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THE KER-COKER SEQUENCE IN BCI-ALGEBRAS

I. Introduction

In 1966, K. Iséki introduced the notion of a BCI-algebra which is a
generalization of a BC K -algebra. We recall that an algebra (X; *,0) of type
(2,0) is said to be a BCI-algebra if it satisfies

(D) ((@*y)* (zx2)* (z4y) = 0;

(D) (z*x(zxy))xy=0;
(III) z * z = 0;
(IV)z+xy=0and y*z =0imply z = y.

W. A. Dudek ([2]) defined the concept of a medial BCI-algebra and
studied various properties of it. A BCI-algebra X is said to be medial if
(z*y)*(zxu)=(z*2)x(y*u) for any z,y,2,u € X. A BCI-algebra X
is said to be p-semisimple if its BCK-partt M = {z € X | 0xz = 0} =
{0}. C. S. Hoo ([4]) proved that a BCI-algebra X is medial if and only
if it is p-semisimple. W. A. Dudek ([3]) showed that p-semisimple BCI-
algebras are precisely medial quasigroups completely described via abelian
groups. This means that any discussions on p-semisimple BCI-algebras can
be derived easily from group theory ([3]). C. Z. Mu and W. H. Xiong ([7,8])
and Y. Liu ([6]) studied some properties of an exact sequence in BCI-
algebras. In this paper we obtain some interesting properties of the Ker-
Coker sequence in BCI-algebras which is an exact analogue of the Snake
Lemma in commutative algebras ([9]). It is well known that any ideal is a
subalgebra in BC K-algebras, while it fails in BCI-algebras ([8]). We refer
definitions and properties mainly to [1, 7, 8].
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Let (X;*,0) be a BCI-algebra and let I be a subset of X with 0 € I.
Then I is called an idealof X if +y € I and y € I imply z € I for any z,y
in X.

DEFINITION 1.1. Let X and Y be BCI-algebras. A BC'I-homomorphism
f:X — Y is said to be regular if Im f is an ideal of Y.

By the definition, for any subalgebra A of X, A is a regular ideal if and
only if the inclusion ¢ : A — X is a regular homomorphism.

DEFINITION 1.2. An ideal I of a BCI-algebra X is said to be closed if
0+xz ¢ I for every z € 1.

In BCI-algebra, {0} and X itself are clearly regular ideals and closed
ideals.

DEFINITION 1.3. Let Ay, Ay,..., Apt1 be BCl-algebras and let f; : A; —

A;y1 be a BCI-homomorphism for any ¢ = 1,...,n (n > 1). The sequence
Ap A, Aq RLN ELN A, fots nt1 18 ezact at Aq,..., A, if Ker fi41 =

Im fiforie=1,...n. X f1,... fo41 are known then 49 — A; — ... = A 41.

ExaMPLES 14.(a)0 — A4 L, Bisexact (at A)if and only if f is injective.

(b) A L B — 0 s exact (at A) if and only if f is surjective.

(c) The sequence 0 — A’ 5 A 5 A" — 0 is exact (at A’, A, A") if and
only if 4 induces an isomorphism A’ 5 uA’ and ¢ induces an isomorphism
A/ Kere = A/uA' = A". Essentially A’ is then a regular ideal of A and A",
the corresponding quotient algebra. Such an exact sequence is called short
ezact.

THEOREM 1.5. Let f : A — B and g : B — C be two BCI-homomor-
phisms. Then 0 — A L B2 C is an ezact sequence if and only if

(1) gf =0,

(ii) if there is a BCI-homomorphism h : X — B with gh = 0 then there
exists a unique BCI-homomorphism o : X — A such that h = fo.

THEOREM 1.6. Let f : A — B and g : B — C be two regular BCI-
homomorphisms. Then A ENY; JEX C — 0 is an exact sequence if and only if

(i) gf =0,

(ii) if there is @ BCI-homomorphism h : B — Y with hf = 0 then there

ezists a unique BCI-homomorphism 7 :C — Y such that h = 7g.

