DEMONSTRATIO MATHEMATICA
Vol. XXX No 4 1997

Jan Andres

A TARGET PROBLEM FOR DIFFERENTIAL INCLUSIONS
WITH STATE-SPACE CONSTRAINTS

Abstract. We study the existence of solutions to a nonstandard target problem for
set-valued flows generated by a vector field as a Marchaud map. The proof is performed
by means of the generalized Lefschetz trace formula (see [G]) which can be reduced, under
mild assumptions imposed on a constraint, to computation of the sum of local indices. An
illustrating example is given in R3.

1. Introduction

Recently, various aspects of the target problems have been intensively
studied (see e.g. [CQS1], [CQS2], [CFM], [Q], [SOGY] and the references
therein). Usually, the problem is solved in the frame of the optimal control
theory and consists in the characterization of the minimal-time function,
i.e. the first time such that the system can reach the target and satisfies
the constraints before it (see [CQS1], [Q]). The system means basicly the
first-order differential inclusions determined by the Marchaud map vector
field.

Here, we would like to discuss a rather nonstandard form for a system
of differential inclusions

(1) 0 € f(t,9),
where 6 = (81,...,6,), &' = (6,...,8)T and f(t,0) = (fi(t,9),...,
fn(t,0)7T, posed as follows.

TARGET PROBLEM: Given two codimension one manifolds ¥; C R”,
32 C R™ and a constraint diffeomorphism C : ¥; — 4. Does there exist a
solution @(t) of (1), where 8(t1) € £, such that C(8(t1)) = 8(t;) C I, for
some ty > t1 7

For our convenience, a schematical sketch of the planar problem can be
seen in Fig. 1,
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Fig. 1

where,
o the set of admissible (under a constraint C') related initial points ... {py,

P2y .- .},

e the target set ... {q1,¢2,-..},
o the admissible trajectory reaching the target (a solution of the problem)

...the bold curve.

As we will see in the following, we can give at least a partial answer to
the above problem on the torus. Thus, for example, we will be only able to
consider the situation in Fig. 1 mod +/2d-like, where |d| denotes the distance
between ¥; and ¥.

2. Main (existence) result

Hence, consider (1) and assume that the set-valued map f(t,6) : RF x
R™ ~» R™ has maximally a linear growth in # and is bounded in . Assume,
moreover, it is upper semi-continuous with nonempty, convex, compact val-
ues (in this case, f is called the Marchaud map). It is well-known (see e.g.
[F, p. 56] and [BGP], where the appropriate definitions can also be found)
that then all solutions of (1) entirely exist in the Carathéodory sense (i.e.
are locally absolutely continuous and satisfy (1) a.e.) and are with Rs-values
on any compact interval.
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Let, furthermore,
(2) Y fit.8)2e>0 (or Y. fi(t,8) < —€ < 0),
i=1 i=1
by which

n n
tll'rgoz_; 6;(t) =00 (or t]inoxoz 8;(t) = —oo, respectively).

i=1

Consider still the (n — 1)-dimensional torus ¥ C T™ = R"/Z} given by

(3) Z 6; = 0 mod b,
i=1

where Z,; denotes the set of all integer multiples of b and b # 0 is an arbitrary
constant. For better understanding of this—see Fig. 2, where the definition
of two-dimensional torus ¥ C T2 is illustrated.

Since (because of convenience) (1) will be considered on the cylinder
Rg x T™, the natural restriction imposed on f is still

(4) f(t,...,0;+b,..)= f(t,...,8;,...) forj=1,...,n.

Remark 1. The particular form of f (see (2) and (4)) will play an
important role in the definition of the Poincaré set-valued map (6) below.
Under (2) and (4), this map has been proved in [A] to be admissible in the
sense of [G].

Now, we are in position to give the main statement of our paper.

THEOREM. Let the above assumptions be satisfied jointly with (2) and
(4). Assume C : ¥ — X is a diffeomorphism having finitely many, but at
least one, simple fired points, 71,...,7r, on the torus & C T™ (see (3)) and

(5) ET: sgn det(I — dC.;l) #0,

k=1

where an,"‘1 denotes the derivative of C™! at v, € T.
Then, for a given constant b > 0 or b < 0, respectively (see (2)), there
always exists a solution 6(t) of (1) such that

C(8(0)) = 0(t*) on the torus £, for some ¢* > 0.

P roof. Take into account only the first inequality in (2); the second one
can be used quite analogously.
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Fig. 2

Because of (2) and (4), there is a well-defined (cf. Remark 1) set-valued
admissible Poincaré map ¢ on X, namely

(6) Birp)(p) 1 Z Ty Bprpy(p) = {0(7(P)}

where 7(p) denotes the least time for p to return back to X, when taking into

account each branch of a solution 6(t) of (1) with ®o(p) =8(0) =p € Z.
Our problem is obviously solvable, if we show p € ¥ such that C(p) €

®(p) on X or, because of a diffeomorphism C, when we find a fixed-point of

C~Y(®(p)) on .



