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G O U R S A T - T Y P E PROBLEMS 
CONTAINING THE N O R M A L DERIVATIVES 

OF THE U N K N O W N FUNCTIONS 

Abstrac t . The paper concerns both linear and nonlinear Goursat-type problems for 
„2 

the partial differential equation of the form • = F with the boundary conditions 
containing the normal derivatives of u. The linear problem is reduced to a functional 
equation and hence the solution is found in series form. The existence and uniqueness of 
a solution to the nonlinear problem is proved by way of the Banach fixed point theorem. 

Introduction 
Several papers were devoted to the boundary value problems with Neu-

mann-type boundary conditions for second-order hyperbolic partial differ-
ential equations whose leading parts correspond to the second canonical 
form Uu - (cf. [7], [9]—[12] and references). As far as we know, 
analogous problem for the equations with the leading parts corresponding to 
the first canonical form Lu := have not been taken up *) except paper 
[4] of the first author, where the local existence of a nonlinear Neumann 
problem for a system of high order integro-differential equations with the 
leading parts Lpu,p > 1, was proved. 

In this paper we deal with two Goursat problems for the equation Lu = F 
whose boundary conditions contain the normal derivatives of u (for the 
Goursat problem with the boundary conditions not containing the normal 
derivatives see [l]-[3], [6], [8] and references). In Sections 1, 2 we examine a 
linear problem, reduce it to a functional equation and hence find its solution 
in series form. In Section 3 we consider a nonlinear problem and prove 
the local existence and uniqueness of its solution (under the assumptions 

*) It is easily seen that, in general, the problems for the equation Lu = F cannot be 
obtained from those for Du = F by the linear map transforming Du into Lu. 
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different from those in [4]) by using the results obtained in the preceding 
sections and applying the Banach fixed point theorem. 

To the best of our knowledge the said problems have not been considered 
so far. 

1. Let Y be a Banach space with norm ||.||, Q the rectangle [0, A] x [0,5], 
where 0 < A, B < oo and J1 and r two curves of equations y = f(x) and 
x - h(y), where / : [0,A] —• [0,5] and h : [0,5] —>• [0,^4], respectively. 
Denote by n and n the normal unit vectors to r and T, respectively, and 
introduce the class K of all functions u : Q —• Y possesing continuous 
derivatives Dr

xDs
yu, where Dx = -J^, Dy = ^ and r,s £ {0,1}. 

We examine the following Goursat problem ((?/,): find a solution of the 
equation 

(1.1) Lu = F 

(where F : (2 Y is a given function) in i2, that is a function u £ K 
satisfying (1.1) at each point of Q, fulfilling the boundary conditions 

(1.2) ^u[x,f(x)} = MOO, ^u[h(y), y] = N(y), 

where (x,y) £ Q, and M : [0,A] -»• Y and N : [0,5] Y are given 
functions. 

We make the following assumptions. 

I . The functions / and h are of class C 1 , strictly increase and satisfy the 
conditions 

(1.3) / (0 ) = h(0) = 0, min( / , h) > 0, 

(1.4) f,h< 1, 

where / = / ' (0) ; h = ft'(0). 
Moreover, the curves r and J1 do not intersect one another in i 2 \ 0 , 

where 0 (0 ,0 ) . 

I I . The functions M and M are continuous and satisfy the conditions 

(1.5) | |M(x)| | < mix1+ei, | | N ( y ) < , (x, y) e i2, 

where m\ and 6\ are positive constans. 

I I I . The function F is continuous and satisfies the inequality 

(1.6) | | ^ , y ) l l < M x 6 * + A ( * , 2 / ) € i2, 

where m<i and 62 are positive constans. 
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Let us observe that we have the following lemmas whose validity follows 
from the above Assumptions I—III. 

L E M M A 1.1. If u is of the form 

(1.7) u(x,y) = R(x,y) + <p(x) + "'iy), 

where 
x y 

(1.8) R(x,y) = \\F({,Tj)dTidt, 
0 0 

<p : [0,A] —• Y and : [0,5] —• Y being functions of class C1, then u 
is a solution to equation {1.1) in Q. Conversely, for a given solution u to 
equation (1.1) in Q there are functions <p : [0, A] —• Y and : [0,5] —• Y 
of class C1 such that equality (1.7) holds good. 

