DEMONSTRATIO MATHEMATICA
Vol. XXX No 4 1997

Waldemar Korczynski

ON A MODEL OF CONCURRENT SYSTEMS

Abstract. In some systems the possibility of concurrent execution of activities can
be described by very irregular conditions which can not be modeled by Petri nets. In the
paper a kind of models of such systems and a new definition of Petri nets are described.
These models are graphs equipped with some families of sets representing actions of a
system which can be executed independently. The presentation of graphs used in the
paper allows for an unified treatment of various models of systems. There is also shown
how some transformations e.g. refinement of concurrent systems can be modeled.

0. Introduction

0.1. Motivation. A concurrent system can be understood as a pair
S = (S,p) consisting of an object S and a set p of ”rules”. The object
S, being a ”static” part of such a system, describes where and the rules p
how some processes may run. For example in Petri net theory of concur-
rence the object S is a Petri net, and the rules p describe which situations
are permitted in S (e.g. capacity function for places) and how they can be
changed (e.g. firing-rules). ” Algebraising” such models of systems one de-
fines them as some algebras. Now both, the object S (e.g. a Petri net) and
the rules p (e.g. a specification of its behaviour) are described as an alge-
bra A=(Ai,...,Ak,01,...,0y) satisfying some conditions (axioms). Such
an algebraisation can consist e.g. of:

e a passing to quite different presentation (specification) with different
signature. Typical examples are various passings from Petri nets to alge-
bras (e.g. Montanari’s & Mesequer’s "monoids over graphs” [DDM91] or
Winkowski’s partial sequences [Win82}) .

e an enrichment of a relational system S=(.5, p) by some new operations.
In this case the algebraisation consists of the introduction of some new oper-
ations and relations. These new operations (relations) describe some aspects
of systems which can not be described by the ”original” ones. Examples can

Key words and phrases: graph, concurrence, Petri net, refinement, system modeling.



810 W. Korczynski

be found e.g. in the theory of Mazurkiewicz’s trace languages (the intro-
duction of the congruence generated by the concurrence relation see e.g.
[Maz77]).

e an axiomatization of a description of the system S=(S,p) as an al-
gebra (Ay, .., Ak, 01,..,0m). In this case systems are originally described by
some algebras with an information about elements of their carrier sets (e.g.
algebras of processes, algebras with carriers being multisets etc.). By an al-
gebraisation one means here an axiomatic characterization of such class(es)
of algebras. This is often used as the last part of algebraizations mentioned
in the points 1 and 2 above.

The first approach leads usually to advanced category theory: in order
to describe the relationship between the original and new presentation some
complicated functors are used. In some cases the complication-degree of
mathematical reasoning is higher than the complication-degree of considered
systems. Another disadvantage of this way of ”algebraisation” is the fact that
often one has to compare (via corresponding functors) properties of quite
different relational systems.

The second approach is in a sense more ”classical”. Introduction of new
relations or operations into some structures is well known in mathematics.
Typical examples are various ordered or topological structures (e.g. groups,
rings, fields or vector spaces). It seems that it is easier to learn about some
new properties of well known objects than about quite new objects and their
relationship to the ”old ones”. In the paper a kind of such an approach is
proposed. It is based on the fact that one of the best known formalisms used
for the description of various dynamic systems is graph theory. Graphs are
widely accepted as models of systems, not only in informatics, but in many
other areas (e.g. economics or technology) as well. The idea of the proposed
approach is to introduce into a graph a new structure describing a kind of
synchronization and parallel composition of its elements. The mathematics
used in this approach is very simple: it bases on some elementary notions of
graph theory.

0.2. Models of concurrency. One of the most popular presentations
of concurrent systems are graphs equipped with some additional structures
(usually monoids) compatible with the graph-operations (e.g. graphs over
monoids in [DDM91] or partially monoidal categories in [Kor80], [Win82]).
In such an approach a system is seen as a pair S=(G, p) with G being a
graph and p being the structure mentioned above. The carrier set of such
a structure can be understood as a family of sets (usually called steps) of
activities which can be executed independent each other. One of funda-
mental assumptions about such families is that they are downwards closed



On a model of concurrent systems 811

under set inclusion i.e. if a set o (of activities) is allowed in a system, say
S, then every of its subsets 8 C « is allowed in S as well. This is often a
consequence of the fact that concurrence is understood as a binary relation
in a set (e.g. of transitions of a Petri net). However there are systems in
which this assumption is not satisfied. Examples can be found in practically
every area (e.g. “minimal transactions”, various "threshold phenomena” in
physics etc.). In the paper we propose a simple formalism for describing such
systems. The idea is very simple; some classes of algebras (e.g. semigroups)
have not only HSP (i.e. they are closed wrt. the operation of forming homo-
morphic image, subalgebras and product), but are closed wrt. the operation
of forming of a ”power algebra” as well. One of such classes is the class of
graphs. We show how a family of independent sets of activities can be de-
fined as a subgraph of a "power graph”, define a kind of morphisms of such
systems and show some properties of corresponding categories. Considering
a family of sets instead of a binary relation is well known in mathematics.
Typical examples can be found in algebra where the principle of abstraction
allows for a ”translation” of some propositions formulated in the "language
of binary relations” (equivalencies) into the ”language of families of sets”
(partitions). The idea to see concurrence as a family of sets is not new; it
can be found in Petri’s papers on net theory (see [Pe73]). The approach
proposed in the paper differs from those related to ”classical” Petri nets in
two points:

¢ we consider a one sorted presentation of graphs and consequently sets
consisting of elements of the same type i.e. in net terminology our ”steps”
consist of transitions and places

¢ the conditions postulated to be satisfied by the family of such ”steps”
are weaker than those postulated e.g. for the family of configurations in a
Petri net.

0.3. Organization of the paper. The paper is organized as follows. In
section 1 the notation and terminology used in the paper are described. In
the paper some not very popular notions (e.g. a one-sorted presentation of
graphs) are used. This section is devoted to a description of these notions. In
section 2 we define the main kind of objects used in the paper; graphs with
limitations. In section 3 a definition of morphisms of graphs with limitations
is formulated and some of their properties (e.g. a construction of products
and coproducts) are shown. Section 4, where some special morphisms of
graph with limitations are considered, is in a sense a continuation of section
3. We describe here morphisms respecting processes in systems. A sketch
of a definition of processes, which seems to be very natural in the proposed
formalism is given in section 5 where we also show an example of a refinement



812 W. Korczyiiski

of a system by means of the introduced morphisms. In section 6, some general
remarks about introduced notions are formulated.

1. Notation and terminology

In the paper the standard mathematical notation and terminology are
used. Some not very often used notions are described below.

By a graph we mean any triple G=(X, dom, cod) such that X is a set and
dom, cod: X —X are unary operations satisfying the conditions:

dom(dom(z)) = cod(dom(z)) = dom(z)
dom(cod(z)) = cod(cod(z)) = cod(z)

for every z € X . The passing from this definition to the two-sorted presenta-
tion of graphs as algebras of the form G = (V, A, dy, d1) with V=Vertices(G)
being the set of vertices of the graph G, A=Arrows(G) being the set of its
arrows and functions dg, dy: A — V is via equations:

V = Vertices(G) = {z € X : dom(z) = cod(z) = z},
A = Arrows(G) = X\V, dy =dom\id,, dy =cod\id,.

We choose the one-sorted presentation of graphs because in this case, un-
like e.g. programming, it is easier to work with one- than with two-sorted
algebras. The class of morphisms of such graphs is richer than the class of
”classical” homomorphisms of graphs. The ”classical” homomorphisms of
graphs as two sorted algebras map always vertices onto vertices and arrows
(edges) onto arrows. This property makes impossible using them as models
of any ”aggregation” when an arrow should be mapped onto a vertex. This
can be "improved” by considering another, not "typically algebraic”, defi-
nition of graph morphisms. By such a morphism one understands e.g. any
triple f : G — G’ with G and G’ being graphs and

f : Arrows(G) U Vertices(G) — Arrows(G') U Vertices(G')

being a function satisfying the condition

Vaearmows(c) (f(do(a)) = do'(f(a)) £f(di(a)) = di'(f(a))) or
f(a) = f(do(a)) = f(d1(a))-

An analogous approach can be found in some papers on Petri Nets (see e.g.
definitions of net morphisms in [GLT]). This ”"improved” definition of graph
morphism does not allow to use the Birkhoff’s theorem. So the existence
of products, homomorphic irnages and subalgebras has to be proved. If one
wants to use graph homomorphisms as a model of a kind of ”aggregation of



On a model of concurrent systems 813

arrows into vertices” one has to choose between the simple two-sorted def-
inition of graphs and complicated definition of their morphisms, or a "not
typical” definition of graphs (in this case of the above one-sorted presenta-
tion) and typical algebraic definition of their morphisms. In the paper the
second possibility has been chosen. For every graph G = (X, dom, cod) by a
path we mean any (including empty) sequence p = a;jay,...,a of arrows of
G with dom(a;) = cod(a;-1) for 1< ¢ < k. For a path p = a1as,...,a; we
define 9p(p) = dom(a;) and 0;(p) = cod(ax). The free category generated
by G
Path(G) = (V(G), Paths(G), o, 01, @)

consists of:

e the set V(G) of all vertices of the graph G being the class of objects
of the category Path(G),

e the set Paths(G) of all paths of the graph G being the class of mor-
phisms of the category Path(G),

e Oy and 0 — the operations of the domain and codomain of the
category Path(G) defined above and

o the operation ”e” of concatenation (of paths) restricted to the set

Dom(°) = {(p,q) : p,q € Paths(G) & d1(p) = do(q)}

being the composition of morphisms of the category Path(G).
The insertion of generators is given by the embedding

¢ : Arrows(G) — Paths(G) with t:a — a.

