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Michael Drmota

¢-ADDITIVE FUNCTIONS AND WELL DISTRIBUTION

Abstract. J. Coquet [1] proved that the sequence (z,(5)) is well distributed modulo
1if (zn) is well distributed modulo 1, where s(n) denotes the sum of g-ary digits of n.
This theorem is generalized to arbitrary g-additive functions f(n) and quantified in term
of the uniform discrepancy D N (Zn).

1. Introduction

A real sequence (Zn)n>o is called uniformly distributed modulo 1 (for
short: u.d. mod 1) if

1 N
Jim 1;) x1({za}) = M)

for all intervals I C [0, 1], where x denotes the characteristic function of I,
{z} = z — [z] denotes the fractional part of z, and A denotes the Lebesgue
measure. Equivalently, a sequence is u.d. mod 1 if the discrepancy

1 N-1
D(en) = s |53 sxalland) = D)

n=0
satisfies
Nhilloo Dn(z,) =0.

It is clear that every shifted sequence (2n4y)n>0 (¥ 2 0) is u.d. mod 1 if
(zn)n>0 is u.d. mod 1, i.e. A}im Dn(znty) = 0 for all v > 0. However, this
> m

convergence is not necessarily uniform for v > 0.
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A real sequence (,)n>0 is called well distributed modulo 1 (for short
w.d. mod 1) if the uniform discrepancy

N-1
~ 1
Dn(zp) = sup sup v Z x1({zn+v}) = MI)| = sup Dn(Zntv)
v20 1cfo] |V =5 v20
satisfies
Nh_rfloo DN(:l:n) = 0.

Obviously, every w.d. sequence is u.d. It should be mentioned that the
converse is not true, e.g. z, = /7 is u.d. mod 1 but not w.d. mod 1. In fact,
this is the typical situation. Almost all sequences (z,)n>0 € [0,1)N are u.d.
mod 1 but not w.d. mod 1. (For more details of u.d. resp. w.d. sequences we
refer to [10, 8, 4].)

The most prominent u.d. resp. w.d. real sequence is the linear sequence
(an)n>o for irrational a. However, there are other interesting w.d. sequences
of the form (a f(n))n>0, where f(n)is an integer valued function, e.g. Coquet
[1] showed that (asq(n))n>o is w.d. mod 1 for irrational a, where s,(n)
denotes the sum of digits in the ¢-ary representation of n. This result can
be extended to strongly g-additive functions f(n), which are defined by

fla+gb)=fla)+7(b) (0<a<gq,b20),

i.e. if nis given by n = do + dig + - - + dig® (0 < d; < ¢) and f(0)(=0),
f(1),...,f(¢g—1) are known then

f(n) = f(do) + f(d1) + --- + f(dk)-

Our first result provides an almost optimal bound for the uniform discrep-
ancy of (af(n))n>1. We consider irrationals o of finite approximation type
7, 1.e. for every € > 0 there exists a constant ¢(a,€) > 0 such that

c(a,¢)
lhall > hte
for all positive integers h, where ||z|| = min({z},1—{z}) denotes the nearest
distance to integers.

THEOREM 1.1. Let a be an irrational of finite approzimation type n and
let f(n) be a strongly g-additive function which attains only non-negative
integers such that there ezists 1 < b < q— 1 with f(b) > 0. Then for every
e>0

- 1
Dy(af(n) < (log NYL/@n—<

for all N > 1, where the constant implied by < depends on q,a,¢, and on f.
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Remark 1. Theorem 1.1 is a generalization of results of Tichy and
Turnwald 16, 17], where corresponding upper bounds for the usual dis-
crepancy Dn(af(n)) and worse estimates for the uniform discrepancy
Dn(af(n)) are derived. In [12] it is mentioned that estimates for Dn(af(n))
can be derived from bounds for Dy(af(n)). However, the formulation of
Theorem 4 in [12] is not sufficient to confirm this statement. Its proof needs
a slight modification. In fact, the proof of Theorem 1.1 uses simlar ideas to
that of Theorem 4 in [12] and it is easy to extract the following estimate

~ 2¢* )
Dan<mm —— + 2D (af(n <D af(n)).
vef) < min, (% +2Du(ason) < Dym(esn)

Remark 2. In [16] it is also shown that if @ is not of approximation
type ' for any 7' < 1 then for every ¢ > 0 and infinitely many N

1
Dn(af(n)) 2 (log NYL/Gm¥e"

Since f)N(af(n)) > Dn(af(n)) Theorem 1.1 is almost optimal.

