
DEMONSTRATIO MATHEMATICA 
Vol. XXX No 4 1997 

Michael Drmota 

g-ADDITIVE FUNCTIONS AND WELL DISTRIBUTION 

Abstract . J. Coquet [1] proved that the sequence (£,(„)) is well distributed modulo 
1 if ( in) is well distributed modulo 1, where s(n) denotes the sum of g-ary digits of n. 
This theorem is generalized to arbitrary g-additive functions f(n) and quantified in term 
of the uniform discrepancy Dpf(xn). 

1. Introduction 
A real sequence (xn)n>o is called uniformly distributed modulo 1 (for 

short: u.d. mod 1) if 

for all intervals I C [0,1], where xi denotes the characteristic function of I, 
{i} = x — [x] denotes the fractional part of x, and A denotes the Lebesgue 
measure. Equivalently, a sequence is u.d. mod 1 if the discrepancy 

It is clear that every shifted sequence (xn+i/)n>o iy > 0) is u.d. mod 1 if 
(a;n)n>o is u.d. mod 1, i.e. lim X)^(a;n+1/) = 0 for all u > 0. However, this — N-t-oo 
convergence is not necessarily uniform for v > 0. 

N-1 

n = 0 

satisfies 

lim DN(xn) = 0. 
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A real sequence (x n ) n >o is called well distributed modulo 1 (for short 
w.d. mod 1) if the uniform discrepancy 

N—l 

DN(XTI) = s u p s u p 
u>0 /C[0,1] 

•1 £ Xi{{xn+V}) - KI) 

satisfies 

N „ n=0 

l im Djf(xn) = 0. 
N—KX> 

sup Dn(X N + L / ) 
u>0 

Obviously, every w.d. sequence is u.d. It should be mentioned that the 
converse is not true, e.g. xn = y/n is u.d. mod 1 but not w.d. mod 1. In fact, 
this is the typical situation. Almost all sequences (x n ) n >o 6 [0,1)N are u.d. 
mod 1 but not w.d. mod 1. (For more details of u.d. resp. w.d. sequences we 
refer to [10, 8, 4].) 

The most prominent u.d. resp. w.d. real sequence is the linear sequence 
(an)n>o for irrational a . However, there are other interesting w.d. sequences 
of the form (a / (n ) ) n >o , where f(n) is an integer valued function, e.g. Coquet 
[1] showed that (asg(n))„>o is w.d. mod 1 for irrational a, where sq(n) 
denotes the sum of digits in the q-ary representation of n. This result can 
be extended to strongly ^-additive functions / ( n ) , which are defined by 

f(a + qb) = /(a) + f(b) (0 < a < q, b > 0), 

i.e. if n is given by n = do + d\q + 1- dkqk (0 < dj < q) and / ( 0 ) ( = 0), 
/(1),..., f(q — 1) are known then 

f(n) = f(d0) + f(d1) + --- + f(dk). 

Our first result provides an almost optimal bound for the uniform discrep-
ancy of ( a / ( n ) ) n > i - We consider irrationals a of finite approximation type 
T), i.e. for every e > 0 there exists a constant c (a ,e) > 0 such that 

" M l > 

for all positive integers h, where ||a:|| = min({a;}, 1 —{a:}) denotes the nearest 
distance to integers. 

T H E O R E M 1 . 1 . Let a be an irrational of finite approximation type t] and 
let f(n) be a strongly q-additive function which attains only non-negative 
integers such that there exists 1 < b < q — 1 with f(b) > 0. Then for every 
e > 0 

5 j v ( a / ( n ) ) c ( l o g ^ i / f r . ) - « 

for all N > 1, where the constant implied by <C depends on q, a, e, and on f . 
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R e m a r k 1. Theorem 1.1 is a generalization of results of Tichy and 
Turnwald [16, 17], where corresponding upper bounds for the usual dis-
crepancy Djv(a / (n) ) and worse estimates for the uniform discrepancy 
D^r(a / (n)) are derived. In [12] it is mentioned that estimates for Dn(oc f(n)) 
can be derived from bounds for D^(af(n)). However, the formulation of 
Theorem 4 in [12] is not sufficient to confirm this statement. Its proof needs 
a slight modification. In fact, the proof of Theorem 1.1 uses simlar ideas to 
that of Theorem 4 in [12] and it is easy to extract the following estimate 

DN(af(n)) < + 2D q >(a f (n ) ) J < D[VN](af(n)). 

