

Anatolij Dvurečenskij, Sun Shin Ahn, Hee Sik Kim

THE KER-COKER SEQUENCE IN *BCI*-ALGEBRAS

I. Introduction

In 1966, K. Iséki introduced the notion of a *BCI*-algebra which is a generalization of a *BCK*-algebra. We recall that an algebra $(X; *, 0)$ of type $(2, 0)$ is said to be a *BCI-algebra* if it satisfies

- (I) $((x * y) * (x * z)) * (z * y) = 0$;
- (II) $(x * (x * y)) * y = 0$;
- (III) $x * x = 0$;
- (IV) $x * y = 0$ and $y * x = 0$ imply $x = y$.

W. A. Dudek ([2]) defined the concept of a medial *BCI*-algebra and studied various properties of it. A *BCI*-algebra X is said to be *medial* if $(x * y) * (z * u) = (x * z) * (y * u)$ for any $x, y, z, u \in X$. A *BCI*-algebra X is said to be *p-semisimple* if its *BCK*-part $M = \{x \in X \mid 0 * x = 0\} = \{0\}$. C. S. Hoo ([4]) proved that a *BCI*-algebra X is medial if and only if it is *p-semisimple*. W. A. Dudek ([3]) showed that *p-semisimple BCI*-algebras are precisely medial quasigroups completely described via abelian groups. This means that any discussions on *p-semisimple BCI*-algebras can be derived easily from group theory ([3]). C. Z. Mu and W. H. Xiong ([7,8]) and Y. Liu ([6]) studied some properties of an exact sequence in *BCI*-algebras. In this paper we obtain some interesting properties of the Ker-Coker sequence in *BCI*-algebras which is an exact analogue of the Snake Lemma in commutative algebras ([9]). It is well known that any ideal is a subalgebra in *BCK*-algebras, while it fails in *BCI*-algebras ([8]). We refer definitions and properties mainly to [1, 7, 8].

1991 *Mathematics Subject Classification*: 03F35.

Key words and phrases: *BCI*-algebras, *p-semisimple*, *regular*, *exact*.

The paper has been partially supported by grant G-224/94 of the Slovak Academy of Sciences, Slovakia.

Let $(X; *, 0)$ be a *BCI*-algebra and let I be a subset of X with $0 \in I$. Then I is called an *ideal* of X if $x * y \in I$ and $y \in I$ imply $x \in I$ for any x, y in X .

DEFINITION 1.1. Let X and Y be *BCI*-algebras. A *BCI*-homomorphism $f : X \rightarrow Y$ is said to be *regular* if $\text{Im } f$ is an ideal of Y .

By the definition, for any subalgebra A of X , A is a regular ideal if and only if the inclusion $\iota : A \rightarrow X$ is a regular homomorphism.

DEFINITION 1.2. An ideal I of a *BCI*-algebra X is said to be *closed* if $0 * x \in I$ for every $x \in I$.

In *BCI*-algebra, $\{0\}$ and X itself are clearly regular ideals and closed ideals.

DEFINITION 1.3. Let A_0, A_1, \dots, A_{n+1} be *BCI*-algebras and let $f_i : A_i \rightarrow A_{i+1}$ be a *BCI*-homomorphism for any $i = 1, \dots, n$ ($n \geq 1$). The sequence $A_0 \xrightarrow{f_1} A_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} A_n \xrightarrow{f_{n+1}} A_{n+1}$ is *exact* at A_1, \dots, A_n if $\text{Ker } f_{i+1} = \text{Im } f_i$ for $i = 1, \dots, n$. If f_1, \dots, f_{n+1} are known then $A_0 \rightarrow A_1 \rightarrow \dots \rightarrow A_{n+1}$.

EXAMPLES 1.4. (a) $0 \rightarrow A \xrightarrow{f} B$ is exact (at A) if and only if f is injective.

(b) $A \xrightarrow{f} B \rightarrow 0$ is exact (at A) if and only if f is surjective.

(c) The sequence $0 \rightarrow A' \xrightarrow{\mu} A \xrightarrow{\varepsilon} A'' \rightarrow 0$ is exact (at A', A, A'') if and only if μ induces an isomorphism $A' \xrightarrow{\sim} \mu A'$ and ε induces an isomorphism $A / \text{Ker } \varepsilon = A / \mu A' \xrightarrow{\sim} A''$. Essentially A' is then a regular ideal of A and A'' , the corresponding quotient algebra. Such an exact sequence is called *short exact*.