Target problem for differential inclusions 787

For this purpose, we apply the “multi-valued analogy” of the Lefschetz
trace formula in [G]. First of all, we show that the map & : ¥ ~ ¥ is
homotopic, in the sense of multi-valued admissible maps, to identity I. We
exhibit such homotopy as follows.

Taking

(01(p, 9), - --,0n(p,5)) = 0(st(p)), where 0<s<1,

set
H,(p) = { (81(8,5)s -+ On-1(p, ), - Soi(p,s)) }.

Observe that H(p) represents indeed the required homotopy, because for
s =0, Ho(p) = p, and for s = 1, Hy(p) = ®(p). The crucial step in appli-
cation of the generalized Lefschetz fixed-point theorem for the admissible
(multi-valued) map C~!(®(p)) on a compact (n — 1)-dimensional manifold
¥ consists in verifying the inequality A(C~1(®(p))) # {0}, where A(.) is the
generalized Lefschetz number (for the definitions see [G]). Because of the in-
variance under homotopy, it is however sufficient to show that A(C~1) # 0.

Since C 1 is, by the hypothesis, smooth with finitely many simple fixed-
points, 71, . ..,7r, on a compact manifold ¥, the Lefschetz number A(C~1)
can be simply calculated (see [B], [G]) as the sum of the local indices, namely

ACTY) = ngn det(I — dCﬁl),
k=1

where dC-1 denotes the derivative of C~! on the tangent space T, &, which
coincides here with X.

So, because of (5), the proof is complete.

Remark 2. The time t* to reach the target can be obviously esti-

mated from above as t* < J%l A lower estimate, t* > J%.l, holds provided,
additionally,

ifi(i,o) <FE [or Zn:f,-(t, 6) > —E].
i=1 i=1

In particular, for E = ¢ = |}, fi(t,0)|, we have the exact time, t* = ]%l

Remark 3. In the single-valued case, it is well-known (see [BBPT)
that N(C~1®) = |A(C~1®)| on the torus . Therefore, since the Nielsen
index N(C~'®) determines the lower estimate of fixed-points of the map
C~1® on I, the absolute value of the nonzero number in (5) designates at
the same time the lower estimate of desired solutions. The Nielsen index has
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been also generalized for admissible (in-the sense of [G]) set-valued maps
(see [AGJ]) and the same is true.

An illustrating example in R3
Suppose, for simplicity, n = 3, and C is linear, C(8) := L6 + ¢, where
Uy U2 Us
L= v vy w3
wy w2 W3
is a regular matrix such that £ := uy +v; + w1 = ug + v+ we = uz +v3+ws,
L € Z,and ¢ = (c1,¢3,¢c3)T is a nonzero vector such that ¢; 4+ ¢; + ¢3 =
0 mod b. Observe that the particular forms of L and c¢ allow us to operate
on Y, where 6; + 83 + 63 = 0 mod b.
Because of the regularity, there exists an inverse operator, namely C~1(9)
=L~ Yf-c).
C~1(8) has exactly one fixed-point y; on X as far as C(#) has, which is
true iff

(7 0 # — wvows + uV3wy + UV w3 + ugvawy
+ ugviws + uzvawy + w1V + Uy w3 — U Vy
— ugwy + Vaw3 — V3w — Uy — vy — w3 + 1.
Then, under all the above assumptions,
IA(C~1(8))| = |sgn det(T — dC’,y'll(O))| = |sgn det(I — L7 =1,

and we arrived at (5). So, Theorem can be applied, provided still (2) and
(4) for a suitable Marchaud map f(,0) = (f1(t,9), f2(¢,8), f3(¢,6))T.

In Fig. 3, a trial of shooting to a target is demonstrated for b = 6 and
L = 2I,c = (1,2,3)T, which evidently satisfies (7) (= (5)). Exactly one
fixed point 7; = —c of C~! belongs to ¥.

The targets related to the admissible initial states are indicated by the
same marks. The trajectories starting at the initial states are generated here
by a system of, for simplicity, differential equations

0{ = 10 + sin §02 + sin ge;; + cos 27t
6, = ~3 +sin gOl — sin §03 + 2 cos 2rt,
6y = —1 —sin g@l — sin §02 — 3 cos2nxt.

Since € = E = 6, the time ¢ interval is chosen as [0,2]. A special attention,
however, should be paid to the value t* = 1, when the first hits to the target
are expected. The bold trajectory, starting at the point [9.5, —5.8, —3.7], hits
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Fig. 3

the associated target [20, —9.6, —4.4] approximately for one correct decimal

digit.
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