

Ewa Ignaczak, Adam Paszkiewicz

PERTURBATION OF NORMAL OPERATORS,
VANISHING ON A GIVEN SUBSPACE

Abstract. For a normal bounded operator A in a Hilbert space, a normal and diagonal perturbed operator $A + Y$ is constructed in such a way that $\|Y\|_p < \varepsilon$ for a given $\varepsilon > 0$, $p > 2$ and $PYP = 0$ for a given finite-dimensional orthogonal projection P .

1. Introduction and main results

Let A be any normal operator in a Hilbert space H . For example, A can be given as an integral operator in $L_2(0, 1)$ with a kernel $K(x, y)$. For a number of theoretical and computational problems, it is natural to use a perturbed operator $A + Y$ such that

$$A + Y = \sum \lambda_i \hat{e}_i$$

with $\lambda_i \in C$ and $\{e_i\}$ being an orthonormal system in H , $\hat{e}_i = \langle \cdot, e_i \rangle e_i$, i.e., $A + Y$ is a diagonal operator. Moreover, one usually requires that Y be small in a metric as strong as possible. Thus the requirement that $\|Y\|_2 < \varepsilon$ or $\|Y\|_p < \varepsilon$ (for a Schatten norm $\|\cdot\|_p$, $p \geq 1$) is more desirable than $\|Y\| < \varepsilon$. A number of monographs can be recommended: [1], [3].

On other hand, some vectors in H can be especially important and the approximation $A + Y$ of A should be exact on these vectors. For example, it could be important that $Yx^k = 0$ for some monomials x, x^2, \dots, x^n . As a partial solution of the problem of such an approximation we shall prove the following.

1.1. THEOREM. *Let H be a separable, infinite-dimensional Hilbert space, A — a normal bounded operator in H . For any finite-dimensional projection P in H , for any $\varepsilon > 0$ and $p > 2$, there exists a compact operator Y satisfying:*

(i) *$A + Y$ is normal and diagonal;*

- (ii) $PYP = 0$;
- (iii) $\|Y\|_p < \varepsilon$.

For a selfadjoint operator A , the approximation described in the theorem was shown in [2]. The case of any normal operator A is more complicated. As a preparation, we need the construction of a perturbation Y such that $A + Y$ is a normal operator with $(A + Y)T = \lambda_0 T$ for an orthogonal projection T of an arbitrary finite dimension and $\|Y\|_p < \delta$ for any given $\delta > 0$, $p > 1$, cf. Lemma 2.1. Then we can obtain the following result which seems to be quite interesting.

1.2. THEOREM. *For any normal bounded operator A in a separable infinite-dimensional Hilbert space H and for a finite-dimensional orthogonal projection P , $\varepsilon > 0$ and $p > 2$, there exist an operator X and a finite-dimensional orthogonal projection T , such that:*

- (i) $PXP = 0$,
- (ii) $T^\perp P = 0$,
- (iii) $\|X\|_p < \varepsilon/2$,
- (iv) $T(A + X) = (A + X)T$.

Then our main result 1.1 can be obtained by using the following (partial case) of the Voiculescu theorem.

1.3. THEOREM. [4], [5]. *For any normal operator A , for $p \geq 2$ and $\varepsilon > 0$, there exists a perturbation Y such that:*

- (i) $A + Y$ is normal and diagonal,
- (ii) $\|Y\|_p < \varepsilon$.

The present form of Theorem 1.1 is not satisfactory mostly because we have not obtained the equality $YP = 0$ (but only $PYP = 0$). We also do not know if the Schatten norm $\|\cdot\|_p$ for $p = 2$ can be used in Theorem 1.2 and in the main result Theorem 1.1.

The problem of approximating of one normal operator is obviously a special case of the approximation of a system of commuting selfadjoint operators A_1, \dots, A_n , cf. Voiculescu papers [4], [5]. Anyway, the main difficulties can be explained for $n = 2$ and we discuss just this case in our paper.

2. Proof of main results

2.1. LEMMA. *Let A be a normal operator. Assume that T_1, T_2, \dots are orthogonal projections of the same finite dimension $\dim T_k = n$, mutually orthogonal and satisfying*

$$\|AT_k\| \leq \frac{\delta}{2^k}, \quad \|A^*T_k\| \leq \frac{\delta}{2^k}, \quad k = 1, 2, \dots, \quad \text{for some } \delta > 0.$$

Then there exists an operator Y satisfying:

$$A + Y \text{ is normal, } (A + Y)T_1 = 0, \quad (A + Y)^*T_1 = 0,$$

$$(1) \|Y\|_p \leq 4\delta n^{\frac{1}{p}} \text{ for any } p \geq 1,$$

$$(2) Y(SH + A^*SH)^\perp = 0$$

for $S = \sum T_k$ and K^\perp denoting the subspace orthogonal to K for $K \subset H$.