THEOREM 1.5. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be two *BCI*-homomorphisms. Then $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C$ is an exact sequence if and only if

(i) $gf = 0$,

(ii) if there is a *BCI*-homomorphism $h : X \rightarrow B$ with $gh = 0$ then there exists a unique *BCI*-homomorphism $\sigma : X \rightarrow A$ such that $h = f\sigma$.

THEOREM 1.6. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be two regular *BCI*-homomorphisms. Then $A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is an exact sequence if and only if

(i) $gf = 0$,

(ii) if there is a *BCI*-homomorphism $h : B \rightarrow Y$ with $hf = 0$ then there exists a unique *BCI*-homomorphism $\tau : C \rightarrow Y$ such that $h = \tau g$.

Using Theorem 1.5 and Theorem 1.6 we obtain the following useful corollary:

COROLLARY 1.7. *Let $f : A \rightarrow B$ be a regular homomorphism of BCI -algebras. Then each of the following sequences is exact:*

- (i) $0 \rightarrow \text{Ker } f \rightarrow \text{Coim } f (= A / \text{Ker } f) \rightarrow 0$,
- (ii) $0 \rightarrow \text{Im } f \rightarrow B \rightarrow \text{Coker } f (= B / \text{Im } f) \rightarrow 0$,
- (iii) $0 \rightarrow \text{Ker } f \rightarrow A \rightarrow B \rightarrow \text{Coker } f \rightarrow 0$.

II. Main results

In this section, we study the Ker-Coker sequence in BCI -algebras and obtain some properties of BCI -algebras. We use the following useful lemma and omit its proof.

LEMMA 2.1. *Let $f : A \rightarrow B$ be a BCI -homomorphism. Then f is a monomorphism if and only if $\text{Ker } f = \{0\}$.*

We note that, given a commutative diagram of BCI -algebras and BCI -homomorphisms such that ϕ, ψ are regular homomorphisms:

$$\begin{array}{ccc} A & \xrightarrow{\phi} & B \\ \downarrow & & \downarrow \\ A' & \xrightarrow{\psi} & B' \end{array}$$

there exist unique BCI -homomorphisms $\text{Ker } \phi \rightarrow \text{Ker } \psi$ and $\text{Coker } \phi \rightarrow \text{Coker } \psi$, which make the enlarged configuration:

$$\begin{array}{ccccccc} \text{Ker } \phi & \longrightarrow & A & \xrightarrow{\phi} & B & \longrightarrow & \text{Coker } \phi \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ \text{Ker } \psi & \longrightarrow & A' & \xrightarrow{\psi} & B' & \longrightarrow & \text{Coker } \psi \end{array}$$

commutative.

LEMMA 2.2. *Let*

$$\begin{array}{ccccc} A & \xrightarrow{\phi} & B & \xrightarrow{\psi} & C \\ f \downarrow & & g \downarrow & & h \downarrow \\ A' & \xrightarrow{\phi'} & B' & \xrightarrow{\psi'} & C' \end{array}$$

be a commutative diagram of BCI -algebras and BCI -homomorphisms such that each row is exact, B' is p -semisimple, and f, g, h are regular homomorphisms. If $\phi' : A' \rightarrow B'$ is monic, then the induced sequence $\text{Ker } f \rightarrow \text{Ker } g \rightarrow \text{Ker } h$ is exact. On the other hand, if $\psi : B \rightarrow C$ is epic, then the resulting sequence $\text{Coker } f \rightarrow \text{Coker } g \rightarrow \text{Coker } h$ is exact.

Proof. Assume that $\phi' : A' \rightarrow B'$ is monic. Obviously, the product of $\text{Ker } f \rightarrow \text{Ker } g$ and $\text{Ker } g \rightarrow \text{Ker } h$ is null, since $f(0) = 0'$, i.e., $\text{Ker } f \rightarrow$

$\text{Ker } g \rightarrow \text{Ker } h$ is a zero map. Hence $\text{Im}(\text{Ker } f \rightarrow \text{Ker } g) \subseteq \text{Ker}(\text{Ker } g \rightarrow \text{Ker } h)$.

