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A TARGET PROBLEM FOR DIFFERENTIAL INCLUSIONS 
WITH STATE-SPACE CONSTRAINTS 

Abstract. We study the existence of solutions to a nonstandard target problem for 
set-valued flows generated by a vector field as a Marchaud map. The proof is performed 
by means of the generalized Lefschetz trace formula (see [G]) which can be reduced, under 
mild assumptions imposed on a constraint, to computation of the sum of local indices. An 
illustrating example is given in l 3 . 

1. Introduction 
Recently, various aspects of the target problems have been intensively 

studied (see e.g. [CQS1], [CQS2], [CFM], [Q], [SOGY] and the references 
therein). Usually, the problem is solved in the frame of the optimal control 
theory and consists in the characterization of the minimal-time function, 
i.e. the first time such that the system can reach the target and satisfies 
the constraints before it (see [CQS1], [Q]). The system means basicly the 
first-order differential inclusions determined by the Marchaud map vector 
field. 

Here, we would like to discuss a rather nonstandard form for a system 
of differential inclusions 

(i) 0 ' e / M ) , 

where 9 = (9u...,9n), 0' = (0J , . . . , 9'n)T and f(t,9) = ( A M ) , . . . , 
/ n( / ,0))T , posed as follows. 

T A R G E T P R O B L E M : Given two codimension one manifolds Si c K N , 
£2 C K n and a constraint diffeomorphism C : £1 —»• X2- Does there exist a 
solution 0(f) of (1), where 0(ia) G Si, such that C(9(tx)) = 0(t2) C S 2 , for 
some ¿2 > h ? 

For our convenience, a schematical sketch of the planar problem can be 
seen in Fig. 1, 
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Fig. 1 

where, 
• the set of admissible (under a constraint C) related initial points . . . {pi, 

P2, •••}, 
• the target set . . . {qi,q2, • • •}, 
• the admissible trajectory reaching the target (a solution of the problem) 

. . . the bold curve. 
As we will see in the following, we can give at least a partial answer to 

the above problem on the torus. Thus, for example, we will be only able to 
consider the situation in Fig. 1 mod where denotes the distance 
between £ j and £2. 

2. Main (existence) result 
Hence, consider (1) and assume that the set-valued map f(t,9) : Rq~ x 

R n R n has maximally a linear growth in 9 and is bounded in t. Assume, 
moreover, it is upper semi-continuous with nonempty, convex, compact val-
ues (in this case, / is called the Marchaud map). It is well-known (see e.g. 
[F, p. 56] and [BGP], where the appropriate definitions can also be found) 
that then all solutions of (1) entirely exist in the Caratheodory sense (i.e. 
are locally absolutely continuous and satisfy (1) a.e.) and are with Rg-values 
on any compact interval. 
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Let, furthermore, 

(2) Y,fi(t,9)> e > 0 (or /<(/, 0) < - e < 0), 
¿=i •'=i 

by which 
n n 

lim = 0 0 ( o r = _ 0 0> respectively). 
- f 0 ° ¿=i ¿=1 

Consider still the (n - l)-dimensional torus E C Tn = R n /Z^ given by 
n 

(3) ffi = 0 mod b, 
¿=1 

where Z& denotes the set of all integer multiples of b and b ^ 0 is an arbitrary 
constant. For better understanding of this—see Fig. 2, where the definition 
of two-dimensional torus E C T3 is illustrated. 

Since (because of convenience) (1) will be considered on the cylinder 
RQ" x Tn, the natural restriction imposed on / is still 

(4) / ( i , . . . , ^ + ò,. . .) = / ( i , . . . , ^ , . . . ) for j — 1 , . . . ,n. 

R e m a r k 1. The particular form of / (see (2) and (4)) will play an 
important role in the definition of the Poincaré set-valued map (6) below. 
Under (2) and (4), this map has been proved in [A] to be admissible in the 
sense of [G]. 

Now, we are in position to give the main statement of our paper. 

T H E O R E M . Let the above assumptions be satisfied jointly with ( 2 ) and 
(4). Assume C : E —»• S is a diffeomorphism having finitely many, but at 
least one, simple fixed points, 71,.. . ,7 r , on the torus E C Tn (see (3)) and 

r 

(5) 5 > g n d e t ( I - d C ^ ) ^ O , 
k=1 

where dC~t
1 denotes the derivative of C - 1 at 7k G E. 

Then, for a given constant b > 0 or b < 0, respectively (see (2)), there 
always exists a solution 0(t) of (1) such that 

C(0(0)) = 0{t*) on the torus E, for some t* > 0. 

P r o o f . Take into account only the first inequality in (2); the second one 
can be used quite analogously. 
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D-i C2 

D2 = A2 C2 = B2 

Fig. 2 

Because of (2) and (4), there is a well-defined (cf. Remark 1) set-valued 
admissible Poincaré map $ on E, namely 

(6 ) * i T ( P ) } ( p ) : S - E , $MP)}(P) := { 0 ( r ( p ) } , 

where r(p) denotes the least time for p to return back to E, when taking into 
account each branch of a solution 6(t) of (1) with $o(p) = 0(0) = p € E. 