L E M M A 1.2. For every number £o G ( 0 , 1 ) there is a sufficiently small 
number 6 € (0, min(A, B)) such that the inequalities 

( 1 9 ) i ( l - e o ) / < / ' ( * ) < ( l + £o)/, 
\(l-£0)h<h'(y)<(l + £0)h 

hold good for (x, y) G [0, <$] X [0, ¿]. 

L E M M A 1.3. The following inequalities 

< const x1+<>2, (1 .10 ) 

(1.11) dn 

y=S(x) 

< const y1+&2 

x=h(y) 

are valid. 

N o w , l e t u s i n t r o d u c e t h e f u n c t i o n (cf . [1], p .104; [8], p . 1 0 3 ) 

(1.12) g(x) = hof(x), *G[0,A] , 

L E M M A 1.4 (cf. [1], p. 104) . The relation 

(1 .13 ) gn ^ 0 < m [ 0 , A ] 

holds good, when n tends to infinity, with —• denoting the uniform conver-
gence. 

2. Let us assume that the direction cosines of the vectors n and n are 
given by 
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( ^ ( ^ 1 

c o s ( a ; ' n ) = - ^ 0 ; c o s ( 2 / ' n ) = ^ 
, 1 , h'iv) cos(z,n) = «*(</, n) = - ^ -

e (z) = (l + / ' 2 ( z ) ) 5 , e(j/) = ( l + / l '2( i/))5 . 

(2.1) 

where 

(2.2) 

Imposing on function u (cf. ( 1 . 7 ) ) the boundary conditions ( 1 . 2 ) , one 
gets the following system of functional equations 

(o 3) I / ( * ) - (/'(z))"1*''' 0 /(*) = V(x), 
K ' ) \^(y)-(h'(y))-1<p'oh(y) = W(y) 

for (x,y) 6 J?, where v3',"''' are the unknowns, sought in the class C°, and 
v, W are given by 

d 

( 2 . 4 ) 
'V{X) = -W){M{X)~ 

[N(y)~ 

dn 
R(x,y) 

W(y) = 
e(y) 

h'(y) 

y=f(x) 

x=h(y) \ 
As a result, problem ( G L ) is reduced to system ( 2 . 3 ) . It is evident that ( 2 . 3 ) 

is equivalent to 

.'/(y) = (h'(y))'V 0 % ) + W(y)], y € [0,5]; 
<p'(x) - b(x)tp'og(x) = G(x), ®e[0,A], 

b{x) = ( f ' ( x ) h ' o f { x ) ) - \ 

( 2 . 5 ) 

(2.6) 

where 

( 2 . 7 ) 

( 2 . 8 ) G(x) = V(x) + ( f ' ( x ) ) ' 1 W o f ( x ) . 

Of course, it is sufficient to solve equation (2.6) and then substitute its 
solution <f' to (2.5) and find 

Equation (2.6) is a functional equation of the type studied for Y = R in 
[8], Chapt.II. 

PROPOSITION 2 . 1 . Equation ( 2 . 6 ) has a solution given by the formula 

( 2 . 9 ) <p'(x) = S(x), 

where 

(2.10) s ( x ) = 

n = 0 
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(2.11) an(x) = Bn(x)G o gn(x) 

with 
n—1 

(2.12) Bn(x)= l[bogm(x) 
m—0 

V (as usual, we set IIm=r um 1 when s < r). It is the unique solution of 
(2.6) in the class K i of all continuous functions <p' : [0, A\—>Y such that 

(2.13) ^'(aOU < 

where is a positive constans (which may be different for different functions 
(p) and 9 = min(0i, #2)- The function <p' given by (2.9)-(2.12) belongs to the 
class Kx. 

