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GOURSAT-TYPE PROBLEMS
CONTAINING THE NORMAL DERIVATIVES
OF THE UNKNOWN FUNCTIONS

Abstract. The paper concerns both linear and nonlinear Goursat-type problems for

2
the partial differential equation of the form D%a“? = F with the boundary conditions
containing the normal derivatives of u. The linear problem is reduced to a functional
equation and hence the solution is found in series form. The existence and uniqueness of
a solution to the nonlinear problem is proved by way of the Banach fixed point theorem.

Introduction

Several papers were devoted to the boundary value problems with Neu-
mann-type boundary conditions for second—order hyperbolic partial differ-
ential equations whose leading parts correspond to the second canonical

2 2
form Ou := % — ng (cf. [7], [9)-[12] and references). As far as we know,
analogous problem for the equations with the leading parts corresponding to

the first canonical form Lu := ;:{;‘y have not been taken up *) except paper
[4] of the first author, where the local existence of a nonlinear Neumann
problem for a system of high order integro—differential equations with the

leading parts LPu,p > 1, was proved.

In this paper we deal with two Goursat problems for the equation Lu = F
whose boundary conditions contain the normal derivatives of u (for the
Goursat problem with the boundary conditions not containing the normal
derivatives see [1]-[3], [6], [8] and references). In Sections 1, 2 we examine a
linear problem, reduce it to a functional equation and hence find its solution
in series form. In Section 3 we consider a nonlinear problem and prove
the local existence and uniqueness of its solution (under the assumptions

*) It is easily seen that, in general, the problems for the equation Lu = F cannot be
obtained from those for CJu = F' by the linear map transforming [Ju into Lu.
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different from those in [4]) by using the results obtained in the preceding
sections and applying the Banach fixed point theorem.

To the best of our knowledge the said problems have not been considered
so far.

1. Let Y be a Banach space with norm ||.||, {2 the rectangle [0, 4] X [0, B],
where 0 < A, B < 0o and I" and I' two curves of equations y = f(z) and
z = h(y), where f : [0,A4] — [0,B] and h : [0, B] — [0, A], respectively.
Denote by n and n the normal unit vectors to I" and T , respectively, and
introduce the class K of all functions v : 2 — Y possesing continuous
derivatives D;D;u, where D, = %, D, = 5"’5 and r,s € {0,1}.

We examine the following Goursat problem (Gp): find a solution of the
equation
(1.1) Lu=F
(where F' : 2 — Y is a given function) in {2, that is a function u € K
satisfying (1.1) at each point of {2, fulfilling the boundary conditions

(12) Lo, f@)] = M(z),  Sulb(y),ul = N(),

where (z,y) € 2, and M : [0,A] - Y and N : [0,B] — Y are given
functions.
We make the following assumptions.

1. The functions f and h are of class C!, strictly increase and satisfy the
conditions

(1.3) £(0) = h(0) =0, min(f,) >0,
(1.4) Fh<1,
where f = f'(0); & = A'(0).

Moreover, the curves I' and I’ do not intersect one another in N0,
where 0(0, 0).

II. The functions M and M are continuous and satisfy the conditions
(1.5) IM(2)[| £ ma*%, [N (y) < may™*, (2,9) € 2,
where m, and 6, are positive constans.

III. The function F is continuous and satisfies the inequality
(1.6) [1F(z, )]l < ma(e® + 4™, (2,9) € 2,

where ms and 6, are positive constans.
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Let us observe that we have the following lemmas whose validity follows
from the above Assumptions I-IIL

LeMMA 1.1. If u is of the form

(1.7) u(z,y) = R(z,y) + ¢(z) + 4(y),
where
(1.8) R(z,y) = | | F(&,n) dnde,

00

¢ :[0,A] = Y and »» : [0,B] —» Y being functions of class C', then u
is a solution to equation (1.1) in 2. Conversely, for a given solution u to
equation (1.1) in {2 there are functions ¢ : [0,A] —= Y and *: [0,B] - Y
of class C* such that equality (1.7) holds good.

LEMMA 1.2. For every number g9 € (0,1) there is a sufficiently small
number é € (0,min(A, B)) such that the inequalities

(1.9) {(1 - fo)z <fi(z)<(1 +6o)f,
(1-e0)h < h'(y) < (1+e€0)h
hold good for (z,y) € [0, é] x [0, 5].