R e m a r k 2. In [16] it is also shown that if a is not of approximation 
type 7]' for any 77' < r] then for every e > 0 and infinitely many N 

DN(af(n)) > 
(log tf)l/(2»?)+e' 

Since i )^r(a / (n)) > D^(af{n)) Theorem 1.1 is almost optimal. 
It should be further mentioned that it is also possible to show (see [16, 

11]) that for every irrational a there exists a constant c'(q,a,f) > 0 such 
that for all JV > 2 

By the theorem of T H U E - S I E G E L - R O T H every irrational real algebraic num-
ber a is of approximation type rj = 1. Hence the exponent 1/2 in this general 
lower bound cannot be replaced by a larger exponent. 

Note that if xn = an then a;/(n) = otf(n). Actually this is not only 
a formal observation but the deeper reason for Theorem 1.1. Coquet [1] 
showed that (xS s(n))n>0 is w.d. mod 1 if (xn)n>0 is w.d. mod 1. In [4] this 
result was (non-trivialiy) generalized to strongly ^-additive functions f(n). 
Here we provide a quantitative version of this relationship in terms of the 
uniform discrepancy. 

T H E O R E M 1.2. Suppose that f(n) is strongly q-additive which attains 
only non-negative integers such that gcd{0 < j < q : f ( j ) > 0} = 1. Then 
for every c < 1/ log q we have 

¿M®/(n)) < sup D M ( x n ) , 
Af>c(log TV)1/4 

i.e. if a sequence (a>n)n>o is w.d. mod 1 then (x/(n)) is w.d. mod 1, too. 



886 M. Drmota 

This paper is organized in the following way. In section 2 we prove The-
orem 1.1 whereas section 3 is devoted to the proof of Theorem 1.2. In the 
final section 4 we discuss other types of integer valued functions /(ra) with 
the property that (a / (n) ) n >o are u.d. mod 1 for irrational a . 

2. Proof of Theorem 1.1 
The basic tool for the proof of Theorem 1.1 is the inequality of Erdos-

Turan [6, 7]. As usual we will use the notation e(x) = e2irtx. 

Lemma 2.1. For any choice of real numbers ®O,®25 • • a n d for 
every positive integer H 

(2.D + + 
/i=l v 7 n=0 

R e m a r k . Note that the inequality of Erdos-Turan implies Weyl's cri-
terion which says that if 

l N-1 

(2.2) „ M j £ e(hxn) = 0 
n=0 

holds for every positive integer h then (x n ) n > 0 is u.d. mod 1. Suppose that 
(2.2) is satisfied for all positive integers h then (2.1) provides 

limsup DN(xn) < 1 

N->oo n + I 
for every positive integer H. Consequently lim = 0. 

N—too 

In order to apply Lemma 2.1 we will deal with exponential sums. The 
following lemma is due to Tichy and Turnwald [16]. (For the reader's con-
venience we repeat the proof). 

Lemma 2.2. Let B = max | / ( 6 ) | , where f is any integer valued function 
l<b<q 

defined on { 0 , 1 , . . . , q} with / (0) = 0. Then 
g-1 

| $ > ( a / ( i ) ) < q — 27r||5a||2. 
3=0 

P r o o f . First observe that 
9 

I £>(a/00) < |1 + e(Ba)\ + q — 2 
3=0 

= 2| cosiTT.Sa)! + q-2 = 2 cos(jr| |5a||) + q - 2. 
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Furthermore we have 

t 2 x2 

cos x = 1 - \ sin t dt < 1 - I — t dt — 1 J J TT 7T 

for |a;| < 7r/2. This proves Lemma 2.2. 