P r o o f . We begin with the proof of the uniform convergence of series 
(2.10). Let £q be a number such that 

(2.14) 0 < £0 < 1 -

where (cf. (1.4)) 

(2.15) q = f h e (0,1), 

(2-16) w = — - . 
K ' 2(4 + 6) 

It follows from Lemma 1.4 that there is a number no € N (where N denotes 
the set of all positive integers) such that for all no < v 6 N and x € [0, A] 
the relations gv(x) € [0,6], f o gv(x) € [0, <5] hold good. In the sequel we 
shall assume that n > no- By (2.7) and (2.12) we have 

n0— 1 n—1 
Bn(x)= I] bogm(x) J] bogm(x) 

771=0 m = 71o 

n - 1 

< const J ] (f'ogm(x)h'ofogm(x))-\ 
TTI—TIQ 

whence and from Lemma 1.2 (with £0 satisfying (2.14)) we obtain the esti-
mate 

(2.17) B„(x) < const [(1 - e 0) 2g]~n . 

Let us observe that (cf. (2.4) and (2.8)) 

(2.18) ||G o 5n(x)|| < const (||M o <,n(x)|| + | | ^ o / o 5n(x)|| 
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In virtue of (1.5), (1.12) and Lemma 1.2, we have the following relations (cf. 
(2.15)) 

(2.19) ||M o < const [(1 + e 0 ) 2 g ] n ( 1 + f l l ) s 1 + f l l 

< const [ ( l - £ o ) - 2 g f ( 1 + e i V + e > 

and in similar way we get 

(2.20) \ \ N o f o g n ( x ) || < const [(1 - £ - 2 q ] n ^ + e ^ x 1 + e ' . 

Furthermore, Lemma 1.3 yields 

(2.21) max ^ ± R [ g n ( x ) J o g n ( x ) } , - ^ R [ g n + \ x ) , g n ( x ) } ) 

< const [ ( l - £ 0 

On joining (2.18)-(2.21), we obtain the inequality 

(2.22) ||G o g n ( x ) \ \ < const [(1 - g o ) - 2 ? ] " ( 1 + V + " 

which, together with (2.17), implies (cf. (2.11)) 

(2.23) I K ( z ) | | < const q ? x 1 + e < const q?,e G [0,A] 

where 

(2.24) q i = ( l - e o r 2 { 2 + e ) q e 

(with q given by (2.15)). It follows from (2.14)-(2.16) that qx G (0,1) and 
hence (cf. (2.23)) the series (2.10) is uniformly convergent, as required. It is 
verified by direct calculation that the function <p' given by (2.9) is a solution 
to (2.6). 

In order to prove the uniqueness of the solution in let us observe that 
if a function <p : [0, A] —> Y is a solution to equation (2.6) in the interval 
[0, A], then, for every r G N and every x G [0, A], the following equality 

r n—1 

(2.25) <p'(x) = E ( II 6 0
 G o g n { x ) + e r i x ) 

7i=0 m=0 

holds good, where 

r 

(2.26) 6 r { x ) = ( I I  6  0 9 m { x ) ) v ' o g r + \ x ) . 

m=0 
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For r > no, we have the following sequence of inequalities (cf. the deriva-
tion of (2.22)) 

r 

IMaOH < const J ] [(1 - e 0 ) 2 q f r [ ( 1 - eo)~2 q ^ ^ W ^ x ) } 6 ' 2 

m=n0+1 

< const qr
2x1+e/2[gr+1(x)f2, 

where (cf. (2.14)-(2.16)) 

0 < ? 2 = (1 - £ o ) - ( 4 + V / 2 = [(1 - £ 0 ) - 2 < 4 + V ] 1 / 2 < 1. 

As a consequence, 

11^)11 < const [gr+1(x)}9/2, 
whence and from Lemma 1.4 it follows that 

(2.27) Qr(x) 0 when r —> oo. 

Relations (2.25) and (2.27) imply that tp'{x) is of the form (2.9) which ends 
the proof of the uniqueness. 

Finally, it follows from (2.10) and (2.23) that the function ip' given by 
(2.9) is continuous and satisfies inequality (2.13), i.e., belongs to the class 
Ki. 

Thus, the proof of Proposition 2.1 is completed 

COROLLARY 2 . 1 . It follows from Proposition 2.1 that the functions cp'(x) 
(cf. (2.9)) and 

( 2 . 2 8 ) • ' . ' ( » ) = ( f c ' M r V o % ) + W(y)], y € [ 0 , B], 

satisfy system ( 2 . 3 ) in Q i f , and for ip' < E K i * ) only i f , the following 
equalities 

X 

(2.29) <p(x) = \S({)dt+Cu 
o 

(2.30) .'.(¡,) = J [h'irj]-1 [S o h{y) + W{r,)} d r j + C2 

o 

hold good for (x,y) e f2, where C\,Ci are arbitrary constans. 