Using Theorem 1.5 and Theorem 1.6 we obtain the following useful corol-
lary:
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COROLLARY 1.7. Let f : A — B be a regular homomorphism of BCI-
algebras. Then each of the following sequences is eract:
(i) 0 — Ker f — Coim f(= A/ Ker f) — 0,
(i) 0 = Im f — B — Coker f(= B/Im f) = 0,
(iii) 0 » Ker f - A — B — Coker f — 0.

II. Main results

In this section, we study the Ker-Coker sequence in BCI-algebras and
obtain some properties of BCI-algebras. We use the following useful lemma
and omit its proof.

LEMMA 2.1. Let f : A — B be a BCI-homomorphism. Then f is a
monomorphism if and only if Ker f = {0}.
We note that, given a commutative diagram of BCI-algebras and BCI-
homomorphisms such that ¢, are regular homomorphisms:
¢

A——B
i,_wﬂl,

there exist unique BCI-homomorphisms Ker¢ — Kery and Coker¢ —
Coker 1, which make the enlarged configuration:

Ker ¢ A ? B Coker ¢

Lo

Ker A B Coker ¢

commutative.

LEMMA 2.2. Let

A—L-p—2s¢

IR

AI l-} B' L Cl
be a commutative diagram of BCI-algebras and BCI-homomorphisms such
that each row is exact, B' is p-semisimple, and f,g,h are regular homo-
morphisms. If ¢' : A’ — B’ is monic, then the induced sequence Ker f —

Kerg — Kerh is exact. On the other hand, if ¥ : B — C is epic, then the
resulting sequence Coker f — Cokerg — Coker h is ezact.

Proof. Assume that ¢’ : A’ — B’ is monic. Obviously, the product of
Ker f — Kerg and Kerg — Kerh is null, since f(0) = 0', i.e., Ker f —
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Kerg — Kerh is a zero map. Hence Im(Ker f — Kerg) C Ker(Kerg —
Ker k).
We show that
Ker(Ker g — Ker h) C Im(Ker f — Kerg).

Let b in Ker g become zero in Ker h. Since Im ¢ = Ker %, b is the image with
respect to ¢ : A — B of some element a € A, i.e. ¢(a) = b for some a € A.
By commutativity
¢'f(a) = gé(a) = g(b) = 0

and therefore f(a) = 0, i.e. a € Ker f, because ¢’ : A’ — B’ is monic. This
proves that Ker f — Ker g — Ker h is exact.

Also, it is clear that the product of Coker f — Cokerg and Cokerg —
Coker h is null. Hence Im{Coker f — Coker g} C Ker{Cokerg — Cokerh}.

It is enough to show that

Ker{Coker g — Coker h} C Im{Coker f — Cokerg}.

Now assume that 1 is epic. Suppose b’ € B’ and let [b'] denote its image
in Cokerg. If [b'] maps into zero in Coker h, then ¢'(b') = h(c) for some
¢ € C, and hence 9(b) = ¢ for some suitable b € B, because 1 is epic. So,

() = h(e) = hip(b) = ¥'g(b). Thus
p'(b + g(b)) = 0
and b’ * g(b) € Kerty' = Im ¢’ by exactness. Hence b’ * g(b) = ¢'(a’), for
some a’' € A’
Consider ¢'(a’) * (0% g(b)) € B'. Since B' is p-semisimple,
¢'(a") % (0% g(b)) = (b * g(b)) * (0% g(b))
= (b 0) + (g(b) + (b)) = '+ 0 = ¥

Hence o' = ¢'(a') % (0 % g(b)) and [b'] = [¢'(a’)] is the image of the element
[a'] of Coker f, corresponding to a'. This shows that

Ker{Coker g — Coker A} C Im{Coker f — Cokerg}. m
THEOREM 2.3. Suppose that the diagram of BCI-algebras and BCI-

homomorphisms:
fl yl hl
¢’ Y’

0 A B’ c’
is commutative and has ezact rows such that B' is p-semisimple, where
f» g, h are regular homomorphisms. Then this diagram can be extended to a
diagram




Ker-Coker sequence 847

Ker f —2 > Kerg ¥ s Kerh
A—2t >p—r ¢ 0
f 9 h
0 A——sp—t

Coker f —*2, Coker g %2, Coker h

0 0 0

which is also commutative and has exact rows and columns.
Also, there is a ‘connecting BCI-homomorphism’ A : Ker h — Coker f
such that

Ker f 21, Ker g 2, Ker b -2 Coker f 22, Coker g 22, Coker h
is ezact.