We show that

$$\text{Ker}(\text{Ker } g \rightarrow \text{Ker } h) \subseteq \text{Im}(\text{Ker } f \rightarrow \text{Ker } g).$$

Let b in $\text{Ker } g$ become zero in $\text{Ker } h$. Since $\text{Im } \phi = \text{Ker } \psi$, b is the image with respect to $\phi : A \rightarrow B$ of some element $a \in A$, i.e. $\phi(a) = b$ for some $a \in A$. By commutativity

$$\phi' f(a) = g\phi(a) = g(b) = 0$$

and therefore $f(a) = 0$, i.e. $a \in \text{Ker } f$, because $\phi' : A' \rightarrow B'$ is monic. This proves that $\text{Ker } f \rightarrow \text{Ker } g \rightarrow \text{Ker } h$ is exact.

Also, it is clear that the product of $\text{Coker } f \rightarrow \text{Coker } g$ and $\text{Coker } g \rightarrow \text{Coker } h$ is null. Hence $\text{Im}\{\text{Coker } f \rightarrow \text{Coker } g\} \subseteq \text{Ker}\{\text{Coker } g \rightarrow \text{Coker } h\}$.

It is enough to show that

$$\text{Ker}\{\text{Coker } g \rightarrow \text{Coker } h\} \subseteq \text{Im}\{\text{Coker } f \rightarrow \text{Coker } g\}.$$

Now assume that ψ is epic. Suppose $b' \in B'$ and let $[b']$ denote its image in $\text{Coker } g$. If $[b']$ maps into zero in $\text{Coker } h$, then $\psi'(b') = h(c)$ for some $c \in C$, and hence $\psi(b) = c$ for some suitable $b \in B$, because ψ is epic. So, $\psi'(b') = h(c) = h\psi(b) = \psi'g(b)$. Thus

$$\psi'(b' * g(b)) = 0$$

and $b' * g(b) \in \text{Ker } \psi' = \text{Im } \phi'$ by exactness. Hence $b' * g(b) = \phi'(a')$, for some $a' \in A'$

Consider $\phi'(a') * (0 * g(b)) \in B'$. Since B' is p -semisimple,

$$\begin{aligned} \phi'(a') * (0 * g(b)) &= (b' * g(b)) * (0 * g(b)) \\ &= (b' * 0) * (g(b) * g(b)) = b' * 0 = b'. \end{aligned}$$

Hence $b' = \phi'(a') * (0 * g(b))$ and $[b'] = [\phi'(a')]$ is the image of the element $[a']$ of $\text{Coker } f$, corresponding to a' . This shows that

$$\text{Ker}\{\text{Coker } g \rightarrow \text{Coker } h\} \subseteq \text{Im}\{\text{Coker } f \rightarrow \text{Coker } g\}. \blacksquare$$

THEOREM 2.3. *Suppose that the diagram of BCI-algebras and BCI-homomorphisms:*

$$\begin{array}{ccccccc} A & \xrightarrow{\phi} & B & \xrightarrow{\psi} & C & \longrightarrow & 0 \\ f \downarrow & & g \downarrow & & h \downarrow & & \\ 0 & \longrightarrow & A' & \xrightarrow{\phi'} & B' & \xrightarrow{\psi'} & C' \end{array}$$

is commutative and has exact rows such that B' is p -semisimple, where f, g, h are regular homomorphisms. Then this diagram can be extended to a diagram

$$\begin{array}{ccccccc}
 & 0 & & 0 & & 0 & \\
 & \downarrow & & \downarrow & & \downarrow & \\
 \text{Ker } f & \xrightarrow{\phi_1} & \text{Ker } g & \xrightarrow{\psi_1} & \text{Ker } h & & \\
 \downarrow & & \downarrow & & \downarrow & & \\
 A & \xrightarrow{\phi} & B & \xrightarrow{\psi} & C & \longrightarrow 0 \\
 \downarrow f & & \downarrow g & & \downarrow h & & \\
 0 \longrightarrow A' & \xrightarrow{\phi'} & B' & \xrightarrow{\psi'} & C' & \downarrow & \\
 \downarrow & & \downarrow & & \downarrow & & \\
 \text{Coker } f & \xrightarrow{\phi_2} & \text{Coker } g & \xrightarrow{\psi_2} & \text{Coker } h & & \\
 \downarrow & & \downarrow & & \downarrow & & \\
 0 & & 0 & & 0 & &
 \end{array}$$

which is also commutative and has exact rows and columns.