As a result we get 

*) It is easily proved that, if ip' £ K i , then (2.5) implies ||V>'0)|| < Cvy1+,}, where 
Cv is a positive constant depending on C<p (cf. (2.13)). 
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THEOREM 2.1. If Assumptions I—III are satisfied, then problem (GL) has 
a solution given by formula (1.7), where ip(x) and ^(x) are defined by (2.29) 
and (2.30), respectively. It is the only solution in the class of all solutions of 
equation (1.1) such that the functions tp and in formula (1.7) satisfy the 
conditions ¥>(0) = a; "''(O) = 6; (p' G K i , where a and b are given numbers. 

3. We shall now pose a nonlinear counterpart of the problem studied in 
Sections 1 and 2. Let us consider the following nonlinear partial differential 
equation 

(3.1) Lu — F y, u(x, y), y), y) 

(where F : Î2 X Y3 —y Y is a given function), and mean its solution in i? as 
a function u G K satisfying (3.1) at each point (x, y) G Q. 

We examine the following problem (GL)' find a solution of equation (3.1) 
in Q satisfying the boundary conditions (cf. (1.2)) 

(3.2) 

ci du du 
—u[x,f(x)] = M(x,u[x,f(x)],-^[x,f(x)],-^[xJ(x)]), 

d du du 
J [%),»] = N(y,u[h(y),y],-£[h(y),y],-^[h(y),y]), 

where (JC, y) G Q and M : [0, A]xY3 ^ Y , N : [0, B] x Y3 -»• Y are given 
functions. 

We retain Assumption I and we make the following ones. 

I I ' . The functions M and N are continuous and satisfy the conditions 

(3.3) M(0, (0) ) = tf(0,(0)) = 0, 

' \\M(x,Z,V,0-M(x,lrj,0\\ 
< K^x26' + + a*)(5F - z + \\t~ + ||*7 - v\\ + IIC - Cll), 

\\N(y,t,v,0-*f(y,Z,v,Q 
< Ki(y28* +uJl+u2+u3)(y-y+ ||£ - £|| + \\rj - r,\\ + ||C - Cll), 

where (0) = (0,0,0) , 0 < x < x < A, 0 < y < y < B, ^ is a positive 
constant, G 1) and 

(3.5) ^ = m a x ( | | f | | , | | | | | ) , a;2 = max( |H | , u;3 = max ( | |C | | , | |C||)-

I I I ' . The function F is continuous and satisfies the conditions 

(3.4) 

(3.6) 
(3.7) 

F(0,0 , (0) ) = 0 , _ 
\\F(x,y,t,r],0-F(x,y,Ç,T},0\\ 
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< K2{x2e + f 6 + wi + + W3)(® - x + y - y + ||£ - + ||f?+ v\\), 

where K2 is a positive constant and 0 6 1). 

R e m a r k 3.1. It follows from (3.3) and (3.4) that the following inequal-
ities hold good 

(3.8) f | | M ( a r , f , » / , C ) | | < + ||£|| + I M I + I IC I I ) 2 , 

\ < K \ ( v + H i l l + I M I + I IC I I ) 2 , 

with K\ = max(l ,A2 9* - 1) , £1 = max i l ^ 2 "*" 1 ) and 

( 3 . 9 ) H f O r . y . e . i f c O I I < K 2 ( x + y + | | f | | + ||C|| + IICII)2 

where K2 = max(l, A29'1) with A = max(A, B). 

4. We shall attempt to solve the problem (Gn)• It follows from an argu-
ment analogous to that in Section 2 that the said problem is equivalent to 
the following system of integro-difFerential equations 

(4.1) 

(4.2) 

where (x, y) 6 Î2, 

( 4 . 3 ) R u ( x , y ) = \ \ F 

u(x, y) = Ru(x, y) + <p(x) + *'•(?/), 

[ V > ' ( x ) - ( f ' ( x ) y 1 ^ o f ( x ) ^ V u ( x ) , 

I • ' ' ' ( ! / ) - ( ¿ ' ( y ) r V ' 0 f ( x ) = W n ( y ) , 

x y 

0 0 

. s du. . d u . . 
t,T, u ( t , T ) , — ( t , T ) , — ( t , r ) dr dt 

and Vu(x) and W^y) are given by formulas (2.4), with the replacement of R 
by Ru, M ( x ) by 

du du 
M u ( x ) := M ( x , t t [ x , f ( x ) } , ^ - [ x , f ( x ) } , —[x, f ( x ) ] ) 

and N ( y ) by 

N u ( y ) := N ( y , u [ h , ( y ) , y } , ^ [ h ( y ) M , ^ [ h ( y ) , y } ) . 