Proof. We define a BCI-homomorphism A : Kerh — Coker f as fol-
lows: Let ¢ € Kerh C C. Since % is an epimorphism, %(b) = ¢ for some
element b € B and then 9'¢g(d) = hyp(b) = h(c) = 0. Hence g(b) € Kery' =
Im ¢’ and g(b) = ¢'(a’) for some o' € A’ and o' itself has a natural image,
say [a’], in Coker f. The mapping A can be now defined by A(c) = [a'].
In this construction, the element b is not unique. However, if we change it
then a’ has to be replaced it by an element of the form a’ x f(a), where
a € A. This does not alter [a']. Thus A is well defined and due to the above
observation, it is easily seen to be a BC'I-homomorphism.

By Lemma 2.2, it is enough to show that both

Kerg — Kerh 2, Coker f and Ker h -2 Coker f — Cokerg

are exact. Let b € Kerg and consider A((b)). Since g(b) = 0 = ¢'(0), it

follows that A(%(b)) is the image of zero in Coker f. Thus A(%(d)) = 0 and

therefore the result of combining Ker g — Ker h with A is null. Hence
Im{Ker g — Ker h} C Ker{Kerh -4, Coker f}

Now suppose that ¢ € Kerh and A(c) = 0. Since 9 is epic, there exists
b € B such that 9(b) = c and h(c) = 0. Let b and o’ be defined as in
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the construction of A(c). Then a’ = f(a) for some a € A. It follows that
g(b) = ¢'(a') = ¢'f(a) = gé(a) = 0 and therefore b * ¢(a) € Kerg. Thus
¢ = Y(b) = ¢¥(b* ¢(a)) € ¥(Kerg). This proves that

Kerg — Kerh 4, Coker f

is exact.
It remains to show that

Ker h -2 Coker f — Cokerg.

Suppose therefore that ¢ € Ker h. Since 9 is epic, there exists b € B such
that 9(b) = ¢ and then ¢'g(h) = he(b) = h(c) = 0. Hence g(b) is in
Kery' = Im¢’, i.e., g(b) = ¢'(a’) for some @' in A’'. By the definition of
the connecting BCI-homomorphism, A(c) = [a’], where the notation is the
same as in the construction of A(c).

But [¢'(a’)] = [g(b)] = 0 and therefore ¢ maps into zero under the com-
posite homomorphism

Kerh 3 Coker f — Cokerg.

Hence Im{Ker h 4 Coker [} € Ker{Coker f — Cokerg}.

Suppose next that [a'] maps into zero under Coker f — Cokerg. Thus
¢'(a") = g(b) for some b in B and hip(b) = ¥'g(b) = ¢¥'¢'(a’) = 0. Thus
¥(b) € Ker h and Ay(b) = [a']. It follows that [a'] isin In A. =

ProprosITION 2.4 ([2]). Let f : X — Y be a homomorphism of BCI-
algebras, where Y is p-semisimple. If I is a closed ideal of X, then f(I) is
a closed ideal of Y.

LEMMA 2.5. Let f: X — Y be a homomorphism of BCI-algebras where
Y is p-semisimple. Then f is a reqular BCI-homomorphism.

Proof. Since X itself is a closed ideal of a BCI-algebra X, f(X)is a
closed ideal of Y by Proposition 2.4. Hence f(X) is an ideal of Y, i.e. Im f
is an ideal of Y. Thus f is a regular BC'I-homomorphism.