COROLLARY. Suppose that f is a strongly q-additive function which at-

ns 

real I 

tains only non-negative integers and set B = max f(b). Then for every 
\<b<q 

y - i 
e(ha(f(n) + Z ) ) | = | £ e(af(j))\ < (q - 4\\hBa\\2)k 

j=0 j—0 

Now we are able to prove Theorem 1.1. 

P r o o f . (Theorem 1.1) Suppose that qk < N and for every u > 0 define 
mi, m2 by (mj - 1 )qk <v< m\qk and by (m2 - 1 )qk < v + N - 1 < m,2qk. 

Then 

TV—1 m2-1 (<+l)g*-l | Y, «(«/(» + "))| < ̂  + E | E 
n=0 t=m j n=tqk 

m2-1 qk-1 

* 2ik + E | E «(«(/(<)+M)) 
t=mi j=0 

<2g f c + (m2-m1)(g-4||/i5a||2) fc 

< 2gfc + iV exp ( - fc " " j . 

Now set A; = [(log -v/iV)/(log g)] + 1 > (log N)/(2\ogq) and use the assump-
tion that a is of approximation type 77, i.e. for every e with 0 < e < 1/(477) 
there exists a constant cq > 0 such that ||/i5a|| > coh~v~£ holds for every 
positive integer h, to obtain 

£ e(af(n + „ ) ) < + exp ( - - J L — w ) 
n=0 

uniformly for all v > 0. Thus, the inequality of Erdos-Turan (Lemma 2.1) 
yields 

s , « v, 1 logH _ / 2CQH~2v~2e \ 
DN(af(n)) « - + - J = - + logH exp ( - ° g l p g g log n). 



888 M. D r m o t a 

Finally, if we set H = [(log7V)1/(2ri)_e] we get 

5 j v ( a / ( n ) ) <<: (log Ny/(*>)-« + l o g l o g * exp("Cl(lQg N ) - ^ ^ 2 ) 

1 < ( log iV) 1 /^ ) -* ' 

where the constant implies by < depends on q,a,e, and / . • 

3. Proof of Theorem 1.2 
The main ingredience for the proof of Theorem 1.2 is the following lemma 

due to Odlyzko and Richmond [13]. 
L E M M A 3 . 1 . Let &o,f>i, •. - ,bd be a finite sequence of non-negative num-

bers with bo > 0 , bd > 0 , and 
gcd{j : bj ± 0} = 1. 

Let ank be defined by 

ankxn = (b0 + blx + --- + bdxd)k. 
n> 0 

Then for every 6 > 0 there exists ko(6) such that for every k > ko(S) 

( 3 . 1 ) a2
nk > an-iikan+iik, 6k < n < ( d - S ) k . 

Note that the gcd-condition is no real restriction and that (3.1) implies 
unimodality of the sequence ank, k > ko(S), Sk < n < (d — S)k, i.e. there 
exists an no such that ank is increasing for n < no and decreasing for n > no-

It should be further noticed that this Lemma is strongly related to the 
central limit theorem for a sum of independent discrete random variables. 
Set b = b0 + h + • • • + bd. Then 

^ = P[X1 + X2 + --- + Xk = n], 

where Xj, 1 < j < k are independent discrete random variables with 

P [ X j = »] = £ . 

It is well known (see P E T R O V [ 1 4 ] ) that there is a local limit theorem of the 
form 

with 
1 d 1 d 

j=0 j=0 
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and exponential tail estimates of the form 

ank < e _ c * V 
\n—kn\>x\/kcr2 

for some c > 0. Especially, the following properties are satisfied 

(3.3) maxanfc = 

and for (sufficiently small) <5 > 0 

( 3 . 4 ) a n k + 2 U n k -

n<kS n>(d-S)k 

where q'(S) < q. 
With help of Lemma 3.1 and using these properties we are able to prove 

the following lemma. 