Proof. Let U_j be a partial isometry satisfying $T_j = U_j^*U_j$, $T_{j+1} = U_jU_j^*$. Denote

$$W = \sum_j U_j + S^\perp \quad \text{for } S = \sum_j T_j.$$

Then

$$(3) \quad \begin{aligned} W^*W &= 1, \\ WW^* &= 1 - T_1, \\ WT_jW^* &= T_{j+1}. \end{aligned}$$

It is enough to take $Y = -A + WAW^*$.

Note that $A^1A^2 = A^2A^1$ implies $WA^1W^*WA^2W^* = WA^2W^*WA^1W^*$ for any operators A^1, A^2 , and $W^*AW = A + Y$ is normal for any normal A . Moreover,

$$\begin{aligned} (A + Y)T_1 &= WAW^*T_1 = 0 \quad \text{by (3),} \\ (A + Y)^*T_1 &= WA^*W^*T_1 = 0. \end{aligned}$$

We shall prove (2). Observe that, for $x, y \in H$, $x \perp SA^*Sy$ and $x \perp A^*Sy$ imply $x \perp S^\perp A^*Sy$. Thus $x \perp SH$ and $x \perp A^*SH$ imply $x \perp S^\perp A^*SH$. Assume that $x \in H$ is any vector orthogonal to SH and to A^*SH ; then we have

$$\begin{aligned} x \perp S^\perp WA^*SH &\quad (\text{as } S^\perp W = S^\perp), \\ x \perp S^\perp WA^*W^*SH &\quad (\text{as } W^*SH = SW^*H \subset SH), \\ x \perp WA^*W^*SH &\quad (\text{as } x \perp SWA^*W^*SH). \end{aligned}$$

Thus, for $x \perp SH$ and $x \perp A^*SH$, we have

$$\begin{aligned} (A^*S)^*x &= 0, \\ (WA^*W^*S)^*x &= 0, \\ S(-A + WAW^*)x &= 0, \\ (-A + WAW^*)x &= S^\perp(-A + WAW^*)x \\ &= (-S^\perp A + S^\perp AW^*)x = 0 \quad (\text{as } W^*x = x). \end{aligned}$$

Equality (2) is proved.

To prove inequality (1), let us notice that

$$\|AT_k\|_p^p \leq \left(\frac{\delta}{2^k}\right)^p, \quad \|T_k A\|_p^p = \|A^* T_k\|_p^p \leq n \left(\frac{\delta}{2^k}\right)^p$$

and

$$\|WAW^*T_k\|_p^p, \|T_kWAW^*\|_p^p \leq n \left(\frac{\delta}{2^{k-1}}\right)^p \quad (\text{as } W^*T_k = T_{k-1}W^*).$$

Moreover

$$Y = -A + S^\perp AS^\perp + WAW^* - S^\perp WAW^*S^\perp \quad (\text{as } S^\perp W = WS^\perp = S^\perp).$$

In consequence,

$$Y = -\left(\sum AT_k + \sum T_k AS^\perp\right) + \sum WAW^*T_k + \sum T_k WAW^*S^\perp$$

and

$$\|Y\|_p \leq \sum_{k=1}^{\infty} (\|AT_k\|_p + \|T_k A\|_p) + \sum_{k=2}^{\infty} (\|WAW^*T_k\|_p + \|T_k WAW^*\|_p) \leq 4n^{1/p}\delta.$$

2.2. Remark. Let P, T be orthogonal projections satisfying $P \leq T$, $5 \dim P \leq \dim T$. For any operator A satisfying $A = PAP$, there exists a normal operator satisfying

$$PFP = A, \quad TF + FT = T, \quad \|F\| \leq 4\|A\|.$$

Proof. The construction of F can be done in a number of ways. We suggest the use of the Naymark dilation theorem in a Hilbert space $K = PH$. We can assume that operators A^η , $\eta = 1, 2$, where

$$A^1 = \frac{1}{2}(A + A^*), \quad A^2 = \frac{1}{2i}(A - A^*),$$

act in K , and

$$\begin{aligned} \|A^\eta\| &\leq \|A\|, \quad \eta = 1, 2, \\ A^1 &= C_1 - C_2, \\ A^2 &= C_3 - C_4 \end{aligned}$$

for some $C_i \geq 0$, $\|C_i\| \leq \|A\|$, $i = 1, 2, 3, 4$. Thus $C_5 \geq 0$ for $C_5 = 4\|A\|1_K - (C_1 + C_2 + C_3 + C_4)$. Let a dilation \mathbf{K} of K and projections P_1, \dots, P_5 be given by the Naymark theorem in such a way that $C_i = 4\|A\|\hat{K}P_i/K$ where \hat{K} is an orthogonal projection in \mathbf{K} onto the subspace K . Now, it is enough to identify the space \mathbf{K} with the subspace $PH + TH$ and to denote

