch2\u\1K\v\1K Vu,ve Pk(K) v / r € TH. 

The last result implies (3.3) since: 

(b - bh)(uh, vh) - EK(uh\Kvh\K) Vuh,vh 

I< 

a n d uh\K,vh\K G Pk{K). • 

Now we are in a position to prove (3.2). 

THEOREM 1. Suppose E ~ { j ) = O V / G P2k-2{K) U Pk(K). Then 

(3.5) ||(T - Th)vh||0 < Ch\\vh\\0 Vt;fc G V h . 

P r o o f . Making use of the a-projectors defined in (2.13) we get 

(3-6) ||(T-T fc)t>h||o < H/ifcllo + ll/afcllo 

with fih, = (I - n h ) T v h , f2h = (n^T" - Th)vh. By classical results and by 
(2.12), \\flh\\0 < Ch2\Tvh\2 < Ch2\\vh\\0. By (2.5), (2.13), (2.7), (2.8): 

(3.7) 0\\f2h\\l < a f c ( ( I I f c r - Th)vh, f 2 h ) 
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= (ak - a)(UhTvh,f2h) + a(UhTvh, f2h) - ah(Thvh,f2h) 

= K - « X I I h T v h , fih) + (b- bh)(vh, f2h). 
Lemma 1 and inverse inequalities allow us to write 

(3.8) |(6 - bh)(vk, f2h)| < Ch'lv^lf^ < Ch\\vh\\0\f2h\v 

From [7, Th. 4.1.4], inverse inequalities and the uniform boundedness of the 
a-projectors JJ/i i n L(HQ) there follows 

(3.9) |(afc - a)(J[hTvh,f2h)\ < C^Hn^H^rJIMHi 
<Chkh1-k\\nhTvh\\1\\fik\\1 

< ChWTvMfn< IMoll/aAllx. 

Combining (3.7)-(3.9) we arrive at: \\f2h\\0 < II/2/1II1 < Ch\\vh\\Q, which 
together with (3.6) yields (3.5). • 

4. Est imates for e igenfunct ions 
Let the spaces H,Vh and the operators T, Th, ThYlk be complexified in 

the usual manner. Having established (3.1) and (3.2), we can apply the 
classical results on eigenvalue approximation from [8]. Let /io be an eigen-
value of T with a finite multiplicity m. Let us observe that the operator 
T : L2 —¥ L2 is selfadjoint with respect to the scalar product a, because for 
any u,v € H we have a(Tu,v) = b(u,v) = b(v,u) = a{Tv,u) = a(u,Tv). 
Thus the invariant subspace M for T and ¡JLQ 0 is equal to the eigenspace, 
so M = Ker(^0 - T). 

Let r = O(fio,r) be a circle with a centre /¿o and a radius r < 0. Let 
R lie in the resolvent set g(T) and enclose no other points of the spectrum 
<t(T). By [8], inside r there lie exactly m eigenvalues Jl\h,Ji-2h, •••,7Lmh of 
TH\VH counting their multiplicities. Also for any compact set F C Q(T) 

(4.1) \\Rz(fh)vh\\0 < C o n s t | H | 0 Vvh eVhVzeF 

for h sufficiently small with Rz{Th) = {z — Th\vh) denoting the resolvent 
operator for Th\vh-

Let Mh be an algebraic sum of invariant subspaces for Jlih and Th- Let us 
observe that Th is selfadjoint with respect to the scalar product ah, because 

ah(Thuh,vh) = bh(uh,vh) = bh(vh,uh) = ah(Thvh) = ah{uh,Thvh). 