It should be further mentioned that it is also possible to show (see [16,
11]) that for every irrational o there exists a constant ¢'(¢q,a, f) > 0 such
that forall N > 2

(g, 0, f)
(log N)1/2°
By the theorem of THUE-SIEGEL-ROTH every irrational real algebraic num-

ber a is of approximation type 7 = 1. Hence the exponent 1/2 in this general
lower bound cannot be replaced by a larger exponent.

Dn(af(n)) >

Note that if z, = an then z;,) = af(n). Actually this is not only
a formal observation but the deeper reason for Theorem 1.1. Coquet [1]
showed that (z (n))n>0 is W.d. mod 1 if (2,)n50 is w.d. mod 1. In [4] this
result was (non-trivially) generalized to strongly g-additive functions f(n).
Here we provide a quantitative version of this relationship in terms of the
uniform discrepancy.

THEOREM 1.2. Suppose that f(n) is strongly g-additive which attains
only non-negative integers such that gcd{0 < 7 < q : f(j) > 0} = 1. Then
for every ¢ < 1/logq we have

1~)N(a:f(n)) < sup ﬁM(zn)y
M>c(log N)1/4

i.e. if a sequence (Z)n>0 is w.d. mod 1 then (zf(n)) is w.d. mod 1, too.
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This paper is organized in the following way. In section 2 we prove The-
orem 1.1 whereas section 3 is devoted to the proof of Theorem 1.2. In the
final section 4 we discuss other types of integer valued functions f(n) with
the property that (af(n))n>o are u.d. mod 1 for irrational a.

2. Proof of Theorem 1.1
The basic tool for the proof of Theorem 1.1 is the inequality of Erdds-
Turén [6, 7). As usual we will use the notation e(z) = €*™.

LEMMA 2.1. For any choice of real numbers zg,22,...,2ny-1 and for
every positive integer H
N-1

2 1 1
(21)  D(en) € g +2 Z(m 1) | 2 )]

Remark. Note that the inequality of Erdds-Turan implies Weyl’s cri-
terion which says that if

(2.2) dim E e(hzy) =0

holds for every positive integer h then (z,),>o is u.d. mod 1. Suppose that
(2.2) is satisfied for all positive integers h then (2.1) provides

li D
menp Dn(en) <

for every positive integer H. Consequently th Dn(z,) =0
—+00

In order to apply Lemma 2.1 we will deal with exponential sums. The
following lemma is due to Tichy and Turnwald [16]. (For the reader’s con-
venience we repeat the proof).

LEMMA 2.2. Let B = max | £(b)|, where f is any integer valued function
<b<q
defined on {0,1,...,q} with f(0) = 0. Then

g—1
| 3" etasi))] < g - 2riBaf?.
j=0
Proof. First observe that
q
|3 eaf()| < 11+ e(Ba)l +q-2
i=0

= 2| cos(mBa)| + ¢ — 2 = 2 cos(r||Ba||) + ¢ — 2.
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Furthermore we have

T 1‘2 "I,‘2
cos:c:l—&sintdtsl—x—tdtzl——
5 s T

for |z| < w/2. This proves Lemma 2.2. w

COROLLARY. Suppose that f is a strongly q-additive function which at-
tains only non-negative integers and set B = 1121?2{ f(b). Then for every
<b<q

real |

| Z e(ha(f(n) + 1) = |3 el < (a - 4IhBal?)

j=0
Now we are able to prove Theorem 1.1.

Proof. (Theorem 1.1) Suppose that ¢* < N and for every v > 0 define
my, mg by (my — 1)¢* < v < mig*¥ and by (my —1)¢* < v+ N -1 < mygF.
Then

ma—1 (t+1)q -1

Igeaf(nw))qu Y] eesm)

t=m, n=tq*

mao—1 ¢ k_1

<2k + Y | > e(a (1) + £(5))]

t=m,
< 24"+ (ma  my)(a— 4]BalP)*
4||hBa||2)
q .

