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PERTURBATION OF NORMAL OPERATORS,
VANISHING ON A GIVEN SUBSPACE

Abstract. For a normal bounded operator A in a Hilbert space, a normal and diagonal
perturbed operator A +Y is constructed in such a way that "Y”P < ¢ for a given € > 0,
p>2and PYP =0 for a given finite-dimensional orthogonal projection P.

1. Introduction and main results

Let A be any normal operator in a Hilbert space H. For example, A
can be given as an integral operator in L3(0,1) with a kernel K(z,y). For
a number of theoretical and computational problems, it is natural to use a
perturbed operator A +Y such that

A-{—Y:Z/\ia‘

with A; € C and {e;} being an orthonormal system in H, €; = (-, ¢;)e, i.e.,
A+Y is a diagonal operator. Moreover, one usually requires that ¥ be small
in a metric as strong as possible. Thus the requirement that ||Y]|, < € or
IYl, < € (for a Schatten norm || - || ,, p > 1) is more desirable than ||Y]| < e.
A number of monographs can be recommended: (1], [3].

On other hand, some vectors in H can be especially important and the
approximation A +Y of A should be exact on these vectors. For example,
it could be important that Yz* = 0 for some monomials z,z?,...,z" As a
partial solution of the problem of such an approximation we shall prove the
following.

1.1. THEOREM. Let H be a separable, infinite-dimensional Hilbert space,
A — a normal bounded operator in H. For any finite-dimensional projec-
tion P in H, for any € > 0 and p > 2, there ezists a compact operator Y
satisfying:

(i) A+Y is normal and diagonal;
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(ii) PY P = 0;

(iii) ||Y||p <e.

For a selfadjoint operator A, the approximation described in the theorem
was shown in [2]. The case of any normal operator A is more complicated. As
a preparation, we need the construction of a perturbation Y such that A+Y
is a normal operator with (A + Y)T = AT for an orthogonal projection T
of an arbitrary finite dimension and ||Y||, < é for any given 6 > 0, p > 1,
cf. Lemma 2.1. Then we can obtain the following result which seems to be
quite interesting.

1.2. THEOREM. For any normal bounded operator A in a separable inf-
inite-dimensional Hilbert space H and for a finite-dimensional orthogonal
projection P, € > 0 and p > 2, there exist an operator X and a finite-
dimensional orthogonal projection T, such that:

(i) PXP =0,
(i) TP =0,
(iif) | X}, < /2,
(iv) T(A+ X) = (A+ X)T.

Then our main result 1.1 can be obtained by using the following (partial
case) of the Voiculescu theorem.

1.3. THEOREM. [4], [5]. For any normal operator A, for p > 2 and € > 0,
there ezists a perturbation Y such that:

(i) A+Y is normal and diagonal,

(ii) HY||p <e.

The present form of Theorem 1.1 is not satisfactory mostly because we
have not obtained the equality Y P = 0 (but only PY P = 0). We also do
not know if the Schatten norm || - ||, for p = 2 can be used in Theorem 1.2
and in the main result Theorem 1.1.

The problem of approximating of one normal operator is obviously a spe-
cial case of the approximation of a system of commuting selfadjoint operators
A1,...,Ap, cf. Voiculescu papers [4], [5]. Anyway, the main difficulties can
be explained for n = 2 and we discuss just this case in our paper.

2. Proof of main results

2.1. LEMMA. Let A be a normal operator. Assume that Ty,T5,... are
orthogonal projections of the same finite dimension dim T} = n, mutually
orthogonal and satisfying

5 . §
JATWI < 5z, AT < o7,

ok k=1,2,..., for somed > 0.
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Then there exists an operator Y satisfying:
A+Y dsnormal, (A+Y)T1=0, (A+Y)Th=0,
(1) IY|l, < 460 for anyp > 1,
(2) Y(SH + A*SH)" =0
for § =Y. Ty and K+ denoting the subspace orthogonal to K for K C H.
Proof. Let U; be a partial isometry satisfying T; = U7 U;, Tj+1 = U;U;.

