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ON SOME BOUNDED SOLUTIONS
OF A NONLINEAR DIFFERENTIAL EQUATIONS

1. Introduction
In this paper we will prove an existence theorem for bounded weak and
pseudo-solutions of nonlinear differential equations

(D ' = A(t)z + f(t,z)

on the real line R.

An exponential trichotomy of A in our sense was introduced by Elaydi
and Hajek [7]. This problem was also studied by many authors ( [2], [5], [8],
[12], [13], [15], [16], for instance).

While in all these papers the continuity of the function f or Carathéodory
conditions were assumed, in our papers f is only assumed to be weakly-
weakly sequentially continuous or Pettis-integrable. Some additional as-
sumptions we imposed on f, are expressed in terms of a measure of weak
noncompactness. We assume also that the linear part of our equation is
trichotomic.

Throughout this paper (E,||-]|) will denote a real Banach space, E* the
dual space, (E,w) = (E,o(E, E*)) the space E with its weak topology and
B(a,r) = {y € E : |ly — a|| £ r}. Moreover, we introduce the following
notations: L(F) is the algebra of continuous linear operators from E into
itself with induced standard norm | - |; C(R, E) is the space of all continuous
function from R into E , endowed with the topology of almost uniform
convergence on R .

Let A : R — L(FE) be strongly measurable and Bochner integrable on
every finit subinterval of R.
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Consider the equation
(2) z'(t) = A(t)z(t).
By U(t) we denote the fundamental solution of the equation
U'(t) = A@®)U(t) with U(0) = Id.
Following Elaydi and Hajek [7] we introduce

DEFINITION 1. A linear equation (1) is said to have a trichotomy on R
if there exist linear projections P, ) such that

(3) PQ=QP, P+Q-PQ=1d
and constants « > 1,0 > 0 such that
[U@)PU(s)| < ae™ (") for0<s<t,
|U@)(Id - P)U(s)| < ae™?C") fort<s, s> 0,
lUQU(s)] < ae™C"%) fort < s<0,
|U@)(Id - Q)UY(s)] < ae™"9)  for s < t,<0.
Define the integral kernel G(t,s) = U(t)L(t,s)U"(s), where

Id—Q for 0 < s < max(t,0),
-Q for max(¢,0) < s,
P for s < min(¢,0),
P —~Id for min(t,0) < s <0.

Then |G(t,s)] < ae~?!*=3l for t,s € R ([8], Lemma 7).

Now we recall the notion of the pseudo-solution, which is similar to the
notion of Carathéodory-type strong solution (strong C-solution) [9]. For
such solutions problem (1) is equivalent to the integral problem

(4)

L(t,s) =

(5) 2(t) = | Gt,s)f(s,2(s)) ds, teL.

A
Fix z* € E*, compact set A € R and consider the equation
(5) (z*z)' =2 (A@)z + f(t,2)), A€ R

Now we are ready to introduce the following

DEFINITION 2. A function z : R — E is said to be a pseudo-solution of
the equation (1) if it satisfies the following conditions:

(i) z(+) is absolutely continuous,
(ii) for each z* € E* there exists a negligible set A(z*) (i.e. mes(A(z™)
= 0), such that for each t ¢ A(z*)

2*(&(1)) = 2*(A(t)z + (1, 2(1)).
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Now recall the definition of De Blasi’s measure of weak noncompactness:

B(A) = inf{e > 0 : there exists a weakly compact subset K of E,
such that A C K + B }.

where A is a nonempty bounded subset of E and B the closed unit ball
in E.

For the properties of 8 the reader is refered to [6] or [14]. We will use
also the following lemmas:

LEMMA 1 [14]. Let H C C(I, E) be a family of strongly equicontinuous
function. Then

B(H) = sup B(H (1)),
tel

where B.(H) denote the measure of weak noncompactness in C(I,E) and
the function t — B(H(t)) is continuous.

LEMMA 2 [3]. If T is a continuous mapping from a compact interval I to
L(E) and W is a bounded subset of E, then

s(JT®W) < sup|T(t)|- B(W).
tel tel
In the proof of the main theorem we will apply the following fixed point
theorem:

THEOREM 1 [11]. Let D be a closed convez subset of E, and let F be a
weakly sequentially continuous map from D into itself. If for some z € D
the implication
(6) V = conv({z} U F(V)) = Vis relatively weakly compact,
holds for every subset V of D, then F has a fized point.

2. Main result
We assume that:

(A1) A : R L(FE) is strongly measurable and Bochner integrable on
every finite subinterval of R. Moreover suppose that the linear equa-
tion
(4) z'(t) = A(t)=(2)
has a trichotomy with constants & > 1 and ¢ > 0.

(A2) Let f:R X Ew~ FE be a function with the following properties:

(i) for each strongly absolutely continuous function z : R — E,
f(-,z(-)) is Pettis-integrable on every compact subset of R, f(t,-) is
weakly-weakly sequentially continuous,
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(ii) there exist real nonnegative functions a and b locally integrable
on R, such that

12l < a(t) +b(2) - ||l

for each t € R and z € E. Assume in addition that

t+1

(B) sup S a(s)ds < M,
teR
t+1

(C) sup S b(s)ds < My,
teR |

1—e~°

where 0 < M; < 0o and 0 < My < =%

(A3) Let g:Ry — Ry be continuous and let # : Ry — Ry be a nonde-
creasing function. Assume that

(D) (I X X)) < supg(t)- h(A(X)
for each compact subinterval I of R and each bounded subset X of
E.

(A4) Put

L =sup { S |G(t,8)|g(s)ds: t € R}.
R

Assume that 0 < L < oo and L - h(t) < t for ¢ > 0.