Our problem is obviously solvable, if we show p G E such that C(p) £ 
on E or, because of a difFeomorphism C, when we find a fixed-point of 

C - 1 ( $ ( p ) ) o n E. 
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For this purpose, we apply the "multi-valued analogy" of the Lefschetz 
trace formula in [G]. First of all, we show that the map $ : E E is 
homotopic, in the sense of multi-valued admissible maps, to identity I . We 
exhibit such homotopy as follows. 

Taking 
(01(p, s),..., 0n(p, s)) = e(st(p)), where 0 < s < 1, 

set 
n—1 

H s { v ) = { (P, s),..., (p, s), - £ 0i(p, s)) }. 
¿=i 

Observe that Hs(p) represents indeed the required homotopy, because for 
s = 0, Ho(p) = p, and for 5 = 1, H\(p) = The crucial step in appli-
cation of the generalized Lefschetz fixed-point theorem for the admissible 
(multi-valued) map C - 1 ($ (p ) ) on a compact (n — l)-dimensional manifold 
E consists in verifying the inequality A(C-1(d>(p))) ^ {0}, where A(.) is the 
generalized Lefschetz number (for the definitions see [G]). Because of the in-
variance under homotopy, it is however sufficient to show that A(C - 1 ) / 0. 

Since C~l is, by the hypothesis, smooth with finitely many simple fixed-
points, 7 i , . . . ,7r, on a compact manifold E, the Lefschetz number A(C - 1 ) 
can be simply calculated (see [B], [G]) as the sum of the local indices, namely 

r 

A ( c _ 1 ) = E s g n d e t ( / - d C 7 " / ) ' 
fc=l 

where denotes the derivative of C - 1 on the tangent space T7t E, which 
coincides here with E. 

So, because of (5), the proof is complete. 

R e m a r k 2. The time t* to reach the target can be obviously esti-
mated from above as t* < A lower estimate, t* > holds provided, 
additionally, 

n n 

[or J 2 f i ( t , 0 ) > - E 
¿=1 t=i 

In particular, for E = e = | 1» w e have the exact time, t* = 

R e m a r k 3. In the single-valued case, it is well-known (see [BBPT]) 
that iV(C_ 1$) = |A(C - 1 $) | on the torus E. Therefore, since the Nielsen 
index iV(C - 1 $) determines the lower estimate of fixed-points of the map 
C _ 1 $ on E, the absolute value of the nonzero number in (5) designates at 
the same time the lower estimate of desired solutions. The Nielsen index has 
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been also generalized for admissible (in-the sense of [G]) set-valued maps 
(see [AGJ]) and the same is true. 

An illustrating example in R3 

Suppose, for simplicity, n = 3, and C is linear, C(0) := L0 + c, where 

(«1 u2 u3 \ 
n v2 v3 J 
w1 w2 w 3 J 

is a regular matrix such that C := u\ -f v\ + w\ = u2 + v2 + w2 = u3 + v3 + w3, 
JC G Z, and c = (ci,C2,C3)t is a nonzero vector such that c\ + c2 + C3 = 
0 mod b. Observe that the particular forms of L and c allow us to operate 
on S , where 6\ + 92 + O3 = 0 mod b. 

Because of the regularity, there exists an inverse operator, namely C~ l {6) 
= L-^e-c). 

C~1(6) has exactly one fixed-point 71 on S as far as C{6) has, which is 
true iff 

(7) - U!V2W3 + u1v3w2 + U2U1W3 + U2V3Wi 
+ U3ViW2 + U3V2Wi + U-iV2 + UiW3 - U2Vl 

- U3W\ + v2w3 - v3w2 - Ui - v2 - w3 + 1. 

Then, under all the above assumptions, 

l A (C - 1 (0) ) l = |sgn det(7 - dC^(6))\ = |sgn det(J - L'1)] = 1, 

and we arrived at (5). So, Theorem can be applied, provided still (2) and 
(4) for a suitable Marchaud map f(t,0) = (fi(t,0), f2(t,0),f3(t,6))T. 

In Fig. 3, a trial of shooting to a target is demonstrated for b = 6 and 
L = 27, c = ( 1 , 2 , 3 ) t , which evidently satisfies (7) (5)). Exactly one 
fixed point 71 = — c of C - 1 belongs to 

The targets related to the admissible initial states are indicated by the 
same marks. The trajectories starting at the initial states are generated here 
by a system of, for simplicity, differential equations 

6[ = 10 + sin ^02 + sin ^03 + cos 2wt, 
O (J 

9'2 = - 3 + sin - sin ^0 3 + 2 cos27r/, 
o o 
7T 7T 

6'3 = — 1 — sin —0i — sin —02 — 3 COS2Trt. 
o o 

Since e = E = 6, the time t interval is chosen as [0,2]. A special attention, 
however, should be paid to the value t* = 1, when the first hits to the target 
are expected. The bold trajectory, starting at the point [9.5, —5.8, —3.7], hits 
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Fig. 3 

the associated target [20, —9.6, —4.4] approximately for one correct decimal 
digit. 
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