Also, there is a ‘connecting BCI-homomorphism’ $\Delta : \text{Ker } h \rightarrow \text{Coker } f$ such that

$$\text{Ker } f \xrightarrow{\phi_1} \text{Ker } g \xrightarrow{\psi_1} \text{Ker } h \xrightarrow{\Delta} \text{Coker } f \xrightarrow{\phi_2} \text{Coker } g \xrightarrow{\psi_2} \text{Coker } h$$

is exact.

Proof. We define a BCI-homomorphism $\Delta : \text{Ker } h \rightarrow \text{Coker } f$ as follows: Let $c \in \text{Ker } h \subseteq C$. Since ψ is an epimorphism, $\psi(b) = c$ for some element $b \in B$ and then $\psi'g(b) = h\psi(b) = h(c) = 0$. Hence $g(b) \in \text{Ker } \psi' = \text{Im } \phi'$ and $g(b) = \phi'(a')$ for some $a' \in A'$ and a' itself has a natural image, say $[a']$, in $\text{Coker } f$. The mapping Δ can be now defined by $\Delta(c) = [a']$. In this construction, the element b is not unique. However, if we change it then a' has to be replaced it by an element of the form $a' * f(a)$, where $a \in A$. This does not alter $[a']$. Thus Δ is well defined and due to the above observation, it is easily seen to be a BCI-homomorphism.

By Lemma 2.2, it is enough to show that both

$$\text{Ker } g \rightarrow \text{Ker } h \xrightarrow{\Delta} \text{Coker } f \quad \text{and} \quad \text{Ker } h \xrightarrow{\Delta} \text{Coker } f \rightarrow \text{Coker } g$$

are exact. Let $b \in \text{Ker } g$ and consider $\Delta(\psi(b))$. Since $g(b) = 0 = \phi'(0)$, it follows that $\Delta(\psi(b))$ is the image of zero in $\text{Coker } f$. Thus $\Delta(\psi(b)) = 0$ and therefore the result of combining $\text{Ker } g \rightarrow \text{Ker } h$ with Δ is null. Hence

$$\text{Im}\{\text{Ker } g \rightarrow \text{Ker } h\} \subseteq \text{Ker}\{\text{Ker } h \xrightarrow{\Delta} \text{Coker } f\}.$$

Now suppose that $c \in \text{Ker } h$ and $\Delta(c) = 0$. Since ψ is epic, there exists $b \in B$ such that $\psi(b) = c$ and $h(c) = 0$. Let b and a' be defined as in

the construction of $\Delta(c)$. Then $a' = f(a)$ for some $a \in A$. It follows that $g(b) = \phi'(a') = \phi'f(a) = g\phi(a) = 0$ and therefore $b * \phi(a) \in \text{Ker } g$. Thus $c = \psi(b) = \psi(b * \phi(a)) \in \psi(\text{Ker } g)$. This proves that

$$\text{Ker } g \rightarrow \text{Ker } h \xrightarrow{\Delta} \text{Coker } f$$

is exact.

It remains to show that

$$\text{Ker } h \xrightarrow{\Delta} \text{Coker } f \rightarrow \text{Coker } g.$$

Suppose therefore that $c \in \text{Ker } h$. Since ψ is epic, there exists $b \in B$ such that $\psi(b) = c$ and then $\psi'g(b) = h\psi(b) = h(c) = 0$. Hence $g(b)$ is in $\text{Ker } \psi' = \text{Im } \phi'$, i.e., $g(b) = \phi'(a')$ for some a' in A' . By the definition of the connecting *BCI*-homomorphism, $\Delta(c) = [a']$, where the notation is the same as in the construction of $\Delta(c)$.

But $[\phi'(a')] = [g(b)] = 0$ and therefore c maps into zero under the composite homomorphism

$$\text{Ker } h \xrightarrow{\Delta} \text{Coker } f \rightarrow \text{Coker } g.$$

Hence $\text{Im}\{\text{Ker } h \xrightarrow{\Delta} \text{Coker } f\} \subseteq \text{Ker}\{\text{Coker } f \rightarrow \text{Coker } g\}$.