One of very often used notions in various graph-theoretic models of sys-
tems and projects is the notion of consistence called in this paper indepen-
dence (e.g. of fronts of activities). It can be defined in many ways; one of
the most popular ones is the definition based on the notion of (algebraic)
closure operation.

ExXAMPLE 1.1. Perhaps the best known example of independence is the
linear independence of vectors. A vector v is independent on the set A iff it
can not be written as a linear combination of vectors from the set A, t.e. if it
can not be expressed by these vectors by means of the operations of addition
of vectors and multiplication of vectors by scalars.

The so understood independence can be generalized to a one-argument
relation in the power set of a given set A as follows: a subset Ag C A of
a set A is independent iff every element z € Ag is independent on the set
Ap\{z}. (We assume the relation to be independent on a set which has been
already defined). This is one of the most often used ways of defining the



814 W. Korczynski

linear independence of subsets in a linear space. The independence relation
so obtained can be seen as a family ind(A) C Pow(A) of subsets of a set A
with the following property.

A set A, belongs to ind(A) iff every finite subset of A, is independent.

The above property is often used as a definition of independence. An in-
dependence relation (called independence in the sense of Marczewski see
e.g. [Cohn68]) in a set A is any family ind C Pow(A) such that for every
X € Pow(A)

X € ind & for every finite subset Xy C X, Xo € ind.

An independence space is any pair I = (A,ind) such that A is a set and
ind an independence relation in A. Sets belonging to the class ind are called
independent and all the other dependent.

Remark 1.1. In order to apply the above notion of independence in
a concrete case one has to know when a finite subset Xy C A is indepen-
dent. Such a notion of finite independent sets must be defined separately.
In algebra one assumes that a finite set Xo = {z1,z2,...,2%} is dependent
(in an algebra A) iff one of its elements can be expressed by means of op-
erations of this algebra by other ones, i.e. Xj is dependent iff there exists
J < k such that z; = ¢(z1,...,2j-1,%41,...,%k) for an algebraic function
(a polynomial) ¢ of the algebra A. Another possibility is to fix a family D
of finite subsets of the set A and define a set to be dependent iff it contains
an element of D. _

The so understood independence spaces are structures similar to topo-
logical spaces (are of “topological type” in the sense of Bourbaki). Their
morphisms are defined similar to open (continuous) mappings of topological
spaces. A triple f : I — I' with I = (4,ind), I’ = (4’,ind’) being indepen-
dence spaces and f : A — A being a function is a (twisted) morphism from
ItoI'iff

f(ind) € ind’(f'(ind’) C ind respectively).

EXAMPLE 1.2. Typical ezamples of twisted morphisms of independence
space are linear mappings; the counter image of a linear independent set is
always linear independent.

Remark 1.2. Such an approach to independence is not always so nat-
ural as in the above examples. Sometimes it is more convenient to see an
independent set as a minimal set generating a subobject of an object. In
such situations one can define independent sets in a set A as minimal ele-
ments of the quotient set consisting of equivalence classes of a congruence of
the semilattice (Pow(A),U). In general, one needs an additional condition



On a model of concurrent systems 815

guaranteeing that such minimal elements exist. Such a condition can be the
finiteness of the set A (see e.g. [NP91] for more details). The differences
in the both approaches can be illustrated on the well known example of
the notion of a basis of a linear space. A basis can be defined as maximal
independent set or as minimal generating set of a given linear space.

The reader is assumed to be familiar with the elementary notions of the
theory of Petri nets.

2. Power graphs

It is well known that every function f : X — Y can be "extended” to
the power function pow(f) : pow(X) — pow(Y). This extension (being in
fact a functor) is defined by the assignment

X 2 A—{y:Joeay = f(z)} = pow(f)A) C Y.

This functor assigns to every algebra A of a given signature o a ”power alge-
bra” pow(A) of A with operations defined as the corresponding extensions
of the operations of the original algebra. Unfortunately the assignment

A — pow(A)

usually loses many important properties of the original algebra and con-
sequently the result algebra pow(A) has with the algebra A only the sig-
nature in common. Usually we are interested in some subalgebras of the
algebra pow(A). Perhaps the most often case is that we are interested in
subalgebras with carriers being partitions of corresponding carrier sets of
original algebras. Such algebras are known as ”quotient algebras”. In the
case of graphs the "power functor” leads to graphs, i.e. the power algebra
of a graph is a graph as well. In this section we describe the corresponding
construction and some of the properties of such algebras.

DEFINITION 2.1 (Power graph). The power graph of a graph G = (X, dom,
cod) is the algebra pow(G) = (pow(X ), DOM, COD) where for every A C X
it holds

DOM(A) = U {dom(z)} and COD(A) = U {cod(z)}.
TEA €A
In the sequel we usually omit the brackets ”{” and ”}” in the expressions

Uzea{dom(z)} and U, ¢ 4{cod(z)}. It shouldn’t cause mistakes because the
meaning of these expressions will be always clear from the context.