L E M M A 3 . 2 . Suppose that f(n) is strongly q-additive which attains only 
non-negative integers such that gcd{0 < j < q : f ( j ) > 0} = 1. Then for 
every (sufficiently small) 6 > 0 we have for all M > 1, for all k > 0 with 
qk < N, and for all (sufficiently large) N > NQ(6) 

5 + ( t 1 ) * + 

P r o o f . Set bn(I) = X / ( M ) - A ( / ) , e(M) = sup DL(xn) < 1, and 
L>M 

ank = |{j <qk • f ( j ) = Then we have 

- ?fcA(/) = Y,bfU)+i(I) = Y,ankbn+t(I). 
j=0 j=0 n > 0 

First let us consider the sum Y^n^n^> where no is defined by anok = 
maxanfc, d = max{j < q : f ( j ) > 0}, and 6 > 0 is chosen in a way that 
n > 0 

(d — 6)k is a positive integer. By partial summation we obtain 

(d-S)k 

ankbn+i(I) = 
n = n o 

(d-S)k (d-S)k-l n 

a(d-S)k JZ b n + t ( I ) + ^ - an+l,k) J ] 6i+'(-0-
n = n o n = n o j = n o 
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If k > k0(6) then ank > an+i,k f° r no < n < (d - 6)k. Furthermore, since 

J + M - l 

| J ] b j { I ) \ < M e ( M ) 
j=J 

for all M > 0 and all intervals I C [0,1] we get 

(d-S)k 

^ ankbn+l(I) 
n=n0 

< a ( d - s ) k { ( d ~ f>)k - no + - 6)k - n0 + 1) 
(d-S)k-l 

+ E ( a n k ~ an+i,k){n ~ no + 1 )e{n - n0 + 1 ) 
n=no 

(d-S)k-l 

< e ( M ) ( a { d _ s ) k ( ( d - 6)k - n0 + 1) + E (ank - a n + l i k ) ( n - n0 + 1)) 
n=n0 

n0 + M-1 

+ E (a,nk-an+i,k)(n-n0 + l ) 
71— 71Q 

(d-S)k n0 + M 

~ £ ( M ) E ank+ E ~ Man0+M 
n—riQ n=no 

< e(M)qk + Manok. 

A similar estimate holds for the sum Y^=sk- Thus 

| £ x / ( { * / 0 ) + ; } ) - < 2e{M)qk + 2Manok + q'(8)h 

3=0 

holds for all I > 0. 
Finally, suppose that qk < N and for every v > 0 define mj , m2 by 

(mi - 1 )qk < v < miqk and by (m2 - 1 )qh < v + N - 1 < m2qk. Then 

JV-l m2-1 (f+l)9k-l 
I J 2 b n n + 1 / ) ( I ) \ < 2 q k + £ | E 

n = 0 t=m i n=tqh 

m2-1 qk~ 1 

^ 2<f + E | E b m + m ( i ) 
t = 7711 j = 0 

< 2qk + (m2 - m1)(2£(M)qk + 2Manok + q'(6)k) 
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This completes the proof of Lemma 3.2. • 

It is now easy to show that Lemma 3.2 implies Theorem 1.2. 

P r o o f . (Theorem 1.2) Fix any sufficiently small 8 > 0 and any c < 
1/logg and set k = clog TV and M = kl!A. We have 

— jyclogg-i — (nf J _ \ 
N " \MJ' 

_ N-clog(q/q'(S)) _ 

M_ _ J_ 
~ M' 

Since e(M) > ¿>M{xn) > Dm(xu) > j j we finally obtain 

DN(xf{n)) < 2e(M) + « £(M), 

which proves Theorem 1.2. • 

4. Uniform distribution of sequences (a/(n)) 
By inspecting the proof of Theorem 1.2 it turns out that the essential 

ingredience was a distribution result of the numbers ank = {j < qn : f( j) = 
n}. We will now try to generalize this idea in order to provide more general 
integer valued sequences f(n) such that sequences of the kind (a/(n)) n>o 
are u.d. mod 1. The only disadvantage of this approach is that it seems to 
be impossible to prove also well distribution in this generality. 