Denote
W= U;+85 for§=) Tj
J j
Then
W*W =1,
(3) WW*=1-T,
WT;W* = Tjy1.

It is enough to take Y = —A + WAW™.

Note that A'A? = A?A! implies WA'W*W A2W* = WAW*W A'W*
for any operators A, A%, and W*AW = A4Y is normal for any normal A.
Moreover,

(A+Y)Ty = WAW*T, =0 by (3),
(A+Y)'Ty = WAW*T, = 0.

We shall prove (2). Observe that, for z,y € H, 2 LSA*Sy and z L A*Sy
imply 215+ A*Sy. Thus  LSH and z LA*SH imply z1 St A*SH. Assume
that € H is any vector orthogonal to SH and to A*SH; then we have

rLSTWA*SH (as STW = §1),
TS *WA*W*SH (as W*SH = SW*H C SH),
tIWAW*SH (as zLSWA*W*SH).
Thus, for zLSH and z L A*S H, we have
(A*S)*z =0,
(WA*W*SY'z =0,
S(-A+ WAW*)z = 0,
(—A+WAW™)z = SH(—A+ WAW* )z
=(-StA+ S*AW")z =0 (as W*z = z).
Equality (2) is proved.
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To prove inequality (1), let us notice that

5\? . §
1azz < (3) Al = 14Tl < o 57)

4

and

)

p
W AW*Ty||?, | TeW AW ([P < n<2k—_l) (as W*Tj = Ty W™).

Moreover
Y =-A+StASt + WAW* — StwAW St (as STW = WSt = §1).
In consequence,

Y = —(ZATk + ZTkASL) + S WAW T, + Y T AW St

and

Y1, < Y AT, + ITeAllL) + D_(IWAW*T,||, + [|T:W AW*(,) < 4n'/?s.
k=1 k=2

2.2. Remark. Let P,T be orthogonal projections satisfying P < T,
5dim P < dimT. For any operator A satisfying A = PAP, there erists a
normal operator satisfying

PFP=A, TF+FT=T, |F|<4|jAll.

Proof. The construction of F can be done in a number of ways. We
suggest the use of the Naymark dilation theorem in a Hilbert space K = PH.
We can assume that operators A", n = 1,2, where

1 1
1 _ = * 2 - — L A*
AV = S(A+AY), A= (A=A,
act in K, and
A" < [|A)f, n=1,2,

Al = C; - Cy,

A? =C3-Cy
for some C; > 0, ||Ci|| < ||All, 2 = 1,2,3,4. Thus Cs > 0 for Cs = 4||Al|1k —
(C1+ C1 + C5 4+ C4). Let a dilation K of K and projections P,..., P;s be

given by the Naymark theorem in such a way that C; = 4||4||K P;/ K where

K is an orthogonal projection in K onto the subspace K. Now, it is enough
to identify the space K with the subspace PH + T H and to denote

F = 4“A”(P1 - P+ ’L(P3 - P4))
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2.3. LEMMA. Let H be a separable infinite-dimensional Hilbert space, and
let B be a normal operator with the spectral representation

B= | XdE(),
(4) w(a,B,€)
U(e,B,e)={z€C; Rez € [o,a+¢], Imz € 3,8 +¢]}
for some o, € R, ¢ > 0. For any n-dimensional orthogonal projection
P and for § > 0, there exist operators Z,Y € B(H) and an orthogonal
projection T, satisfying:
(i) dim Z < 7n,
(ii) 1Z]] = V2,
(i) [[Y[l, <6, foranyp>1,
(iv) P(Z+Y)P =0,
(v)y B+Y +Z is normal,
(vi) dim T < 6n,
(vii) T+ P =0,
(vi) (B+Y +2)T=T(B+Y + Z).
Proof. One can find a decreasing subset U; in U(e, 8, ¢) satisfying

) )
dlamUj<m, )\oent

for some Ag, such that E(U;) are infinite-dimensional projections.
By induction, some mutually orthogonal projections T; < E(U;) can be
taken in such a way that dim7; = 6 dim P and

5) T;P=0 forj=1,...,1,
T;BP=T;B*P=0 forj=1,...,1.