Now set k = [(logv/N)/(log q)] + 1 > (log N)/(2log ¢) and use the assump-
tion that a is of approximation type 7, i.e. for every € with 0 < ¢ < 1/(47)
there exists a constant c¢o > 0 such that |{hBa|| > ¢oh~"7¢ holds for every
positive integer h, to obtain

52q"+Nexp(—k

C2h—2n—2£

NlZe(af(n—i-V)) \/—q_ (—QOTlog—q——logN)

uniformly for all ¥ > 0. Thus, the inequality of Erdés-Turdn (Lemma 2.1)
yields

CZH —-2n—-2¢

qloggq

log H

DN(af(n))<<i+ A +logHexp(— IogN).
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Finally, if we set H = [(log N )/ ~¢] we get

ﬁN(af(n)) < + log log N exp(—c;(log N)—s/n+2€,,+252)

1

(log N )1/ ~—<
1

where the constant implies by < depends on ¢,a,¢,and f. =

3. Proof of Theorem 1.2
The main ingredience for the proof of Theorem 1.2 is the following lemma
due to Odlyzko and Richmond [13].

LEMMA 3.1. Let bg, b1, ...,bq be a finite sequence of non-negative num-
bers with by > 0, by > 0, and

ged{j:b; #0} = 1.
Let a, be defined by
> auka™ = (bo + biz + - - + bgz?)*.

n>0
Then for every 6 > 0 there ezists ko(8) such that for every k > ko(6)
(3.1) @l > Gn1 K@y, Ok <1 < (d- 8k

Note that the gcd-condition is no real restriction and that (3.1) implies
unimodality of the sequence ank, & > ko(8), 6k < n < (d — 6)k, i.e. there
exists an ng such that a, is increasing for n < n¢ and decreasing for n > ng.

It should be further noticed that this Lemma is strongly related to the
central limit theorem for a sum of independent discrete random variables.
Set b=0bg+ by +---+ bg. Then

Ik — P{Xy 4+ Xs 4 -+ Xk = 1),

bk
where X, 1 < j < k are independent discrete random variables with
b
P[X i= TL] = ?n

It is well known (see PETROV [14]) that there is a local limit theorem of the
form

(3.2) nk = \/Ql;kw(exP ( - %) + O(k_l/z))’

with

Sl =

d

1 :
p=3 > by, ot =12 (G- w)b;
Jj=0
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and exponential tail estimates of the form

2
Z ank < e qk

|n—ku|>zVko?
for some ¢ > 0. Especially, the following properties are satisfied
¢
() mgponn = ()
and for (sufficiently small) 6 > 0
(34) Z Cnk + E Ank S q’(é)ka
n<ké n>(d—6)k

where ¢'(6) < g.
With help of Lemma 3.1 and using these properties we are able to prove
the following lemma.

LEMMA 3.2. Suppose that f(n) is strongly q-additive which attains only
non-negative integers such that gcd{0 < j < ¢ : f(j) > 0} = 1. Then for
every (sufficiently small) § > 0 we have for all M > 1, for all k > 0 with
¢* < N, and for all (sufficiently large) N > No(6)

k ' k
Dn(@sm) <2 sup Dr(za) +2% + [ L2) +of ==).
N(xf( )) ls:lleM 1) N ( q * vk

Proof. Set by(I) = x1({zn}) = M), (M) = sup Dy(z,) < 1, and
L>M
ank = |{j < ¢* : f(5) = n}|. Then we have

qk qk
> xi{zsid) = XD = Y bsiysiD) = Y ankbrra(d)-
7=0 j=0 n>0
First let us consider the sum E(d :)k, where ng is defined by a,,x =
mg.xank, d = max{j < q¢: f(j) > 0} and § > 0 is chosen in a way that
(d 6)k is a positive integer. By partial summation we obtain
(d—6)k

Z ankbn+l(I) =

n=ng
(d—6)k (d—6)k—1

aa-spk O b+ D (Gnk — nyrk) Z bjisi(1).

n=ng n=no J_no
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If £ > ko(6) then ank > any1,k for ng < n < (d — 6)k. Furthermore, since

J+M-1
| > bin)| < me(a)
=7
for all M > 0 and all intervals I C [0,1] we get
(d—6)k
l Z ankbn+I(I)'

n=ng

S a(d_5)k((d - (5)]6' — g + 1)6((d— 6)]6 —ng + 1)

(d—8)k—1
+ Z (@nk = @ny1,6)(n — 1m0 + 1)e(n — no + 1)
n="ng
(d—8)k—1
<e(M) (a(d—s)k((d— k—no+1)+ D (Gnk — nsrk)(n—ng + 1))
n=ngp
n0+M—1
+ Z (ank - an+1,k)(n —no + 1)
n=ng
(d—6)k no+M
= 5(M) Z Gnk + Z Ank — Ma'n,g+M
n=ng n=mng