$$F = 4\|A\|(P_1 - P_2 + i(P_3 - P_4)).$$

2.3. LEMMA. *Let H be a separable infinite-dimensional Hilbert space, and let B be a normal operator with the spectral representation*

$$(4) \quad B = \int_{u(\alpha, \beta, \varepsilon)} \lambda dE(\lambda),$$

$$U(\alpha, \beta, \varepsilon) = \{z \in C; \operatorname{Re} z \in [\alpha, \alpha + \varepsilon], \operatorname{Im} z \in [\beta, \beta + \varepsilon]\}$$

for some $\alpha, \beta \in \mathbb{R}$, $\varepsilon > 0$. For any n -dimensional orthogonal projection P and for $\delta > 0$, there exist operators $Z, Y \in B(H)$ and an orthogonal projection T , satisfying:

- (i) $\dim Z \leq 7n$,
- (ii) $\|Z\| = 7\sqrt{2\varepsilon}$,
- (iii) $\|Y\|_p \leq \delta$, for any $p \geq 1$,
- (iv) $P(Z + Y)P = 0$,
- (v) $B + Y + Z$ is normal,
- (vi) $\dim T \leq 6n$,
- (vii) $T^\perp P = 0$,
- (viii) $(B + Y + Z)T = T(B + Y + Z)$.

Proof. One can find a decreasing subset U_j in $U(\alpha, \beta, \varepsilon)$ satisfying

$$\operatorname{diam} U_j < \frac{\delta}{4n^{1/p} 2^j}, \quad \lambda_0 \in \bigcap U_j$$

for some λ_0 , such that $E(U_j)$ are infinite-dimensional projections.

By induction, some mutually orthogonal projections $T_j \leq E(U_j)$ can be taken in such a way that $\dim T_j = 6 \dim P$ and

$$(5) \quad \begin{aligned} T_j P &= 0 \quad \text{for } j = 1, \dots, i, \\ T_j B P &= T_j B^* P = 0 \quad \text{for } j = 1, \dots, i. \end{aligned}$$

We shall examine an operator $A = B - \lambda_0 1_H$. Obviously, A is normal and

$$\|AT_j\| \leq \frac{\delta}{4n^{1/p} 2^j}, \quad \|A^* T_j\| \leq \frac{\delta}{4n^{1/p} 2^j}.$$

Now, we can use lemma 2.1 for the operator A and the projections T_1, T_2, \dots . We obtain an operator Y such that $B + Y$ is normal,

$$\begin{aligned} (A + Y)T_1 &= 0, \quad (A + Y)^* T_1 = 0, \\ \|Y\|_p &\leq \delta, \quad \text{for any } p \geq 1, \\ YP &= 0 \quad (\text{in virtue of (5), (2)}). \end{aligned}$$

Let $T_1 = T' + T''$ for orthogonal projections T', T'' ; $\dim T' = 5 \dim P$, $\dim T'' = \dim P$. By Remark 2.2

$$(6) \quad PAP = PFP$$

for some normal operator F satisfying $T'F = FT'$, $\|F\| \leq 4\|A\|$.

Now, we are in a position to describe a perturbed operator $A + Y + Z$. Denote by V a partial isometry satisfying

$$V^*V = P, \quad VV^* = T'',$$

and take $U = V + (P + T_1)^\perp$. It is sufficient to define $A + Y + Z = U(A + Y)U^* + F$ and $T = P + T'$.

Conditions (vi), (vii) are obvious. Properties (v), (viii) of an operator $B + Y + Z = A + Y + Z + \lambda_0 1_H$ can also be easily verified. Inequality (iii) has already been proved. To obtain (iv), observe that

$$\begin{aligned} Y + Z &= U(A + Y)U^* + F - A, \\ PU(A + Y)U^*P &= 0 \quad (\text{as } U^*P = 0), \\ PFP &= PAP \quad \text{by (6)}. \end{aligned}$$