T H E O R E M 4.1. Let ( / ( n ) ) n >O be a sequence of non-negative integers such 
that the numbers 

CtnN = \{n< N : / ( n ) = m}| 
satisfy 

(4.1) km+l,N - CmN\ = o(N) (N -»• oo). 
771 > 0 

Then the sequence (af(n))n>o is u.d. mod 1 if and only if a is irrational. 
More precisely, if a is of approximation type rj and 

\cm+l,N - cmiv| < Ntp(N) 
m> 0 
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then for every £ > 0 

(4.2) D N ( a f ( n ) ) < V(iV)(1/")+e. 

P r o o f . Obviously, if a is rational and / (n ) is an integer sequence then 
the sequence ( a f ( n ) ) n > 0 is surely not u.d. mod 1 since the fractional parts 
{ a f ( n ) } attain only finitely many values. 

If a is irrational then 
JV-l 

e(han) < N 

n=0 

Hence by Abel summation 
N-1 

e ( h a f ( n ) ) \ = ^ c m N e ( h a r n ) 

sin(7r/ia)| 

n = 0 m> 0 

< / , |cm+l,JV - Cmw\ — 
' * si 

N 

m> 0 sin(7r/io:)| = o ( N ) . 

Thus Weyl's criterion implies that (a/(n))n>o is u.d. mod 1. 
Since | sin(7r/ia)| < 7r||a:/i|| we also obtain 

A T - l 

-\T NI A : 
Ohotf(n) 

n-0 

< j>(N) 

r\\ahW 

Furthermore, if a is of approximation type r) then we have (see [10, p. 123]) 
H 1 
E

X ^ Til7-1-e 

for every e > 0. Hence Lemma 2.1 implies 

D N ( a f ( n ) ) + 

By choosing H = [ip{N)_1/(?'_e)] the discrepancy estimate (4.2) follows. • 

There are lots of examples of integer sequences / (n ) which satisfy (4.1). 
We will say that a non-negative integer sequence / (n ) satisfies a local central 
limit theorem if there exist sequences ¡ j l n and <tn with lim/v-*oo &N = oo 
such that for every real interval [a, b] we have 

N ( {{m - hn) 2  

(4.3) cmN — exp + «(1) 

uniformly for all integers m € [ f i p j + a<T/v,/i/v + ba^] as N —> oo, where 

CmN = \{n< N : f ( n ) = m}|. 
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L e m m a 4 . 1 . Suppose that a non-negative integer sequence f ( n ) satisfies 

a local central limit theorem. Then 

l C m + l , A T - c m N | = o ( N ) ( N o o ) 

m> 0 

holds with cmj\f = |{n < N : f ( n ) = m}|. 

P r o o f . Let e > 0 be given and let T(e) be defined by 

1 T(c) 

j L e - t 2 / 2 d i = l - £ . ^ ^ J 

Then (4.3) implies 

E 

E 

CmN = - £ ) + » ( - " ) . 
jm—tip/ |<T(e)<rN 

Hence for sufficiently large N we obtain 

cmN < 2eN. 

| m-fiN\<T(e)<rN 

Furthermore, we have 
2iV 

2J \Cm+l,N - Cm,N\ < -J=== + o(N) = o(N). 

This completes the proof of Lemma 4.1. • 

R e m a r k . In [15] it is shown that the binary digitial sum S2(n) satisfies 
a local central limit theorem of the above form. In fact, the same is true for 
any strongly g-additive function f(n). Hence Theorem 4.1 and Lemma 4.1 
provide a weak version of Theorem 1.1. In a forthcoming paper [3] local limit 
theorems for the sum-of-digits-function for more general digital expansions 
are presented. 