LEMMA 1.3. The following inequalities

(1.10) “diR(:v,y) < const z1+%2,
n y=£(z)
d
(1.11) —= < const y't%
4R lg=n(y)
are valid.
Now, let us introduce the function (cf. [1], p.104; [8], p.103)
(1.12) g(z)=ho f(z), =z€]0,A]
LEMMA 1.4 (cf. [1], p. 104). The relation
(1.13) g" — 0 onl0,A]

holds good, when n tends to infinity, with — denoting the uniform conver-
gence.

2. Let us assume that the direction cosines of the vectors n and n are
given by
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cos(z,n) = _ﬁ(z_); cos(y,n) = L
e(z) e(z)
(2.1) . 1 o '(y)
cos(z,n) = “F) cos(y,n) = )
where
(2:2) e(e) = (1+ 2@}, &y =1+ h2)E.

Imposing on function u (cf. (1.7)) the boundary conditions (1.2), one
gets the following system of functional equations

¢'(2) = (£/(2) 1 0 f(a) = V(a),
(2.3) { h(y) ~ (h'(y))_l(p’ o h(y) = W(y)

for (z,y) € 12, where ¢', "' are the unknowns, sought in the class C°, and
v, W are given by

 f'(2)

W(y) = %%{N(y) - [%R(z’y)] e=h(y)

As a result, problem (Gy) is reduced to system (2.3). It is evident that (2.3)
is equivalent to

(2.4)

(2.5) Wy = (h'(y)) " ¢’ o h(y) + W(y)], € [0, B);
(2.6) ¢'(z) — b(z)¢' 0 g(z) = G(z), =z €10,4],
where

(2.7) b(z) = (f'(z)h' o f(z)),

(2.8) G(z) = V(2) + (f'(2)) 7' W o f(z).

Of course, it is sufficient to solve equation (2.6) and then substitute its
solution ¢’ to (2.5) and find ~'.

Equation (2.6) is a functional equation of the type studied for Y = R in
(8], Chapt.IL.

PRrROPOSITION 2.1. Equation (2.6) has a solution given by the formula

(2.9) ¢'(z) = S(z),
where
(2.10) S(z) =) aa(x),

n=0
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(2.11) an(z) = Bp(z)G o g™ ()
with
(2.12) Bu(z)= J] bog™(2)

(as usual, we set [, _, um := 1 when s < r). It is the unique solution of
(2.6) in the class Ky of all continuous functions ¢' : [0, A] = Y such that

(2.13) e’ (@)l < Cpz™*?,

where c,, is a positive constans (which may be different for different functions
¢) and 6 = min(0y,0,). The function ¢' given by (2.9)~(2.12) belongs to the
class K;.

Proof. We begin with the proof of the uniform convergence of series
(2.10). Let €9 be a number such that

(2.14) 0<eg<1-4g“,

where (cf. (1.4))

(2.15) g=fhe(0,),
0

(2.16) w= m.

It follows from Lemma 1.4 that there is a number ng € N (where N denotes
the set of all positive integers) such that for all np < v € N and z € [0, 4]
the relations ¢g¥(z) € [0,6], f o g*(z) € [0, 6] hold good. In the sequel we
shall assume that n > ng. By (2.7) and (2.12) we have

no—l

n—1
B.(z) = H bog™(z) H bog™(z)

m=0 m=no
n-1
< const H (ffog™(z)h' o fo gm("’))_l7
m=ng

whence and from Lemma 1.2 (with g satisfying (2.14)) we obtain the esti-
mate

(2.17) Bn(z) < const [(1—g0)q] -
Let us observe that (cf. (2.4) and (2.8))
(2.18) |G o g"(2)ll < const ([[M o g™(z)]| +[|NV o f o g"()l

HIZERlg"(@), £ 0" @)+ 1 3= Bla™ (2), 4"(2)]l).
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In virtue of (1.5), (1.12) and Lemma 1.2, we have the following relations (cf.
(2.15))

(2.19) 1M 0 g™(2)|| < const [(1+ eo)2q]" TV 1t

- 146
< const [(1—¢€g) 2q]n( D146
and in similar way we get

(2.20) [N o fog™a)|| < const [(1— ¢ 2q]" (1) g1+6

Furthermore, Lemma 1.3 yields

| Fre@.0@)

< const [(1 — go) 2g]"(1+02)g1+02

(2.21)  max (

Rl (@), 097

On joining (2.18)-(2.21), we obtain the inequality

(2.22) G 0 g™(2)|| < const [(1 = £0) 2" D 149

which, together with (2.17), implies (cf. (2.11))

(2.23) llan(2)|| < const ¢Fa'*? < const ¢F, e € [0, A]
where
(224) a1 = (1—e0) "¢’

(with ¢ given by (2.15)). It follows from (2.14)-(2.16) that ¢; € (0,1) and
hence (cf. (2.23)) the series (2.10) is uniformly convergent, as required. It is
verified by direct calculation that the function ¢’ given by (2.9) is a solution
to (2.6).