Conditions (i), (ii) can be obtained by using of a rather long explicit formula for Z :

$$\begin{aligned} Z &= U(A + Y)U^* + F - A - Y \\ &= F + [V + (P + T_1)^\perp](A + Y)[V^* + (P + T_1)^\perp] \\ &\quad - T_1(A + Y)T_1 - P_1^\perp(A + Y)T_1^\perp \\ &= F + V(A + Y)V^* + (P + T_1)^\perp(A + Y)(P + T_1)^\perp - T_1^\perp(A + Y)T_1^\perp \\ &= F + VAV^* + (P + T_1)^\perp(A + Y)(P + T_1)^\perp \\ &\quad - [(P + T_1)^\perp + P](A + Y)[(P + T_1)^\perp + P] \\ &= F + VAV^* - (P + T_1)^\perp(A + Y)P - P(A + Y)(P + T_1)^\perp - P(A + Y)P \\ &= F + VAV^* - P^\perp AP - PAP^\perp - PAP \\ &= F + VAV^* - P^\perp AP - PA. \end{aligned}$$

Thus

$$\begin{aligned} \|Z\| &\leq \|F\| + 3\|A\| \leq 4\|A\| + 3\|A\| \leq 7\sqrt{2\varepsilon}, \\ \dim Z &\leq \dim F + 3 \dim P \leq 7n. \end{aligned}$$

2.4. Proof of 1.2. Without loss of generality one may assume that

$$(7) \quad A = \int_D \lambda dE(\lambda), \quad D = \{\lambda \in C, \operatorname{Re} \lambda, \operatorname{Im} \lambda \in \langle -1, 1 \rangle\},$$

D is a union of sets $U(\alpha_i, \beta_i, (2M)^{-1})$, $i = 1, \dots, 16M^2$, according to notation (4).

Lemma 2.3 can be used for an operator $B_i = AE(U(\alpha_i, \beta_i, (2M)^{-1}))$ acting in the space $H_i = E(U(\alpha_i, \beta_i, (2M)^{-1}))H$ and for an orthogonal

projection P_i on a subspace $E(U(\alpha_i, \beta_i, (2M)^{-1}))PH$. By Lemma 2.3, there exist operators Z_i, Y_i in H_i such that

$$\begin{aligned} P_i(Z_i + Y_i)P_i &= 0, \\ B_i + Z_i + Y_i &\text{ is normal,} \\ \dim Z_i &\leq 7n, \\ \|Z_i\| &\leq 7\sqrt{2}(2M)^{-1}, \\ \|Y_i\|_p &\leq \frac{\varepsilon}{32M^2} \quad \text{for any } p \geq 1. \end{aligned}$$

It suffices to take $X = \sum_{i=1}^{16M^2} (Z_i + Y_i)$ according to the representation $H = \bigoplus_{i=1}^{16M^2} H_i$. Indeed,

$$\begin{aligned} \|X\|_p &\leq \|\bigoplus Z_i\|_p + \|\bigoplus Y_i\|_p, \\ \|\bigoplus Y_i\|_p &\leq 16M^2 \cdot \frac{\varepsilon}{32M^2} < \frac{\varepsilon}{2}, \end{aligned}$$

$$\|\bigoplus Z_i\|_p^p = \sum_{i=1}^{16M^2} \|Z_i\|_p^p \leq 16M^2 \|Z_i\|^p 7n \leq 16M^2 (7\sqrt{2})^p (2M)^{-p} 7n \leq \frac{\varepsilon}{2}$$

for M large enough whenever $p > 2$.

2.5. Proof of 1.1. By the Voiculescu theorem, see 1.3, it is enough to take a compact operator X and a finite-dimensional projection T , given in theorem 1.2. This means that

$$\begin{aligned} PXP &= 0; \\ T^\perp P &= 0; \\ \|Y\|_p &< \frac{\varepsilon}{2}; \\ A + X &\text{ commutes with } T. \end{aligned}$$

Thus $T(A + X)T$ and $T^\perp(A + X)T^\perp$ are normal. Then the Voiculescu theorem can be used for the operator $T^\perp(A + X)T^\perp$ in the space $T^\perp H$.

References

- [1] P. R. Halmos, V. S. Sunder, *Bounded Integral Operators on L^2 Space*, Springer-Verlag (1978).
- [2] E. Ignaczak, *Weyl-von Neumann type theorems with the perturbation vanishing on a given subspace*, Part I, *Demonstratio Math.* 30 (1997), 629–634.
- [3] T. Kato, *Perturbation Theory for Linear Operators*, Springer-Verlag (1966).

- [4] D. Voiculescu, *A non-commutative Weyl-von Neumann theorem*, Rev. Roumaine Math. Pures Appl., 21 (1976), 97—113.
- [5] D. Voiculescu, *Some results on norm-ideal perturbations of Hilbert space of operators*, J. Operator Theory, 2 (1979), 3—37.

Adam Paszkiewicz
INSTITUTE OF MATHEMATICS
UNIVERSITY OF ŁÓDŹ
Banacha 22
90-238 ŁÓDŹ, POLAND

Ewa Ignaczak
INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF SZCZECIN
Piastow 17
70-310 SZCZECIN, POLAND

Received October 28, 1996.