Let A be the Banach space of all functions u : S2 —Y of class C1 , and 
let the distance in A be defined in the ordinary way 

(4.4) d(u, u) = sup ||u(z, y) - u(x, y)|| 
n 

+ sup 
n 

+ sup 
n 
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We consider the set Z of all points u £ A such that 

(4.5) tt(0,0) = 0, 

(4.6) max ^ q(X + y) 1 + !? (x,y) e n, 

where | < g < 1 is a parameter, and $ = min(0#,0) (cf. (3.4), (3.7)). It is 
clear that relations (4.5), (4.6) imply 

(4.7) I K z , 2 / ) | | < g(x + y) 
2+iJ (a:, y) G u G Z. 

Evidently, Z is a closed subset of A and hence it can be treated as a 
complete metric space with the distance function (4.4). 

We shall express <p'(x) and "'''(j/) in terms of the function u by applying 
Proposition 2.1 to the equation * ) 

(4 .8 ) (p'(x)-b(x)<p'og(x) = Gu(x), l i e Z 

and then substituting its solution to 

(4 .9 ) >>>'(y) = M y ) ) - V o h(y) + Wu(y)]. 

To this end it is enough to show that the function Gu o gn(x) satisfies an 
inequality analogous to (2.22). By using (3.9), (4.3), (4.6) and (4.7), we have 

(4.10) 

(4.11) 

max ±Ru[gn(x),fog"(x)} A. 
<in 

R[gn+1(x),gn(x)] 

< const (1 + g)[( 1 - £ „ r 2 < 7 f ( 1 + , ? ) A 1 " V + * , 

|| Mu o < const (1 + ¿>)[(1 ~ £o)~2 q f ^ A^'x1**, 

||iVu o / o < const (1 + e)[(l - £0r2g]"(1+,V-'V+'>. 

As a result, we obtain 

(4.12) ||Gtt o^OOH < const (1 + Q)[(l - e0)~2qf1^ A ^ V ^ , 

i.e., we have got for ||GU o <7™(a:)|| an inequality analogous to (2.22) (by 
assumption (2.14), (1 — £o)~2q < 1)-

On using Proposition 2.1, we can assert that, for every u G Z, equation 
(4.8) has a solution 

(4.13) <p'(x) = Su(x), 

*) Gu{x) is given by formula (2.8) with V and W replaced by Vu and Wu, respectively. 
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where 

(4.14) 

(4.15) 

n = 0 

a^(x) = Bn(x)Guogn(x) 
(with Bn(x) given by (2.12)), the series in (4.14) being uniformly convergent. 

It is the unique solution of (4.8) in the class K i to which the function 
<p'u(x) given by (4.13) belongs itself, satisfying the inequality (cf. (4.12)) 

(4.16) K O O I I < const (1 + g)A1~l}x1+^. 
As a result, the corresponding function  J , ' u ( y ) is given by (4.9) with 

f'(x) = Vuix), and satisfies the inequality 

(4.17) |K(y)||< const ( l + e ^ - V ^ -

Evidently, const in (4.16), (4.17) is independent of the choice of u 6 Z. 
It is a consequence of (4.5), (4.9) and (4.13) that the function u is a 

solution of problem (G/v) vanishing at (0 ,0) if *) 

(4.18) 

where 

(4.19) 

u(x, y) = Ru(x, y) + <pu(x) + J\(y), 

X 

<pu{x) = \Su(t)dt + C0, 
o 
y 

My) = s ( f r ' w r 1 ^ « o h(t) + Wu(t)} dt - Co 

for (a:, y) G Q, Co being an arbitrary constant. It follows directly from (4.16), 
(4.17) and (4.19) that the function u satisfying (4.18) fulfils the inequalities 