As an application of the above method we will reprove that the sequence 
(au(n))„>i is u.d. mod 1, where u(n) denotes the number of different prime 
factors of n. (This property has been already observed by Erdos [5] and 
proved by Delange [2] without discrepancy bounds.) It is well known that 
u(n) satisfies a central limit theorem with mean value fipj = log log N + 

Ci + 0((log JV)-1) and variance a2
N = log log iV + C2 + 0((log JV)-1) (The-

orem of Erdos-Kac). Corresponding local limit theorems are usually stated 
in a slightly different form as in (4.3). Nevertheless the following proof of 
Lemma 4.2 is similar to that of Lemma 4.1. We will use the following asymp-
totic formula (see [9]): 
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( 4 . 4 ) cmN = 

N . ^ J ^ ^ + o f ^ f K - ^ i l + ot M 

\/27r log l o g TV V 2 \\oglogNJJ\ V V l o g l o g N 

u n i f o r m l y f o r x m N = (TO - mv)/aN = o ( \ / l o g l o g N). 

L E M M A 4 . 2 . Set 

CmN = \{n< N : u(n) = m}\, 

where u{n) denotes the number of different prime factors of n. Then 

i i N / y \Cm+\,N — Cm,N\ "C 
m > 0 V l o g l o g J V 

P r o o f . F o r t h e s a k e o f s h o r t n e s s w e u s e t h e a b b r e v a t i o n s l o g 2 ( a ; ) = 

l o g l o g a; a n d l o g 3 ( a ; ) = l o g l o g l o g a ; . B y ( 4 . 4 ) w e o b t a i n f o r m < 2 - y / l o g 3 ( i V ) 

N ( (m — Ci — l o g 2 N)2 

CmN = — ¡ = = = = = = e x P ~ 

T h u s 

^ T T l o g 2 N V log2 N 

V + V l o g 2 N \ l o g 2 N j 

|m-log2 iV|<2>/log3 N V 

w h i c h i m p l i e s 

- l o g 2 AT|>2^/log3 N V | m 

F u r t h e r m o r e w e h a v e 

Y^ \cm+l,N - CmN\ < . ^ + 0[ ^ ) , , Z^n A jv y/2v]og2N \^log2 NJ 

= o( N 

w h i c h c o m p l e t e s t h e p r o o f o f L e m m a 4 . 2 . • 

C O R O L L A R Y . The sequence ( a w ( n ) ) n > i is u.d. mod 1 if and only if a is 
irrational. Furthermore, if a is of approximation type T] then 

« ( l o g t o g A 1 ^ -

for every e > 0. 
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If we want to obtain w.d. seqences of the form (a / (n) )„> 0 then we have 
to assume a more restrictive condition (4.5). 

T H E O R E M 4.2. Let (/(rc))n>o be a sequence of non-negative integers such 
that the numbers 

CmN = I {n<N : f ( n ) = m}\ 
satisfy 

(4.5) sup y^ Icm+ijv+f - cm,N+ V - C m + + cm ,„| = o(N) (N oo). 

Then the sequence (a/(n))„>o is w.d. mod 1 if and only if a is irrational. 
More precisely, if a is of approximation type rj and 

I < Nip{N) 
u>o 

— 771 >0 

then for every z > 0 

(4.6) DN(af(n)) < V( iV) ( 1 / ? ) ) + e . 

P r o o f . The proof runs along the same lines as that of Theorem 4.1. The 
only difference is that 

Cm,N+v - Cmv = \{v < n < N + v \ f ( n ) - TO} 

has to be used instead of cmN = |{n < N : f{n) = m}\. By assumption it is 
clear that all estimates are uniform for u > 0. • 

R e m a r k . It seems to be a non-trivial problem to decide whether 
(au>(n))n>i is w.d. mod 1 or not. The present local limit law (4.4) is surely 
not sufficient to prove well distribution of (au(n ) ) n >\ . 

Acknowledgment. The author is indebted to an anonymous referee for 
pointing out the connection between Theorem 1.1 and a (hidden) result of 
[12]. 
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