THEOREM. Under the above assumptions there exists at least one bounded
pseudo-solution of the equation

z'(t) = A(t)z + f(t,z)
on an arbitrary compact subset A of R.

Proof. (Analogical as in [4]).
Let @ > 1 and o > 0 be constants from Definition 1 (assumption (Al)),
so |G(t,s)| < ae=?1*=¢l for all t,s € R.
By H we denote the set of the form
H = {s € C(R,E): o)l < &,
t t

lo(t) — a(r)]| < K {|A(s)|ds + [ a(s) ds + K {b(s)ds, 7,2 € R}

T

where K = 2aM,/(1 —e™? — 2aM;). Note that K > 0.
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It is clear that H is nonempty, closed, bounded, almost equicontinuous
and convex in C(R, E). For each x € H we define

Fa(z)(t) = | G(t,9)f(s,(s)) ds,
A

where | denotes the Pettis integral. By the assumption (A2) G(t,-)f(-, z(-))
is Pettis integrable on every compact subset of R.

Without loss of the generality, we will assume that A = [a,b] and 0 ¢ A.
Fix z* € E*,||z*|| < 1. Then

b b
2" (Fa@)®)] = | ([ G (¢, 9)£(s,3(s)) ds)| < [12*G(t,5) (s, ()] ds

b
|Gt 9)| - le* f(s,2(s))| ds < [ G (8, 8)| - |2* f(s,2(s))l ds

Similarly as in ([7], Lemma 5.1) one gets a constant K such that

2a M1 M2K
1@ < ZENHIRE)
Furthermore, since F4(2) is a solution of

v =A@y + f(t,2(8)), forr <n(r,n€ A)

we have

IEA=)(n) ~ Fa@)()l = I - v < | § /(e ]

< K -{|A(s)lds + {(a(s) + K - b(s)) ds.

We conclude that Fu4(z) € H and Fy : H — H.

Now we will prove the weakly-weakly sequentially continuity of Fj4.

Since H is almost strongly equicontinuous, the sequence (z,) in H con-
verges weakly to £ € C(R, E) iff z,(t) — z(t) in (E,w) for each t € A
(lemma 1.9 [14] ).

Since f(t,-) is weakly-weakly sequentially continuous, then by using the
Lebesgue dominated convergence theorem for the Pettis integral [10] we have

e (Fa(2a)(1)) = 27 (Fa(2)(t))
for each z* € E* and each t € A whenever z, — z in (C(R, E),w).
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Therefore F4 is weakly-weakly sequentially continuous on H.
Suppose that
Y =conv({z} U Fa(Y))
for some Y C H. We will prove that Y is relatively weakly compact, thus
(6) will be satisfied.

For an arbitrary €; > 0 there exists a §; > 0 such that |s; — s3] < &
with s1,s2 € (a,b) implies |G(2, 1) — G(t, s2)] < €1 and |g(s1) — g(s2)] < €1.
Leta =1 <t <ty <t3<...<l=1t<...<ty = b be a partition of
{(a,b) with t; — t;_q < é; for each ¢ = 1,2,...,2k.

The interval [¢;_1,%;] will be denoted by I;.

By the continuity of g and G(t,-) (except G(t,t)) there exist points
7, 8; € I; such that

|G (2, s:)| = sup{|G(¢, )| : s € I},
g(ri) = sup{g(s) : s € I;}.
Let
¢1 = sup{|G(t,s)|: a < s < b},
¢z = sup{lg(s)|: a < s < b}
By the mean value theorem for Pettis integral [1] we get

e
M {6t y(s)dsy e}

a
2k %

:{Y: S G(t,s)f(s,y(s))d.s:er}

i=1t;_1

2k
c S (ti- ti_l)m( U G(t, ) (I x Y(A))).
i=1

s€l;
By Lemmas 1 and 2, we have
® AU G911 x Y(4) < sup 6(e, )BT x Y (4))
s€l; sedi
By (7), (8) and our assumptions one gets
b

s({ 16,955 u(ods: v e v))

2k
< B( ot - ti-)eoma( | G, )51 x Y (4))))

i=1 s€l;
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2k
< N_(ti — tic1) sup |G(t, s)| - B(f(Li x Y (A)))

i=1 s€l;

2k
< :(ti = ti-1)|G(¢, 80)l - g(mi) - H(B(Y (4))

i=1

2k
= R(B(Y)) - Yo (ti - ti1)IG(2, 53] - 9(73)

i=1
2k

< h(B(Y)) - 32 ((1G(t, s1) - G(t, 5)] - 9(7:)
=11

+1G(t, 8- l9(r:) — g(s)l + G (2, 5)] - 9(s)) ds
b
< (B - [(b = a)(er + eaden + [1G(t,9)] - g(s) ds].

Since ¢, is arbitrarily small, we get

5({ G, (s, 5(s)) ds v € v}) < h(B(Y)- fi6,9)1-g(s)ds,

a a

Thus
(9) B(Fa(Y)(®)) < L-h(B(Y))

Since

Y =tonv({z} U F4(Y))
we have B(Y () < B(F4(Y(t)) and so, in view of (9) it follows that
BY (1)) < B(Fa(Y (1)) < L-h(B(Y)) < B(Y).

This implies that S(Y) = 0, so Y is relatively weakly compact.

By Theorem 1, F4 has a fixed point in H, which is a pseudo-solution of
our equation.

Remark 1. We don’t know if the solution exists on R because we can’t
say if there exists Pettis integral on R.

Remark 2. If fis weakly-weakly continuous then a pseudo-solution is
a weak solution.
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