We shall examine an operator A = B — Agly. Obviously, A is normal and

) N )
AT € —5—, ATl £ ——.
4nr 2 4nr2I

Now, we can use lemma 2.1 for the operator A and the projections Ty, T3, .. ..
We obtain an operator Y such that B + Y is normal,

(A+Y)Th =0, (A+ Y)'T) =0,
IYl, <6 foranyp>1,
YP =0 (in virtue of (5), (2)).
Let T, = T' + T" for orthogonal projections T,T"; dimT' = 5dim P,
dim 7" = dim P. By Remark 2.2
(6) PAP = PFP
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for some normal operator F satisfying T'F = FT', | F|| < 4||4].

Now, we are in a position to describe a perturbed operator A +Y + Z.

Denote by V a partial isometry satisfying

VV=pP VV*=T"
and take U = V + (P + T1)™". It is sufficient to define A+Y + Z = U(A +
Y)U*+ Fand T=P+T".

Conditions (vi), (vii) are obvious. Properties (v), (viii) of an operator
B+Y +Z=A+4+Y + Z + Aly can also be easily verified. Inequality (iii)
has already been proved. To obtain (iv), observe that

Y+Z=UA+Y)U*+ F- A4,
PUA+Y)U*P=0 (asU*P =0),
PFP = PAP by (6).
Conditions (i), (ii) can be obtained by using of a rather long explicit formula
for Z:

Z=UA+Y)U*+F-A-Y
= F+[V4+(P+T) NA+Y)V* +(P+T)']
~TW(A+Y)Ty - PRA+ YT
=F+VA+Y W+ (P+T) (A+Y)(P+T)*" - THA+Y)TE
=F+VAV* +(P+T) (A+Y)P+T)*
~[(P+T)" + PA+Y)[(P+T1)" + P]
=F+VAV* —(P+T)*(A+Y)P - P(A+Y)P+T))* -~ P(A+Y)P
=F+VAV* - PXAP - PAP! — PAP
= F+VAV*— PLAP - PA.
Thus
121 < I1F)| + 311 All < 4l14]] + 3]| 4]l < TV2,
dim Z < dim F + 3dim P < 7n.
24.Proof of 1.2. Without loss of generality one may assume that
(7) A=|XE(\), D={\eC, Re), ImA€ (-1,1)},
D

D is a union of sets U(e;, f;, (2M)_1), i=1,...,16 M?, according to nota-
tion (4).

Lemma 2.3 can be used for an operator B; = AE(U(e, B;,(2M)™"))
acting in the space H; = E(U(ai,ﬂi,(2M)_l))H and for an orthogonal
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projection P; on a subspace E(U(«y, Bi, (2M)™'))PH. By Lemma 2.3, there
exist operators Z;,Y; in H; such that
P(Z;+Y;)P; =0,
B, +Z;+Y; isnormal,
dim Z; < Tn,
1Z:l| < 7v2(2M) 7,

£
I¥il, < =y forany p2 1.

It suffices 2’50 take X = 2}211\42(21_ + Y;) according to the representation
H = oI5 H;. Indeed,

1X1l, < 1 Zill, + | ® Yill,

& £
U < 2, il
2
P R P 2 P 2 P ~p €
@ ZilE = Y 1Z:]|p < 16M%[|Z:||PTn < 16 M*(Tv2)" (2M) ™" 7n < 3
i=1

for M large enough whenever p > 2.

2.5. Proof of 1.1. By the Voiculescu theorem, see 1.3, it is enough to
take a compact operator X and a finite-dimensional projection T, given in
theorem 1.2. This means that

PXP =0
TP =0;
Y[, < <
i, < X

A+ X commutes with T.

Thus T(A + X)T and T1(A + X)T* are normal. Then the Voiculescu the-
orem can be used for the operator T+(A + X)T' in the space T+ H.
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