In order to prove the uniqueness of the solution in K4, let us observe that
if a function ¢ : [0, A] — Y is a solution to equation (2.6) in the interval
[0, A], then, for every r € N and every z € [0, A], the following equality

T

n—1
(2.25) d(@)=3 ([] bos™(®)G o g™(2)+ esle)

n=0 m=0

holds good, where

I

(2.26) or(2) = (] bog™@))¢ 0 g7 (a).

m=0
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For r > ng, we have the following sequence of inequalities (cf. the deriva-
tion of (2.22))

T

le~(z)]| < const ] [(1-eo)’al” [(1-e0) q]

m=no+1
< const iz +*/2g™+ ()

where (cf. (2.14)-(2.16))
0< gy =(1—eo) UHDgl/2 = [(1 — gy)" 20440 g011/2 < 1

r(1+6/2)

[ ()"

0/2

As a consequence,

llor(2)]| < const [g1(2)]""?,
whence and from Lemma 1.4 it follows that
(2.27) o-(z) - 0 when r — oo.

Relations (2.25) and (2.27) imply that ¢'(z) is of the form (2.9) which ends
the proof of the uniqueness.

Finally, it follows from (2.10) and (2.23) that the function ¢’ given by
(2.9) is continuous and satisfies inequality (2.13), i.e., belongs to the class
K.

Thus, the proof of Proposition 2.1 is completed

COROLLARY 2.1. It follows from Proposition 2.1 that the functions ¢ '(z)
(cf. (2.9)) and

(2.28) W(y) = (K@) [Soh(y) + W(y)l, ve€0,B]

satisfy system (2.3) in £2 if, and for ¢' € Ky *) only if, the following
equalities

(2.29) p(e) = | 5(6)dE+ Cy,

(2.30) h(y) = \[B'(1]7'[S o h(y) + W(n)]dn+ C;

O e (2 O e |3

hold good for (z,y) € 12, where Cy,C; are arbitrary constans.

As a result we get

*) It is easily proved that, if ¢’ € K, then (2.5) implies ||/ (y)|| < C'g,y 9 where
C‘p is a positive constant depending on Cy, (cf. (2.13)).
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THEOREM 2.1. If Assumptions I-III are satisfied, then problem (GL) has
a solution given by formula (1.7), where ¢(z) and *»(z) are defined by (2.29)
and (2.30), respectively. It is the only solution in the class of all solutions of
equation (1.1) such that the functions ¢ and *» in formula (1.7) satisfy the
conditions ¢(0) = a; *»(0) = b; ¢’ € K1, where a and b are given numbers.

3. We shall now pose a nonlinear counterpart of the problem studied in
Sections 1 and 2. Let us consider the following nonlinear partial differential
equation

(3.) b= F| (.3, u(a,), (2,00, g (a0)|

(where F: 2 x Y® — Y is a given function), and mean its solution in £ as
a function u € K satisfying (3.1) at each point (z,y) € £2.

We examine the following problem (G'1): find a solution of equation (3.1)
in {2 satisfying the boundary conditions (cf. (1.2))

d Ou Ou

§u[x, f((l))] = M(:IJ, u[xa f(x);75;[$, f(:l);], %[x’ f((l))]),
)9 = N, ulh(w), 91, 5-1h(w), 8], 5 [6(), 90)

where (z,y) € 2 and M : [0,A]x Y3 - Y, N :[0,B] xY® = Y are given

functions.
We retain Assumption I and we make the following ones.

(3.2)

IT'. The functions M and N are continuous and satisfy the conditions
(3.3) M(0,(0)) = N(0,(0)) =0,
|IM($a§7"7aC)_ M(Tf,ﬁf)ﬂ
< K@% ot +ws)(@ — o+ 1€ =€l + 17—l + I~ <),
||N(y,§,77,C) - N(?,E,ﬁ, C)
< Ky(T% +wr +wr +w3)(@ -y + €= €l + 17— mll + IS - <),
where (0) = (0,0,0),0 <z <7< A, 0<y <7< B, Ky is a positive
constant, 0, € (3,1) and

(3.5) wi = max(|lé]l, lE]l), w2 = max(|lnll, |I7l), ws = max(li¢]l, I<]])-
IIT'. The function F' is continuous and satisfies the conditions

(3.6) F(0,0,(0))=0,

(3.7) I1F(z,9,6,n,¢) = F(Z,5,& 70

(3.4)



Goursat-type problems 877

SK@ +7° +wn o +wa)E—c+T—y+ E— &l + 7+l

where K, is a positive constant and fe (3,1).