ProrosiTION 2.6. Let f : A - B and g : B — C be regular BCI-
homomorphisms of BCI-algebras, where B,C are p-semisimple. Then there
ezists an ezact sequence:

0 — Ker f — Ker(gf) — Ker g — Coker f — Coker(gf) — Cokerg — 0.

Proof. We claim that B @ C is a p-semisimple BCI-algebra. Indeed,
suppose (0,0) * (b,¢) = (0,0). Then (0% b,0%c) = (0,0) and so 0+ b = 0 and
0%c=0. Hence b = 0 and ¢ = 0, since B, are p-semisimple. Define a map
h: A®B — B®C by h(a,b) = (f(a)*b,g(b)),and define maps ¢ : A — A+B
via ¢(a) = (a,0),a € Aand ¥ : A® B — B via 9(a,b)=b, a € A,b € B.
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By a similar way we define maps ¢' : B— B@® C and 9'B® C — C. Then
h is a BCI-homomorphism, since
hMaxa ,bxb)=(flaxa)x(bxb"),g(bxd"))

= ((f(a)* f(a")) * (b*b'),9(b) * g(b"))

= ((f(a) % b) * (f(a') * "), g(b) * g(b"))

= (f(a) *b,g(b)) * (f(a') * ', g(b")) = h(a,b)* h(a',b').
Also, by Lemma 2.5, h is a regular homomorphism, since B @ C is a p-
semisimple BCI-algebra. Then

¢ P

0—A—>A@9B——>B——0
P I
0——B —¢> BgpC 1‘b—> C——0
is a commutative diagram with exact rows, where the horizontal mappings

are regular BC'I-homomorphisms. By Theorem 2.3, we have an exact se-
quence

0 — Ker f — Ker(h) — Ker g — Coker f — Coker(h) — Coker g — 0.
It is enough to show that Ker h and Coker h are isomorphic to Ker g f and
Coker g f, respectively. If h(a,b) = 0, then g(b) = 0 and f(a) *b = 0, and

hence g(f(a)*b) = gf(a)*g(b) = gf(a)x0 = gf(a) and g(f(a)*b) = g(0) = 0.
Hence gf(a) = 0 and consequently a € Ker(gf). We can therefore define a
BCTI-homomorphism

¢ :Kerh — Ker(gf)
by ¢(a,b) = a. Clearly, ¢ is monic. Also, if & € Ker(gf) then (o, f(a)) €
Ker h and i.e., ¢(a, f(a)) = a. This shows that ¢ maps Ker h isomorphically
onto Ker(gf). A
A map p: B® C — C defined by p(b,c) = g(b) * (0 xc¢) is a BCI-
homomorphism, since
pb*b cxc')y=g(bxb")* (0% (cxc))
= (g(b) * g (b)) * (0% ¢} + (0 %))
= (9(b) * (0 + c)) * (9(b') * (0 "))
= p(b,c) * u(d’, ).
If (b,c) € Imh then there exist o € A and § € B such that (b,¢) =
(f(a) = B8,9(B)) and therefore
pu(b, c) = p(f(a) * B,9(8)) = gf(a) x B) + (0 g(8))
= (9f(a) * g(B)) * (0% g(B)) = (9.f(c) + 0) x (¢(5) * 9(B))
= (9f(a)*0) x0 = gf(e) * 0= gf(a),
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since C is p-semisimple. Thus p(Imh) C Im(gf). Therefore, u induces a
BCI-homomorphism % : Coker h — Coker(gf) which is epic since p is epic.

We shall now show that 4 is also monic. Suppose that the image of (b, ¢)
in Coker h is mapped into zero by ¥, i.e., u(b,c) = gf(a) for some a € A. It
is sufficient to show that (b,¢) € Im h. But gf(a) = pu(b,c) = g(b) * (0 x ¢),

whence
gf(a)* g(b) = (g(b) * (0xc)) » g(b)
= (g(b)*g(b))*(0x¢c)=0%(0%c) =c,
since C is p-semisimple. Thus A(a, f(a)*b) = (b, ¢), since f(a)*(f(a)*b)=b.
Consequently (b,¢) € Im h and this complete the proof. m
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