ProPosITION 2.1. The power graph pow(G) of a graph G is a graph.

In order to define a concurrent system as a pair of the form § = (G, o) we
define in the carrier set X of the graph (G = (X, dom, cod) an independence



816 W. Korczynski

relation i.e. a family ind s of subsets of X satisfying the conditions mentioned
above. It can be described similar to the definition of the (in)dependence
in logic. One has to define a family Dy of dependent sets and to put a set
A C Pow(X) to be dependent iff it contains an element of the family Dy.
In order to obtain in this way a model of a concurrent system one also
has to interpret the independent subsets of the carrier set X of a graph as
some processes. Next one can define operations on them which correspond
to some operations on processes in the system. The most natural way of
defining such operations seems to be an extension of graph operations to
the family of independent subsets of a graph. Now we can define a graph
with (in)dependence as a triple of the form G = (X, dom, cod, indg) such
that indg C Pow(X ), and the pair (X,indg) is an independence system.
If the family indg is closed wrt operations DOM and COD then the triple
(indg, DOM, COD) is a graph. In this way we obtain a subgraph

ind(G) = (indg, DOM, COD)

of the power graph pow(G) with elements being independent subsets of G.
The above constructions can be easily generalized to the case when instead
of independence relation inds one uses an arbitrary family of sets closed wrt
the operations DOM and COD.

DEFINITION 2.2 (Limitation family). A family L C Pow(X) is a limite-
tion family of a graph G = (X, dom, cod) if the triple (L, DOM;z, COD|y) is
a subgraph of the graph pow(G) i.e. iff DOM(X,) € L and COD(X,) € L
for every X, € L. A limitation family L of a graph G is called safe iff for
every X, € X

(DOM(X,) € L or COD(X,)t€ L) = X, € L.

Few words of explanation can be helpful in understanding the definition.
The elements of the limitation family L can be seen as sets of activities
(represented by arrows of the corresponding graph) which can be executed
in parallel or (if the corresponding set is minimal in the poset (L, C)) have
to be executed synchronously. Such sets are often called steps or fronts of
activities. In the ”standard” approach to concurrence, steps in a system
constitute an independence relation; a set (of some elements of the system
e.g. transitions andér places in a Petri net) is a step iff each of its finite
subsets is a step. Often even a "stronger” definition is used; a set, say A is
a step iff any of its two-element subsets is a step (e.g. every two transitions
belonging to A are concurrent). The main difference between our approach
and the ”standard” one is that limitation may be not an independence
relation, even not downwards closed under set inclusion (down directed) i.e.



On a model of concurrent systems 817

it is possible that it holds A C B &B € L &A ¢ L for some subsets
A and B of the carrier set of the corresponding graph. Such steps may
represent nonsteps in a Petri-net. This property allows for a modeling of
systems, which are more general then Petri nets. Safety of a concurrent
system can be understood as the property saying that if a process within it
starts from (ends in) a situation which is permitted in the system then this
process is permitted in the system as well. This property is equivalent to
the ”classical”, net-theoretic meaning of the safety; if some cuts of processes,
say o and 8 can occur independent each other (are coexistent), then these
processes can run parallel. If we want to see every process in a system as
built up from some ”steps” then it is enough to postulate such a property
for these steps only. The condition

(DOM'L(X()) €L or CODlL(Xo) € L) =>Xo€lL

just means that if the start- or end-situation of a step Xy is permitted in
the system then the step X is permitted in it as well.

PROPOSITION 2.2. For every graph G = (X, dom,cod) the whole family
Pow(X) and the empty family ) are safe limitations of G.

DEerFINITION 2.3 (Graph with limitation). By a graph with limitation
(L-graph for shortness) we mean any quadruple of the form GL =
(X, dom, cod, L) such that the reduct graph(GL) = (X, dom, cod) is a graph
and L is a limitation family of it. A graph with limitation GL = (X, dom,
cod, L) will be called complete iff |JL = X.

From now on we will use complete graphs with limitations only.

An interpretation. An L-graph can be seen as a model of a system

consisting of some atomic situations (represented by the vertices of the cor-
responding graph) and some atomic activities (represented by the arrows of
this graph). These situations and activities can occur (be executed) only as
sets of the family L.
The definition of limitation family is not a constructive one; it does not in-
clude any way of defining such families. The following properties of limita-
tions allow to construct limitations by means of some operations on families
of sets.

ProrosiTiON 2.3. The intersection of any family of limitations of a
graph is a limitation of this graph. The intersection of a family of safe lim-
itations is safe as well.

COROLLARY 2.1. The family of all limitations of a graph G constitutes a

complete lattice with meet being the standard set theoretic intersection. The
safe limitations constitute a sublattice of it.



818 W. Korczyiiski

COROLLARY 2.2. For every graph G = (X,dom,cod) and any family
L C Pow(X) there ezists the last limitation L(L) of the graph G containing
the family L. It will be called generated by L.