(4.20) 

(4.21) max ( 
|«(ar, y)|| < const (1 + Q)A1~,0{X + y) 

du 
dx 

du 
dy < const (1 + g)A1~i}(x + y) 

Thus, in order to prove the existence and uniqueness of a solution to the 
problem (Gat), it is sufficient to show that the integro-differential equation 
(4.18) has a unique solution. We shall apply the Banach fixed point theorem 
to the complete metric space Z and, in view of (4.18), we map Z by the 

*) And only if, provided that the first derivative of the function <p in (4.1) belongs to 
the class K i . 
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transformation 

(4.22) w(x, y) = Tu{x, y) := Ru(x, y) + <pn(x) + ^„(y) , (x, y) e S3; u G Z. 

Evidently, to satisfies condition (4.5). Moreover, it follows from (4.20)-
(4.22) that 

(4.23) max ^ ^ ( x , y ) I, I ̂ ( x , J ) < C . ( l + e t f - ' C * + v)1+* 

(where C , is a positive constant) and hence w satisfies inequality (4.6), 
provided that the condition 

(4.24) C„( 1 + g)A1~'d < g 

is fulfilled. Evidently, (4.24) holds good, if A is sufficiently small, so that 

3C„ - c * e +1 

that is if 

(4.25) A < . 

Thus, we can assert that the inclusion T(Z) C Z is valid, if A satisfies (4.25). 
It is still to be proved that T is a contraction. Let us first observe that, 

by (3.7), (4.3) and (4.4), we have 

(4.26) \\Ru(x,y)-Ru(x,y)\\< const (1 + g)(x + y)2+*d(u,u), 

(4 27) ! H " £^>0)11 ^ c o n s t i1 + *)(* + P)1+"d(u,u), 
1 ¿i2iK®,y)|| < const (1 + + u) 

for u,u 6 Z. Furthermore (cf. (3.4)) 

(a 08\ J ||Af«(a?) - Mu(x)\\ < const (1 + Q)x™d{u, u), 
^ j I I K f o ) " < const (1 + e)y™d(u,u). 

It follows from the estimates (4.27), (4.28) and from the inequality 2i? > 1 
that (cf. the proof of (2.23)) 

(4.29) ||Su(x) - 5s(s)|| < const (1 + g)x2i}d(u,u), 

whence, and by (4.9), (4.13) and (4.19), we obtain 

(4.30) | K ( z ) + M y ) - Mx) - Mv)\\ <const ( i + <?)(x + y)1+™d(u,u). 

Relations (4.22), (4.26) and (4.30) yield 

(4.31) sup ||w(a;,y) - w(x,j/)|| < const (1 + e)^™d(u,u), 
n 
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where w = Tú. In a similar way we prove (cf. (4.22), (4.27), (4.28)) that 

dw 

(4.32) 
sup 
n 

sup 
a 

dx 
< const (1 + Q)A2*d(u,ü), 

< const (1 + g)Á2,&d(u,ü). 

Thus (cf. (4.4)) 

(4.33) d(w,w) < C„( 1 + e)Á2,dd{u,u), 

where C** is a positive constant, and hence we can assert that the transfor-
mation T (cf. (4.22)) is a contraction, if the inequality 

(4.34) C „ ( 1 + g)A™ < 1 

is satisfied, which takes place, if 

(2d < < 
2C*» c „ ( i + e) 

that is 

(4.35) A< (2C»y1/2*. 

Bearing in mind the above-obtained results and basing on the Banach 
fixed point theorem, we conclude that, if inequalities (4.25) and (4.35) are 
satisfied, then the transformation T (cf. (4.22)) has a unique fixed point 

€ Z. The function satisfies equation (4.18) and hence it is a solution 
of problem (Gjy). 

As a result, we can formulate the following theorem. 

T H E O R E M 4.1. If Assumptions I , I I ' , and I I I ' are satisfied, and if the 
value of A = max(A, B) is sufficiently small, so that inequalities (4.25) and 
(4.35) hold good, then problem (G/v) has a solution u* £ Z. This solution is 
unique in the class of all functions u 6 Z of the form (4.1), where ip' € Ki 
(see Proposition 2.1). 
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