Suppose next that $[a']$ maps into zero under $\text{Coker } f \rightarrow \text{Coker } g$. Thus $\phi'(a') = g(b)$ for some b in B and $h\psi(b) = \psi'g(b) = \psi'\phi'(a') = 0$. Thus $\psi(b) \in \text{Ker } h$ and $\Delta\psi(b) = [a']$. It follows that $[a']$ is in $\text{Im } \Delta$. ■

PROPOSITION 2.4 ([2]). *Let $f : X \rightarrow Y$ be a homomorphism of *BCI*-algebras, where Y is p -semisimple. If I is a closed ideal of X , then $f(I)$ is a closed ideal of Y .*

LEMMA 2.5. *Let $f : X \rightarrow Y$ be a homomorphism of *BCI*-algebras where Y is p -semisimple. Then f is a regular *BCI*-homomorphism.*

Proof. Since X itself is a closed ideal of a *BCI*-algebra X , $f(X)$ is a closed ideal of Y by Proposition 2.4. Hence $f(X)$ is an ideal of Y , i.e. $\text{Im } f$ is an ideal of Y . Thus f is a regular *BCI*-homomorphism.

PROPOSITION 2.6. *Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be regular *BCI*-homomorphisms of *BCI*-algebras, where B, C are p -semisimple. Then there exists an exact sequence:*

$$0 \rightarrow \text{Ker } f \rightarrow \text{Ker}(gf) \rightarrow \text{Ker } g \rightarrow \text{Coker } f \rightarrow \text{Coker}(gf) \rightarrow \text{Coker } g \rightarrow 0.$$

Proof. We claim that $B \oplus C$ is a p -semisimple *BCI*-algebra. Indeed, suppose $(0, 0) * (b, c) = (0, 0)$. Then $(0 * b, 0 * c) = (0, 0)$ and so $0 * b = 0$ and $0 * c = 0$. Hence $b = 0$ and $c = 0$, since B, C are p -semisimple. Define a map $h : A \oplus B \rightarrow B \oplus C$ by $h(a, b) = (f(a) * b, g(b))$, and define maps $\phi : A \rightarrow A + B$ via $\phi(a) = (a, 0)$, $a \in A$ and $\psi : A \oplus B \rightarrow B$ via $\psi(a, b) = b$, $a \in A, b \in B$.

By a similar way we define maps $\phi' : B \rightarrow B \oplus C$ and $\psi' : B \oplus C \rightarrow C$. Then h is a BCI -homomorphism, since

$$\begin{aligned} h(a * a', b * b') &= (f(a * a') * (b * b'), g(b * b')) \\ &= ((f(a) * f(a')) * (b * b'), g(b) * g(b')) \\ &= ((f(a) * b) * (f(a') * b'), g(b) * g(b')) \\ &= (f(a) * b, g(b)) * (f(a') * b', g(b')) = h(a, b) * h(a', b'). \end{aligned}$$

Also, by Lemma 2.5, h is a regular homomorphism, since $B \oplus C$ is a p -semisimple BCI -algebra. Then

$$\begin{array}{ccccccc} 0 & \longrightarrow & A & \xrightarrow{\phi} & A \oplus B & \xrightarrow{\psi} & B \longrightarrow 0 \\ & & \downarrow f & & \downarrow h & & \downarrow g \\ 0 & \longrightarrow & B & \xrightarrow{\phi'} & B \oplus C & \xrightarrow{\psi'} & C \longrightarrow 0 \end{array}$$

is a commutative diagram with exact rows, where the horizontal mappings are regular BCI -homomorphisms. By Theorem 2.3, we have an exact sequence

$$0 \rightarrow \text{Ker } f \rightarrow \text{Ker } h \rightarrow \text{Ker } g \rightarrow \text{Coker } f \rightarrow \text{Coker } h \rightarrow \text{Coker } g \rightarrow 0.$$

It is enough to show that $\text{Ker } h$ and $\text{Coker } h$ are isomorphic to $\text{Ker } gf$ and $\text{Coker } gf$, respectively. If $h(a, b) = 0$, then $g(b) = 0$ and $f(a) * b = 0$, and hence $g(f(a) * b) = gf(a) * g(b) = gf(a) * 0 = gf(a)$ and $g(f(a) * b) = g(0) = 0$. Hence $gf(a) = 0$ and consequently $a \in \text{Ker}(gf)$. We can therefore define a BCI -homomorphism

$$\phi : \text{Ker } h \rightarrow \text{Ker}(gf)$$

by $\phi(a, b) = a$. Clearly, ϕ is monic. Also, if $\alpha \in \text{Ker}(gf)$ then $(\alpha, f(\alpha)) \in \text{Ker } h$ and i.e., $\phi(\alpha, f(\alpha)) = \alpha$. This shows that ϕ maps $\text{Ker } h$ isomorphically onto $\text{Ker}(gf)$.