Remark 3.1. It follows from (3.3) and (3.4) that the following inequal-
ities hold good

(3.8) { IM(z,€,m,0ll < Ka(z + 1€l + lInll + IICII) ,
IV (v, €7, Ol < Ka(y + €N + 11l + 11K,

with Ky = max(1, A?%--1), K, = max(1, B*-~1) and
(3.9) I1F(z,9,€m,Oll < Ka(z +y + Il + NS+ 1<)
where K, = max(1, ;1\2?_1) with A = max(4, B).
4. We shall attempt to solve the problem (Gn). It follows from an argu-

ment analogous to that in Section 2 that the said problem is equivalent to
the following system of integro-differential equations

(4.1) u(z,y) = Ru(,9) + 0(2) + H(v),
@'(z) = (F'(z)) "M o f(z) = Va(2),
(42) { W) - (R() ¢ o f(z) = Wa(y),

where (z,y) € 12,
HH Ju du
(4'3) Ru(z7 y) = é (S) F l:tv 7, u(t’ T)v %(L T), a_y(tv T)J drdt

and V,(z) and W(y) are given by formulas (2.4), with the replacement of R
by R, M(z) by

Ma(2) = M(a,1la, (), golo, £@)), 5ole, S(@))
and N(y) by
Na(w) = Nl (9,1, 5o h0), 31, 5o (), 1)

Let A be the Banach space of all functions u : 2 — Y of class C!, and
let the distance in A be defined in the ordinary way

(4‘4) d(uaﬂ) = Sl{l)p ”'U,(.’L‘, y) - ﬂ(x, y)”

ou o ou o
+ sgp a_w(z7 y) - 6_.’1,‘(1:’ y)l. + S‘})P 5};(27,3/) - a_y(z, y)”
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We consider the set Z of all points # € A such that
(4.5) «(0,0)=0,
ou ou
46) mox (|20 |Seen]) < e+ 0™ @en,

where £ < p < 1is a parameter, and 9 = min(8,,8) (cf. (3.4), (3.7)). It is
clear that relations (4.5), (4.6) imply

(4.7) lu(z, )| < oz + )**?, (z,9)e R, weZ

Evidently, Z is a closed subset of A and hence it can be treated as a
complete metric space with the distance function (4.4).

We shall express ¢'(z) and ~/'(y) in terms of the function u by applying
Proposition 2.1 to the equation *)

(4.8) #(2) = b@)¢' 0 9(s) = Gu(e), u€ 7
and then substituting its solution to
(49) H(y) = (W)™ (e 0 h(v) + Wu(v)].

To this end it is enough to show that the function G, o g™(z) satisfies an
inequality analogous to (2.22). By using (3.9), (4.3), (4.6) and (4.7), we have

srlsm@) oo @] | R @0

< const (1 + 9)[(1— 60)_2q]n(1+0)A1"’x1+‘9,

(4.11 { || My 0 g™(2)[| < const (1 + 0)[(1 - 50)_2‘1]11(“19)%11“9:1:”’9,
| Ny o fog™(z)|| < const (1+0)[(1- 50)—2q]”(1+")A1-ﬂx1+ﬂ_

(4.10)  max (

As a result, we obtain

(412)  ||Gu 0 g™(2)]| < const (1 + o)[(1— e0)2q)" T A1=051+9

i.e., we have got for ||Gy o ¢™(z)|| an inequality analogous to (2.22) (by
assumption (2.14), (1 — g¢) 2 < 1).

On using Proposition 2.1, we can assert that, for every u € Z, equation
(4.8) has a solution

(4.13) ¢'(z) = Su(),

*) Gu(z) is given by formula (2.8) with V and W replaced by Vi and Wy, respectively.
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where
(4.14) Su(z) =Y a¥(z),
n=0
(4.15) a{M(z) = Bn(2)G, 0 g"(2)

(with B, () given by (2.12)), the series in (4.14) being uniformly convergent.
It is the unique solution of (4.8) in the class K; to which the function
¢! (z) given by (4.13) belongs itself, satisfying the inequality (cf. (4.12))

(4.16) Il (z)]] < const (14 g)A~?x!t?,

As a result, the corresponding function - (y) is given by (4.9) with
¢'(z) = ¢l (z), and satisfies the inequality

(4.17) (%)l < const (14 0) A"y +7.