Therefore invariant subspaces are equal to eigenspaces, so 

(A o\ ¡Mh = Ker(ju lh - Th) + Ker(Ji2h -Th) + .. . K e r ( f l m h - Th), 
V - ) 1 M = Ker(/i0 - T). 
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It is known that the so-called gap 6H(M,MFL) is a good measure of the 
eigenfunction approximation. Let us recollect that 

(4.3) 
6H(M,MH) = m a X { S H ( M , M H ) , 6 H ( M H , M ) } , 

SH(M, MH) = sup{ inf V h e M h \\<p - iph||0 : <p £ M A ( |M| 0 = 1)}, 
SH(MH,M) = s u p { i n f v e M ||<PH ~ ¥>||0 <Ph £ MH A (||^||0 = 1)}. 

By (3.1), (3.2) and [8], we get 6H(M, Mh) 0. Hence for h sufficiently small 

(4.4) SH(M, Mh) = 6A(M, MH) = 6H(Mh, M). 

Now we will pass to the estimate of 6h (M, Mh) which seems much eas-
ier than an evaluation of 6tf{Mh, M), because in the definition (4.3) of 
6h{M, Mh) the supremum is taken over <p G M and we can assume that 
the functions tp £ M are sufficiently smooth. Therefore a high convergence 
rate can be expected. In the definition (4.3) of 6fj(Mh, M) the supremum is 
taken over <ph € Mh being continuous and no more. Thus, let us introduce 
spectral projections 

P:V ^V for T : V -*V, P = — \ RJT) dz, 
2-ki J, 

Ph'.V^V iorThUh:V^V, Ph = Rz(fhUh) dz, 

Ph-Vh - Vh for Th\Vh :Vh-+Vh, Ph = Rz(Th) dz. ziri ^ 

In [6, pp. 184, 238—9] the following is proved 

(4.5) Rz(fhi\h) = uuhfhuh) = Rz(fh) n * + \{i - nh), 

(4.6) Range PhV = Range PhVh = Mh. 

Therefore Ph<p € Mh for any (p € M and we can write 

(4.7) SH(M, MH) = sup{ inf, \\<p - Vfcllo • V e M A ( |M| 0 - 1)} 

< sup{||y> - Ph<p||0 : <p G M A (ll^llo = 1)}. 

Examining the quantity \\<p — Ph<p\\0 we will establish: 

LEMMA 1. By the assumptions of Theorem 3.1 

(4.8) 6h(M, MK) < (^(suplVFxi^) : <p € M A |M| 0 = 1} 
+ sup{W2(v>) : <p € M A Hvllo = 1}) 
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with 

= ||(J - I L V I L w2(v>) = HOifcT - n U M o -

P r o o f . Since M = PV, then 

<p - Ph<f = Pip - Ph<p = J[RZ(T) - R z ( T h n f c ) ] dz\<p 
K r ) 

= \ UTkUk)(T - f h U h ) R z ( T ) , d , 

By the formula (4.5) 

( 4 . 9 ) <p - Ph<p = \ Rz(Th)Hh(T - ThUh)Rz(T)<p dz 
27Tip 

+ ( I ~ n f c ) ( r - T h U k ) ^ \ ~ZMT)<P dz. 

Since R z ( T ) i p = z2 y>, for <p e M, by the property (4.1) we have 

\\Rz(Th)(UhT - T h U h ) R z ( T M o 

< \\RA)\\l{h) (UhT ~ T J I J t - V ^ 
z — f l o 

Thus the first term in ( 4 . 9 ) is bounded by CWz(ip). As to the second term 

is concerned, let us observe that ( I — II/iX^1 — ^aII/i) — ~ I I/J^ ) while 

\ - R g ( T ) i p d z = - L j i —ipdz = —<p. 
2xi ^ z 2irt ^ z z — no Ho 

Therefore the second term in (4.9) is equal to ( I — I l f c ^ X ^ V ) = ( I ~ 
The above analysis together with ( 4 . 9 ) , ( 4 . 7 ) and ( 4 . 4 ) prove ( 4 . 8 ) . • 

L E M M A 2 . Suppose E ~ ( f ) = 0 V / E P2k-k(K). Then 

( 4 . 1 0 ) 3C > 0 : ||RF C||L ( C ( 7 7 ) I V I ) <C V/I < h0. 