The above results allow to define limitations of graphs generated by some
families of sets like topologies in a set. We use them to define limitations in
some constructions on L-graphs (product and coproduct),

3. Some categories of graphs with limitations

3.1. Morphisms of graphs with limitation. One of the most signif-
icant steps in the development of the theory of concurrent systems was the
"refinement” of steps into some parts. Steps have been treated as sets of
some “more atomic” elements called e.g. places and transitions (condi-
tions and events) in the case of Petri nets. Corresponding to this change
of seeing systems the notion(s) of their allowed transformations have been
changed. Such transformations, called morphisms, assign to systems some
other, from a point of view ”better” systems. They (i.e. transformations)
are used as tools for designing or analyzing systems. In the case of sequen-
tial systems the situation is simple; systems are modeled by graphs, their
transformations by graph-homomorphisms. There exists no problem with
respecting or reflecting processes. A process in a sequential system is mod-
eled by a path of the corresponding graph (the model of this system). Graph
homomorphisms respect paths of graphs and consequently they respect the
processes of a system as well. In the case of concurrent systems the problem
of respecting processes has been in a sense (partially) pushed down onto the
level of sets of arrows and vertices of a graph. Morphisms of corresponding
systems can be defined as morphisms of power graphs respecting or reflecting
their limitations. The appropriate definition could be e.g. of the following
form.

DEFINITION 3.1.1 (Morphisms of graphs with limitation). A triple f :
GL — GL' with GL = (X,dom,cod, L), GL = (X',dom’,cod’, L") being
L-graphs and f : L € L' being a function is called:

(a) a morphism of GL into GL’ (L-morphism) iff
f(DOM(Xo)) C DOM'(f(Xo)) # f(COD(Xo)) C COD'(f(X.))

for every Xg € L.
(b) a twisted morphism of GL into GL' ( TL-morphism) iff

fSTH(DOM'(X,)) € DOM(f!(Xo)) & f~'(COD'(Xo)) C COD(Sf™(Xo))
for every Xo € L'.



On a model of concurrent systems 819

Remark 3.1.1. Morphisms of L-graphs in general are not graph
morphisms satisfying some additional conditions (e.g. reflecting of limita-
tion). They are defined as mappings of some families of sets. Considered as
correspondences between graphs they are rather relations then functions.

Remark 3.1.2. Let us note; morphisms of L-graphs respect their steps
and situations (i.e. a step in GL is transformed onto a step in GL') and
twisted morphisms reflect the steps (i.e. the counter-image f~!(A’') of the
step A’ in GL' is always a step in GL).

The categories of L-graphs with simple and twisted morphisms will be
denoted by the symbols GLGRAPH and TGLGRAPH respectively.

3.2. Products and coproducts. Both categories GLGRAPH and
TGLGRAPH have products. The construction of product of L-graphs (G, L)
and (G, L') in the category GLGRAPH is standard; the corresponding lim-
itation family consists of sets of the form A x A’ with A € L and A’ € L'

ProPosITION 3.2.1. For every L-graphs (G,L), (G',L'") and (G",L")
and every morphisms f : G",L") — (G,L) and g : (G", L") — (G', L") of
the category GLGRAPH:

(a) the family Lx L' = {AxX A': A€ L £ A' € L'} is a imitation
family of the product graph G x G'. If both limitations are safe then so is
the family L x L'.

(b) the triple (f,g): (G", L") - (G x G', L x L') is a morphism of this
category.

(c) the projections pry : G x G', L x L') —» (G, L) and pry : G x G', L x
L")y — G', L") are morphisms of the category GLGRAPH.

COROLLARY 3.2.1. For every L-graphs (G, L) and (G', L) the pair (G X
G',L x L') is their product in the category GLGRAPH.

ProrosiTION 3.2.2. In the category GLGRAPH the coproduct of L-
graphs GL = (G, L) and GL' = (G',L') is the pair GL + GL' = (G +
G',L+ L") with L + L' being the family

L+L'={A+A' :AecL gAel}.

The construction of products and coproducts in the category TGL-
GRAPH is a bit more complicated. The idea is similar to the construction
of the product in the category of topological spaces i.e. one defines it as the
product of corresponding graphs with limitation being the last family for
which all projections reflect the limitations of the ”factors”.



820 W. Korczynski

ProPoOSITION 3.2.3. In the category TGLGRA PH the product of L-graphs
GL = (G, L) and GL' = (G', L") is the pair GL x GL' = (Gx G',L(L, L"))
with L(L, L") being the last limitation for which both projections pr; : G X
G' — G (i=1,2) are TGLGRAPH -morphisms.

Proof. From Definition 3.1.1. we infer that

LeL(, 1)) &
DOM pry(A)) € pry(DOM(A)) # DOM(pr(A)) C pry(DOM(A)).

The family Lgxg: of all limitation for which both projections are
TGLGRAPH-morphisms is not empty because Pow(G x G') € L(L, L")
(for the simplicity we write here Pow(G X G') instead of the more precise
expression Pow(carrier(G) x carrier(G')). The family L(L,L') is the in-
tersection of the family Lgxa and by Proposition 2.3. a limitation of the
product-graph G x G'.