Evidently, const in (4.16), (4.17) is independent of the choice of u € Z.
It is a consequence of (4.5), (4.9) and (4.13) that the function u is a
solution of problem (Gx) vanishing at (0,0) if *)

(4.18) wz,y) = Ru(2,9) + pu(@) + u(y),

where

ou(2) = | Su(t) dt + Co,
(4.19)

hy(y) = [ (B'(2)) 7 [Sw 0 A(t) + Wy (2)] dt — Cy

O @ O b B

for (z,y) € 12, Co being an arbitrary constant. It follows directly from (4.16),
(4.17) and (4.19) that the function u satisfying (4.18) fulfils the inequalities

(4.20) [lu(z,y)|| < const (1+ g)ﬁl‘ﬁ(x + y)2+’9,
(4.21) max ( g%(:z,y) ) < const (1+ g)A' ?(z + y)'+7.

’

du
'a—y(xay)

Thus, in order to prove the existence and uniqueness of a solution to the
problem (Gy), it is sufficient to show that the integro—differential equation
(4.18) has a unique solution. We shall apply the Banach fixed point theorem
to the complete metric space Z and, in view of (4.18), we map Z by the

*) And only if, provided that the first derivative of the function ¢ in (4.1) belongs to
the class K;.
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transformation
(4.22) w(z,y) = Tu(z,y) := Ru(2,9) + 0u(z) + "u(y), (2,9) € 2 ueZ.

Evidently, w satisfies condition (4.5). Moreover, it follows from (4.20)-
(4.22) that

(4.23)  max ( ‘Z—j(z, y)“) <Cu(l+ A (z+y)'*?

Jw

(where C, is a positive constant) and hence w satisfies inequality (4.6),
provided that the condition

(4.24) Cu(l+0)A? <
is fulfilled. Evidently, (4.24) holds good, if Ais sufficiently small, so that

1 1 »
At <&
—3C,  Cio+1

that is if
(4.25) A< (3cC,)~Va=9,

Thus, we can assert that the inclusion T(Z) C Z is valid, if A satisfies (4.25).
It is still to be proved that T is a contraction. Let us first observe that,
by (3.7), (4.3) and (4.4), we have

(4.26)  ||Ru(z,y) — Ra(z,y)|| < const (1 + o)(z + y)*d(xu, ),

(a.27) | lap (@) = e Ra(e, )| < const (L+ 9)(a +9)"™ d(u, ),
' ”j‘%Ru(w, y)— ﬁqu(z, y)|| < const (1 + ¢)(z + y)1+0d(u,ﬂ)

for u, 7 € Z. Furthermore (cf. (3.4))

1Mo(2) — Ma(2)] < const (1+ o) d(u, ),
(4.28) { 1Nu(y) - Na(y) < const (1+ 2)y?*d(u, ).

It follows from the estimates (4.27), (4.28) and from the inequality 29 > 1
that (cf. the proof of (2.23))

(4.29) [|Su(2) - Sa(2)|| < const (1 + 2)z*’d(u, ),

whence, and by (4.9), (4.13) and (4.19), we obtain

(4:30) {lpu(®) +u(y) — pu(x) — *a(y)|| < const (1+0)(z + 9)'**"d(u, D).
Relations (4.22), (4.26) and (4.30) yield

(4.31) sup ||w(z, y) - B(z,y)|| < const (1+ 0)AM*+*d(u, ),
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where W = T%. In a similar way we prove (cf. (4.22), (4.27), (4.28)) that

Jw

- __(1; y)l < const (1+ Q)Awd(u ),

sup
(4.32) 2

sup < const (1+ 0)A*?d(u, ).
2

%‘fu,y) @)

Thus (cf. (4.4))
(4.33) d(w, W) < Cuu(1 + 0)A* d(u,T),

where C,, is a positive constant, and hence we can assert that the transfor-
mation T (cf. (4.22)) is a contraction, if the inequality

(4.34) Cun(14 0)A% < 1
is satisfied, which takes place, if
~ 1 1
AY < <
2C s C**(l + Q)
that is
(4.35) A< (2C.)7YV%,

Bearing in mind the above—obtained results and basing on the Banach
fixed point theorem, we conclude that, if inequalities (4.25) and (4.35) are
satisfied, then the transformation T (cf. (4.22)) has a unique fixed point
U, € Z. The function u. satisfies equation (4.18) and hence it is a solution
of problem (Gy).

As a result, we can formulate the following theorem.

THEOREM 4.1. If Assumptions I, Il', and III' are satisfied, and if the
value of A = max(A, B) is sufficiently small, so that inequalities (4.25) and
(4.35) hold good, then problem (Gn) has a solution u, € Z. This solution is
unique in the class of all functions u € Z of the form (4.1), where ¢' € K,
(see Proposition 2.1).
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