< s(M)qk + Man-

A similar estimate holds for the sum o k Thus

k

| 2 iz s5y41) ~ ¢ ND| < 26(M)* + 2Mangs + ¢'(6)*
3=0

holds for all { > 0.
Finally, suppose that ¢* < N and for every v > 0 define m;,my by
(my — 1)¢* < v < my¢* and by (m2 — 1)¢* < v+ N — 1 < maq*. Then

7TI,2—1 (t+1)q -1

‘be n+u)(1)’<2q + 3 I > bf(n)(f)l

t=m, n=tqk

'nglq—l

<20+ ) | Z by 1(T)|

t=m1

< 2q + (mg — ml)(2£(M)q +2Man, i + q’(6)k)
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o (ot (42) 1 o{5).

This completes the proof of Lemma 3.2. m
It is now easy to show that Lemma 3.2 implies Theorem 1.2.

Proof. (Theorem 1.2) Fix any sufficiently small § > 0 and any ¢ <
1/logq and set k = clog N and M = k/%. We have

q__ clogg—1 _ _1_
LN o(M),

q7'(6) k_ ~clog(a/a'(8)) — of L
( q N =O\u )’

M 1

VE M

Since e(M) > Dp(zr) > Dag(zr) > 4 we finally obtain

Biv(e ) < 2601) + 0 1) < £(30),

which proves Theorem 1.2.

4. Uniform distribution of sequences (af(n))

By inspecting the proof of Theorem 1.2 it turns out that the essential
ingredience was a distribution result of the numbers a,; = {j < ¢™: f(j) =
n}. We will now try to generalize this idea in order to provide more general
integer valued sequences f(n) such that sequences of the kind (af(n))n>o0
are u.d. mod 1. The only disadvantage of this approach is that it seems to
be impossible to prove also well distribution in this generality.

THEOREM 4.1. Let (f(n))n>0 be a sequence of non-negative integers such
that the numbers

emN = [{n < N : f(n) = m}|
satisfy
(4.1) Y lemtrn = mn| =o(N) (N = o0).
m>0

Then the sequence (a.f(n))n>0 is u.d. mod 1 if and only if a is irrational.
More precisely, if a is of approzimation type n and

3 lemt1,n = emn] < NY(N)

m2>0
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then for everye > 0
(4.2) Dn(af(n)) < p(N)H/mte,

Proof. Obviously, if e is rational and f(n) is an integer sequence then
the sequence (af(n))n>o is surely not u.d. mod 1 since the fractional parts
{af(n)} attain only finitely many values.

If o is irrational then
N-1

Z e(han)

n=0

N
L —0/——.
~ |sin(rha)|

Hence by Abel summation

‘Nz_:l e(ho‘f("))l = | z CmNe(ham)l
n=0 m>0
N

< Z lem+1,N = emN|m———= = o(NV).
-5t | sin(mha)|

Thus Weyl’s criterion implies that (af(n))n>o is u.d. mod 1.
Since |sin(rha)| < 7||ah|| we also obtain

N-1
1 hafn)| .~ PV)
— < 2\
Nl D¢ = ok
n=0
Furthermore, if « is of approximation type n then we have (see [10, p. 123])

I |
S i < i
£~ hijoh||

for every ¢ > 0. Hence Lemma 2.1 implies
1
Dn(af(n)) <« Vi + p(N)YH"1-e,

By choosing H = [t(N)~1/(7=¢)] the discrepancy estimate (4.2) follows. =

There are lots of examples of integer sequences f(n) which satisfy (4.1).
We will say that a non-negative integer sequence f(n) satisfies a local central
limit theorem if there exist sequences uy and on with imy_o oy = 00
such that for every real interval [a,b] we have

N (m — #N)2> )
4.3 mN = exp| —=—— ) +o(1
(4.9 en = =z (o0 (P2) + o)
uniformly for all integers m € [un + aon, pn + bon] as N — oo, where
emn = [{n <N : f(n) = m}|.
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LEMMA 4.1. Suppose that a non-negative integer sequence f(n) satisfies
a local central limit theorem. Then

Y lemt1n = emnl = o(N) (N — 00)
m>0

holds with ¢,y = |[{n < N : f(n) = m}|.
Proof. Let £ > 0 be given and let T'(¢) be defined by