ProPOSITION 3.2.4. In the category TGLGRAPH the coproduct of L-
graphs GL = (G, L) and GL' = (G',L') is the pair GL + GL' = (G +
G',L1{L") with L} L' being the family

LiLl"={Ax{i}:i=1 g AcLori=2 £ A clL'}.

4. Morphisms respecting processes

Morphisms defined above neither respect nor reflect processes in sys-
tems or paths in the corresponding graphs. The reason is very simple. The
operations DOM and COD are not respected (reflected), that is the im-
ages (counterimages) of the corresponding sets are not equal but included
only in their counterparts. So for a subset Xy of the carrier of an L-graph
GL= (X,dom,cod, L) and a morphism f: GL — GL of L-graphs it holds
F(DOM(Xo)) 2 DOM'(f(Xo)) instead of f(DOM(Xo)) = DOM'(f(Xo))
and f(COD(X,)) 2 COD'(f(Xo)) instead of f(COD(Xp)) = COD'(f(Xo)).
In some special cases the image of a process in a concurrent system (path
in the corresponding L-graph) can be included in a process (path) in the
image of this system (L-graph) but this is rather an exemption than a rule.
In order to obtain a notion of morphisms respecting (reflecting) processes
(paths) one has to modify the above definitions replacing the inclusions by
equalities and, if the limitation family (the system) is not safe, introducing
a condition describing the way of transforming the limitation family or the
corresponding set of configurations. Let GL = (G, L) and GL' = (G', L) be
L-graphs. DOM, DOM’, COD and COD’ denote the operations of domain
and codomain in the power graphs Pow(G) and Pow(G’) respectively. The
corresponding definitions can be of the form:



On a model of concurrent systems 821

DEFINITION 4.1 (Strong morphisms of graphs with limitation). A triple
f:GL — GL' with f: L — L' being a function is called:

(a) a strong morphism of GL into GL' (L-morphism) iff f respects the
limitation L, i.e. iff f(L) C L' and

f(DOM(Xo)) = DOM'(f(Xo)) & f(COD(Xo)) = COD(f(Xo))

for every Xy € L.
(b) a twisted strong morphism of GL into GL'( TL-morphism) iff f re-
flects the limitation L, i.e. iff f~Y(L) 2 L and

fH(DOM(Xo)) = DOM(f~*(Xo)) & f~(COD'(Xo)) = COD(f!(Xo))
for every Xo € L.

The corresponding categories are subcategories of GLGRAPH, TGL-
GRAPH, SYS, and TSYS described above and the constructions of products
and coproducts are the same.

5. Processes

By a process-occurrence in an L-graph GL = (X, dom, cod, L) we mean
any path in the graph G = (L, DOM, COD). The process-occurrences so de-
fined correspond to a kind of images of a process seen by some observers. So
a process-occurrence is simply a sequence of steps. A process can be seen as
a set of process-occurrences. In the sequel we define processes as equivalence
classes of a congruence of the free category generated by an L-graph, more
precisely by the graph (L, DOM, COD) with L being the limitation family of
the corresponding L graph GL. In the free category Paths(GL) generated
by this graph one can define a limitation family Lp,ns(GL) putting for a
set A C Paths(GL)

A€ LPaths(GL) A VB,CGPaths(graph(GL)) VaGPow(X)A = BaC = a € L.

PROPOSITION 5.1. For every L-graph GL = (X, dom, cod, L) the family
Lpans(GL) is a limitation family of the graph Paths(GL) = (Paths(L),
DOM, COD).

Proof. We have to prove that for every A € Lpains(GL) it holds
DOM(A) € Lpatns(GL) & COD(A) € Lpasns(GL).
So let A € Lpains(GL). We have
A=DOM(A)e A & A€ Lpans(GL) = DOM(A) € Lpasns(GL).

The proof for the operation COD is similar.



822 W. Korczyiniski

PRrROPOSITION 5.2. If the limitation family L of an L-graph GL =
(X, dom, cod, L) is safe then so is the limitation family Lpaihs(GL) as well.

The family Lpans(GL) defines not only a limitation of the parallel but
also of the sequential composition of paths. If it is not safe, then one can
find paths:

A=A(aUa) and B=(FUpL)B

with COD(A) = DOM(B) and ayp, fy C Vertices(GL) such that
COD(a) =B & DOM(B) = ao

which implies A-B = Aj(a U B)B;. Now it can be aUB ¢ L,ie. A-B
is not an allowed path in GL. If the limitation family of the graph GL is
safe, then the family Lpaihs(GL) determines a subcategory path (GL) of
the free category Paths(GL). It is freely generated by the L-graph GL in
both categories GLGRAPH and TGLGRAPH.