P r o o f . Since = M-^Q s i n c e by (2.3), f i ( K ) < Ch2, we have 
f o r a n y u G C ( Q ) , v h e V) , : 

£ I M O 
K I I< 

From the Holder inequality I M I o . o o , * < A/EK K I l S . « , , * -

The sum E/{ I2 i s equal to the number of triangles K in t^. According 
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to the assumption (2.3), it is not greater than By inverse inequalities 
I M o , o o , / < ^ F IHIO ,2I< a n d c o n s e q u e n t l y 

(4.11) \bh(u,vh)\ < < C|MIC<n)INIo-

By (2.5), we have P\\fhu\^ < ah(Thu,Tu) = bh{u,Thu) for any u e C{Q). 
Now a quick glance at (4.11) is enough to draw the conclusion (4.10). • 

Lemmas 1, 2 enable us to prove our main result. 

T H E O R E M 1 . Suppose E~(f) — 0 V / G P2k-2{K) U Pk{K) and M = 
Ker(/x0 - T ) C H%(i2) n Wr'°°)i2), where r = max(fc + 1 , 2 k - 1). Then 

(4.12) Sfj(M,Mh) < Chp 

where p = k + 1 for k <2 and p = 2 — £ for k = 1 with any £ > 0. 

P r o o f . Throughout the proof we will consider <p 6 M such that ||<̂||0 = 
1. Since in the finite dimensional space M all the norms are equivalent, we 
wiU be able to bound |M|fc+1, IM|fc+li<x>, I M L - i , « » IMIi.a b y a constant 
C. Lemma 1, the property (2.12) and the Aubin-Nitsche lemma imply 

(4.13) W^) = ||(J- I L > l l o < Chk+1 \<p\k+1 < Chk+\ 
Thus by (4.8), it is enough to estimate the term W^if ) . Let Wi(ip) be 
splitted up into: 

(4.14) W2(<p) < Wj(<p) + W1(<P) + Wi(<p) 
with 

Wl(<p) = \KIlhT-TM0, WHv)\\{T-ThM0, 

The term W ^ i f ) may be estimated again by the Aubin-Nitsche lemma in 
the following way 

(4.15) Wfo) < Chk+l\T<p\k+x = Chk+^0<p\k+1 < Chk+l. 

From Lemma 2 the approximate solution operators Th are uniformly 
bounded in L(C(i2), H¿), so W?(<p) < \\U<P - I M I i < C\\<p - IIAV>llo.oo-
The classical £°°-estimates in F E M (see [7]) account for 

( 4 . 1 6 ) W>(<p)<C\\<p-llh<p\\0,oo 
( Chk+1\<p\k+l oo < Chk+1 for k >2, 

" \ Ch2-£\<p\2 oo < Ch2~£ for k= 1. 
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The only point remaining concerns the behaviour of the term (v)- By [7, 
Exc. 4.1.3] 

(4.17) WH<p)< s u P F V ^ { { C W T i p - f ^ U T g - v . W , 
SGL2 llffllo V h e V h 

+ |(o - ah)(Th<p, vh)\ + |(b - bh)(v, < ) | } . 

Again there are three terms to be estimated. At first let us remind that by 
[7, Th. 4.1.6]: 

||Tip - Th<p||liJ7 < Chk(\\T<p\\k+1 + |b| | f c ; ?) with q > 2, k > 2/q. 

Setting q = 2 for k > 2 and q = 3 for k = 1 and making use of the 
equivalence of norms in M, we see that 

(4.18) \\T<p-Th<p\\ltn<Chk. 

For any g € H = L2 we choose Vh = Jh(Tg) in (4.17) with Jh(Tg) being 
an interpolant of Tg. The interpolant is well-defined since by (2.12), Tg 6 
H2 C C(Q). Thus ||Tg - Jh(Tg)||x < Ch\Tg\2 < Ch\g\0. The last inequality 
together with (4.18) yield 

(4.19) \\T<p-fh<p\\1\\Tg-vh\\1<Chk+1\g\0. 