1 T(e) )
—_— S et 2dt=1—¢.

V2T —T(e)
Then (4.3) implies
> ¢mn = N(1—€) 4 o(N).
fm—un|<T(e)on
Hence for sufficiently large N we obtain
> emn < 2eN.
Im—un |<T(e)on

Furthermore, we have

2N
) lem+1,8 — em,N| < =+ o(N) = o(N).
\2moy

[m—pn|<T(e)on
This completes the proof of Lemma 4.1. =

Remark. In [15}it is shown that the binary digitial sum s,(n) satisfies
a local central limit theorem of the above form. In fact, the same is true for
any strongly g-additive function f(n). Hence Theorem 4.1 and Lemma 4.1
provide a weak version of Theorem 1.1. In a forthcoming paper [3] local limit
theorems for the sum-of-digits-function for more general digital expansions
are presented.

As an application of the above method we will reprove that the sequence
(aw(n))n>1 is u.d. mod 1, where w(n) denotes the number of different prime
factors of n. (This property has been already observed by Erdds [5] and
proved by Delange [2] without discrepancy bounds.) It is well known that
w(n) satisfies a central limit theorem with mean value gy = loglog N +
C1+ O((log N)~1) and variance 0%, = loglog N + Cy + O((log N)~™!) (The-
orem of Erdés—Kac). Corresponding local limit theorems are usually stated
in a slightly different form as in (4.3). Nevertheless the following proof of
Lemma 4.2 is similar to that of Lemma 4.1. We will use the following asymp-
totic formula (see [9]):
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(4.4) cmnv =

N z2 z3 Tom
- e (- 5+ olgigw)) 0+ 0t
uniformly for 2,y = (m — un)/on = o(y/loglog V).
LEMMA 4.2, Set

emn = |{n < N :w(n) = m}|,

where w(n) denotes the number of different prime factors of n. Then
N

ngo lemt+1,N = em,n| K Toslos ™

Proof. For the sake of shortness we use the abbrevations log,(z) =
loglog « and logz(z) = logloglog «. By (4.4) we obtain for m < 24/log;(N)

N (_(m—cl—logzNV)

CN = ——————
m \/2rlogy N P log, N

|m — log, N|) logs N
1 —_— —— 1.
X ( +0( logy N +0 logy, N

N
S enenro( )
|m—log, N|<24/logs N 10g2 N

which implies

Thus

L s "(vli—w)
|m—log, N|>24/logs N 082

Furthermore we have

2N N
et = mi] <~ 4 0 <2 )
Z\/__lmH’N vl V2rlogy, N Vlogy N

|m—log, N|<2+/logs N

N
- Jew)

log, N

which completes the proof of Lemma 4.2. m
CoOROLLARY. The sequence (aw(n))n>1 is u.d. mod 1 if and only if a is
irrational. Furthermore, if o is of approzimation type 7 then
1

(loglog N)1/(2n)—¢

Dn(ow(n)) <€

for every e > 0.
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If we want to obtain w.d. seqences of the form (af(n)),>0 then we have
to assume a more restrictive condition (4.5).

THEOREM 4.2. Let (f(n))n>0 be a sequence of non-negative integers such
that the numbers

emn = |[{n < N : f(n) = m}|
satisfy

(4.5) sup Z lem+1,N+v = Cm,N+v — €m41,0 + Emp| = o(N) (N — o0).
v20 m>0
Then the sequence (af(n))n>0 is w.d. mod 1 if and only if « is irrational.
More precisely, if a is of approzimation type n and

sup Z Icm+1,N+u —Cm,N+v — Cm41,v + Cm,ul < N¢(N)
v20 m>0

then for every e > 0
(4.6) Dn(af(n)) < $(N)1/me,

Proof. The proof runs along the same lines as that of Theorem 4.1. The
only difference is that

CmNtv—Cmy = [{r<n < N+v:f(n)=m}

has to be used instead of ¢,y = |[{n < N : f(n) = m}|. By assumption it is
clear that all estimates are uniform for v > 0. m

Remark. It seems to be a non-trivial problem to decide whether
(0w(n))n>1 is w.d. mod 1 or not. The present local limit law (4.4) is surely
not sufficient to prove well distribution of (aw(n))n>1.

Acknowledgment. The author is indebted to an anonymous referee for
pointing out the connection between Theorem 1.1 and a (hidden) result of
[12].
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