The elements of the set Paths(L) described above are our candidates for
a kind of "process presentations”. A process in a system can be seen as a
whole built up from some ”elementary” processes by means of the operations
of sequential and parallel composition. These elementary processes are just
the steps modeled by the elements of the family L of independent sets of an
L-graph.

EXAMPLE 5.1. Let us consider two objects, say P(roducer) and C(onsu-
mer), performing cyclically the following activities:

1. getting from a given place, say Z, some materials
2. processing these materials

3. delivering the results of activity to the place z.

The producer works in the following way. He takes from the place Z (the
arrow 1) the materials mentioned above and some own products (perhaps
money) from the place a (the arrow §1) and put it to the place b. We want
see this activity as an elementary indivisible process of P. Next, he put the
results of his work to the place Z and materials to be performed to the
place c. Now he performs his proper production-activity ¥; put its results to
a, and starts the whole cycles again. The consumer works analogously. We
illustrate the system thus specified graphically as an L-graph as it is shown
in fig. 1.



On a model of concurrent systems 823

Figure 1: Producer - consumer system as an L-graph.

In this way of seeing this system one can distinguish six activities: (activities
1, 2, 3 of the producer and activities 1°, 2’, 3’ of the consumer) and seven
places in which the participating objects can be stored: (internal places a, b,
¢ of the producer internal places of consumer a’, b’ ¢’, and a place Z which
is shared by producer and consumer). They are the minimal elements of a
limitation family of this graph. Some other elements of this family, being
elementary, sequential indivisible (but divisible in parallel) processes of this
system are shown in fig. 2. below.

{B.1} {v.y'} { Bi:u’l } ,,{!,,

Figure 2: Elementary processes in the system from fig.1.

In the above example "elementary” means "belonging to the limitation
family” of the L-graph being the model (in the sense described above) of
considered system. It is evident that this meaning can be relativised to any
L-graph; particularly to the graph (Paths(L), DOM, COD) with L being a
subgraph of the power graph Pow(G) of a graph G. In this case an ”elemen-
tary process” can be seen as a part of another one which makes the using of
the word ”elementary” a bit problematic, but we use it in the above sense
only. Now any path A € Lpans(GL), say A, can be "splitted” into a set



824 W. Korczyiski

parts (A4) = {41, 4s,...,Ax} in such a way that A = p(Ay, Ag, ..., Ax)
with ¢ being a polynomial (an algebraic function) of a (partial) algebra of
processes

Proc(X) = (Paths(L), DOM, COD, e, +)
with
e, + : Paths(L) x Paths(L)—, — Paths(L)

being (partial) operations of sequential and parallel compositions of pro-
cesses. These operations can be defined in many ways. For the sequential
composition the most natural domain seems to be the set

{(a, B) € Paths(L) x Paths(L) : COD(a) = DOM(S)}

i.e. the reduct (Paths(L), DOM, COD,e) would be in this case the free cat-
egory generated by the graph (L, DOM, COD). In the case of parallel com-
position is the question a bit more subtle, but the result of the parallel
composition of processes, say p; and ps can be seen as a kind of "direct
sum” of p; and p;. Our problem is that we don’t work with processes (such
a notion hasn’t be an defined yet) but with their concrete presentations. The
simplest way to forget about presentation is to define a congruence of the
corresponding algebra of processes and to define processes as its equivalence
classes. So an algebra of processes in a system modeled by an L-graph GL
can be seen as a quotient-algebra of an algebra of presentations of processes
in the system. We describe it shortly as a quotient of the free category gen-
erated by the underling graph (L, DOM, COD) of GL. In order to define the
corresponding relation (congruence) let us note that in the power algebra
of a free category Paths(G) of all paths of a graph G one has a natural op-
eration of an ”addition”; the standard set union. Now let () be the relation
determined by the (weak) equation

AeBUCeD=(AUB)e(BUD),

i.e. sets (of paths) of the form Ae BUC ¢ D and (AU B) e (B U D) are
identified. The relation @ is a (weak) congruence of every subcategory of
the power algebra of Paths(G) for every graph G. Now for every L-graph
GL = (X, dom, cod, L) we define the free L-category generated by GL as the
quotient category Paths(L, DOM,COD)/Q equipped with the limitation,
family
L(GL) = {[4lq : A € Lpans()(GL)}.

Having defined the free category with limitation one can define the refine-
ment of concurrent systems as a substitution:

L — L(GL))



On a model of concurrent systems 825

for L-graphs GL = (X, dom, cod, L) and GL' = (X', dom’, cod’, L') similar
to the top-down programming style. Such substitutions may be not net
morphisms in the ”"normal” sense (e.g. they can split processes into sets
of parallel parts which make some problems with the consideration of a
kind of time in a system) but they always respect (reflect) the reachability
relation. Let us illustrate it by the example of the ”producer-consumer”
system described above.

EXAMPLE 5.4. We start from the terminal object of the category of the
classical two sorted presentation of graphs (see fig. 3.).

Figure 3: The simplest graph - model of a system.