As the second term in (4.17) is concerned, we get from [3, Lemma 3.2, p. 
149] 

\(a-ah)(Th<p,vh)\ < Ctfk-'\\Thv\\KJ\vH\\KTh. 

By inverse inequalities ||v/i||fcTfc < Ch2~k\\vh\\2 Th- By the classical interpo-
lation theory and (2.12): IMI* = \\Jh{Tg)\\2 Th < \\Jh{Tg) - Tg\\2 Th + 
\\Tg\\2n < C\\Tg\\2tn < C\g\0. Hence 

(4.20) \(a-ah)(Thcp,vh)\ < Chk+1\\Th<p\\kiJg\0. 

To establish the uniform boundedness of the term ||T/i(^||fc T h , we can write 

\\n<p\\ktTh < \\fh - nhT<p\\ktrk + I i n . i v i u 

< Ch}~k\\(Th - n ^ l l r + \\UhM\\k<Th 

< ĉ -̂ cncrfc - r)̂ »! + 

< Ch l~k{\\(Th - T)<p\\-y + hk\T<p\k+1) + fioCh\<p\k+1 + /xolMlfc. 

Bearing in mind (4.18), we actually state that \\Th^>\\k,Th < C, which to-
gether with (4.20) gives 
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( 4 . 2 1 ) \(a-ah)(fhtp,vh)\<Chk+1\g\0. 

To determine the third term in (4.17), once again from Banerjee [3, Lemma 
3.2, p.149], we get 

|(6 - bh){<p, vh)\ = | £ EK{<p\K -1\k- MTg)\K)\ 
K 

<Ch2k-' M2k^J\i\\k,J\Jk(Tg)\\k>Th 

< Ch2k-l\\Jh(Tg)\\ktTh. 

In the application of the result of Banerjee there is a certain trick. Since two 
piecewise polynomials are needed while we have only one Vh — Jh{Tg) (<£> is 
not), we choose the constant function 1 to be the second piecewise polyno-
mial. Above <p stands for a coefficient which should belong to W2k~1,00(Q). 
Hence our assumption is: M C W2k~1'co(i2). From inverse inequalities, the 
classical interpolation theory and (2.12), we get 

\\MTg)\\ktTh < Ch3-k\\Jk(Tg)\\itrk < Ch2~k\Tg\2 < Ch2~k\g\0. 

Thus 

(4.22) \(b-bh)(<p,vh)\<Chk+1\g\0. 

The formulae (4.19), (4.21), (4.22) applied in (4.17) yield 

(4.23) W%(<p) < Chk+\ 

Combining (4.23) with (4.14)-(4.16), (4.13) and (4.8) we obtain our assertion 
(4.12). . 

Final remarks: 
1) About the smoothness of eigenfunctions in general case it is only 

known that the eigenspace M is a subset of HQ D H2. No better regularity 
result is available for J?-a polygon. However in a specific case M may be a 
set of very smooth functions. For example for the square i? = (0, tt) x (0,7r) 
and laplacian L, the operator T = X - 1 has eigenvalues finm = l / ( n 2 + m 2 ) 
with eigenfunctions (p — (sin nx)(sin mx) of class C°°. 

2) For k > 2, max(2& — 2, k) — 2k — 2, so our assumption about the 
precision of the quadrature is like that for the corresponding source lin-
ear boundary value problem. Besides that for k > 2 the estimate of the 
gap 6 is optimal in the sense that it does also hold for the classical fi-
nite element approximation (i.e. without numerical integration). For k = 1, 
max(2& — 2,k) = 1, so we assume that the quadrature is exact for all the 
linear functions. For the corresponding source BVP the quadrature is as-
sumed to be exact for constans only. Simultaneously for k = 1 the thesis of 
Theorem 1 states a slight loss in the order of convergence. 
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