A map $\mu : B \oplus C \rightarrow C$ defined by $\mu(b, c) = g(b) * (0 * c)$ is a BCI -homomorphism, since

$$\begin{aligned} \mu(b * b', c * c') &= g(b * b') * (0 * (c * c')) \\ &= (g(b) * g(b')) * ((0 * c) * (0 * c')) \\ &= (g(b) * (0 * c)) * (g(b') * (0 * c')) \\ &= \mu(b, c) * \mu(b', c'). \end{aligned}$$

If $(b, c) \in \text{Im } h$ then there exist $\alpha \in A$ and $\beta \in B$ such that $(b, c) = (f(\alpha) * \beta, g(\beta))$ and therefore

$$\begin{aligned} \mu(b, c) &= \mu(f(\alpha) * \beta, g(\beta)) = gf(\alpha) * \beta * (0 * g(\beta)) \\ &= (gf(\alpha) * g(\beta)) * (0 * g(\beta)) = (gf(\alpha) * 0) * (g(\beta) * g(\beta)) \\ &= (gf(\alpha) * 0) * 0 = gf(\alpha) * 0 = gf(\alpha), \end{aligned}$$

since C is p -semisimple. Thus $\mu(\text{Im } h) \subseteq \text{Im}(gf)$. Therefore, μ induces a BCI -homomorphism $\psi : \text{Coker } h \rightarrow \text{Coker}(gf)$ which is epic since μ is epic.

We shall now show that ψ is also monic. Suppose that the image of (b, c) in $\text{Coker } h$ is mapped into zero by ψ , i.e., $\mu(b, c) = gf(a)$ for some $a \in A$. It is sufficient to show that $(b, c) \in \text{Im } h$. But $gf(a) = \mu(b, c) = g(b) * (0 * c)$, whence

$$\begin{aligned} gf(a) * g(b) &= (g(b) * (0 * c)) * g(b) \\ &= (g(b) * g(b)) * (0 * c) = 0 * (0 * c) = c, \end{aligned}$$

since C is p -semisimple. Thus $h(a, f(a) * b) = (b, c)$, since $f(a) * (f(a) * b) = b$. Consequently $(b, c) \in \text{Im } h$ and this complete the proof. ■

Acknowledgement. The authors are very indebted to the referee for his valuable suggestions which improved the present paper.

References

- [1] M. A. Chaudhry, *Branchwise commutative BCI-algebras*, Math. Japon. 37 (1992), 163–170.
- [2] W. A. Dudek, *On ideals in BCI-algebras with the condition (S)*, Math. Japon. 31 (1986), 25–29.
- [3] W. A. Dudek, *On group-like BCI-algebras*, Demonstr. Math. 21 (1988), 369–379.
- [4] C. S. Hoo, *BCI-algebras with condition (S)*, Math. Japon. 32 (1987), 749–756.
- [5] Y. B. Jun, *Essential closed ideals in BCI-algebras*, Selected papers on BCK- and BCI-algebras (Northwest Univ., China) 1 (1992), 8–13.
- [6] Yong Liu, *On projective and p -projective BCI-algebras*, Selected papers on BCK- and BCI-algebras (Northwest Univ., China) 1 (1992), 54–59.
- [7] C. Z. Mu and W. H. Xiong, *Some universal properties of BCI-algebras*, Kobe J. Math. 6 (1989), 43–48.
- [8] C. Z. Mu and W. H. Xiong, *On ideals in BCI-algebras*, Math. Japon. 36 (1991), 497–501.
- [9] D. G. Northcott, *A first course of homological algebra*, Cambridge Univ. Press, 1973.
- [10] L. Tiande and X. Changchang, *P -radical in BCI-algebras*, Math. Japon. 30 (1985), 511–517.

Anatolij Dvurečenskij

MATHEMATICAL INSTITUTE

SLOVAK ACADEMY OF SCIENCES

SK-814 73 BRATISLAVA, SLOVAKIA

E-mail: dvurecen@mau.savba.sk

Hee Sik Kim

DEPT. OF MATHEMATICS EDUCATION

CHUNGBUK NATIONAL UNIVERSITY

CHONGJU, 361-763, KOREA

E-mail: heekim@cbucc.chungbuk.ac.kr

Sun Shin Ahn

DEPT. OF MATHEMATICS EDUCATION

DONGGUKE UNIVERSITY

SEOUL, 100-715, KOREA

Received October 14, 1996.