So our starting-point is a system consisting of one activity a and one
situation z where dom(a) = cod(e) = z. The first step of our refinement is
a refinement of the activity a into two activities a; and «3. as it is pictured
in fig. 4.

Figure 4: A refinement of arrows into parallel ones.

fiamd, frawm {a1,a3}

This refinement is a morphism of L-graphs because:

DOM'(f(a))
= DOM'({a1,2}) [def. of the function f]
=z [a' € §=> DOM'({d'}) = {a'}]
= f(z) [def. of the function f]
= f(DOM(«a)) [a € S = DOM({d'}) = {¢'}]

The proof for the operation COD is analogous. So the function f is a mor-
phism of L-graphs. Now both a; and @, can be replaced by some processes;
oy by a process a1 12 with an ”internal” place b and a; by a process az; g
with an ”internal” place b’ as it is shown in fig. 5. below:



826 W. Korczynski

11 21

22
o’ o

Figure 5: A refinement of arrows into paths (substitution of arrows by paths).

ZHzZ, a1 allbalg, a9 — 01211)’0!22.

It holds
DOM'(f(e)
= DOM'({e11, 012}) [def. of the function f]
= DOM'(ay;) [DOM'({a11012}) = DOM'(1)]
= f{a"}
= f(a') [def. of the function f]
= f(DOM(ey))

Proofs for the operation COD and the remaining elements of this system
are analogous. So we have proved that the function f is a morphism of
L-graphs. The last L-graph can be "glued together” with some other L-
graphs as it is shown in fig.6.. This gluing together consists of a kind of
”synchronization”; some pairs (indicated by dotted boxes) of situations and
activities are synchronized into situations and activities of a new system.

Figure 6: A synchronization of concurrent systems.

In the above picture the following elements of the L-graph representing the
system under considerations are shown:

B = {él_’ﬂl}’B, = {ﬂ’ ar}



On a model of concurrent systems 827

This operation transforms the L-graph from fig 5.6. into the standard pro-
ducer consumer system.

6. Concluding remarks

The presented formalism seems to be a good tool for a description of var-
ious problems concerning transformations of systems (refinement, product,
coproduct etc.). There exist a lot of results in graph theory, its applications
or related topics which can be easily used for examination of L-graphs. It
seems one of such interesting connections between graphs and the formal-
ism described in the paper can be found in an idea developed by Obtuowicz
([Obt94], [Obt96]). He proposes a kind of "hierarchy” on graphs which can
be used as a tool for defining a large class of functions. Similar method can
be useful for a description of some classes of relations or functions ”generated
by L-graphs”. The possibility of a kind of "translation” of some operations
on Petri nets into the language of L-graphs and vice versa will be showed in
another paper. It allows for using them as a tool in resolving some typical
problems occurring in net theory. The main difference between this approach
and other ones - the possibility of modeling more general type of concurrence
- constrain can be useful in the modeling of a generalization of concurrence
understood as a binary relation.

References

[DMM91] P.Degano,J. Meseguer, U. Montanari, Aziomatizing the Algebra of Net
Computations and Processes, Technical Rep. 1/91 of Comp. Sc. Dep. of Uni-
versity of Pisa.

[GLT] H.J.Genrich, K. Lautenbach,P.S. Thiagarajan, Elements of General
Net Theory, in: Brauer W. (ed.) Net Theory and Applications, LNCS 84
Springer Verlag Berlin, Heidelberg, New York, 1980.
[Kor80] W. Korczynski, An aziomatic characterization of an algebra of processes in
concurrent systems, ICS-PAS Report 400, Warsaw 1980.
[Kor88] W. Korczynski, An algebraic characterization of concurrent systems, Fund.
Inform. 11, 1988.
[Kor96] W. Korczytiski, On a Notion of Concurrence, Fund. Inform., 1, 1996.
[Kor?] W. Korczyniski, On a presentation of Petri nets, to be published in Arch.
Inform. Teoret. Stos.
[Ma77] A. Mazurkiewicz, Concurrent program schemes and their verification,
Technical Report of Aarhus University, 1977.
[NP91] M. Novotny, Z. Pawlak, Algebraic theory of independence in information
systems, Fund. Inform. 4, 1991.
[Obt94] A. Obtulowicz, Graphical sketches, a finite presentation of infinite graphs,
manuscript, 1994 to be published in Fund. Inform.



828 W. Korczynski

[Obt96] A. Obtulowicz, Diagrammatic presentation of computable functions, topo-
logical aspects of computational complezity, manuscript, 1996.
[Pe73] C. A. Petri, Concepts of Net Theory, Proceedings of MFCS’73, Springer
LNCS 1973.
[Win82] J. Winkowski, An algebraic description of system behaviors, Theoret. Com-
put. Sci. 21, (1982).

INSTITUTE OF MATHEMATICS
FACULTY OF MENAGEMENT
PEDAGOGICAL UNIVERSITY KIELCE
ul. M. Konopnickiej 21

25-406 KIELCE, POLAND

Received September 16, 1996.



