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A NEW PROOF OF THE FORMULAE 
USED IN THE CONJUGATE GRADIENT METHOD 

WITH PRE-CONDITIONING FOR SOLVING 
LARGE SYSTEMS OF LINEAR EQUATIONS 

Abstract. An original proof, easily accessible and accurate is proposed, for establish-
ing the formulae on which the computing algorithm is based, in full agreement with the 
purpose aimed at in computing applications. The proof is founded only on the minimiza-
tion conditions of a corresponding functional. 

1. Introduction 
In many applications, for instance in the finite element method, it is 

necessary to solve systems of equations with a large number of unknowns 
from approximately 200 to 10 000, called large systems of linear equations. 
For solving these systems one can use direct and iterative methods [l]-[9]. 
In the present paper, the conjugate gradient methods will be examined, and 
namely the conjugate gradient methods, which may be called also conjugate 
directions methods, with pre-conditioning, which have given favourable re-
sults in many applications. 

It is interesting to be mentioned, that there are different variants of the 
conjugate gradient method with pre-conditioning. It must be underlined, 
that various methods, although correct, cannot be utilized, because of the 
too great influence of the rounding errors, which arise when they are applied 
on a computer. That is why, it is necessary to examine the properties of these 
methods when they are applied in practice. 

We shall propose a new proof for the relations on which the conjugate 
gradient methods are based, in an easily accessible manner and useful for 
their application in practice. The symbols will be the usual ones [1], [7]. 
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2. The conjugate directions method with pre-conditioning 

2.1. The variants of the method 
Given the system of equations in matrix form 

(I) A x = b, 

where A is a symmetric positive definite matrix. The conjugate directions 
methods are based on searching, by an iterative procedure, of the solution 
of a linear system of equations in the form of the vector 

(II) x(m+1> = x<m> + aOTp ( rn ) , 

and at every step of the iterative procedure, it is required that the direction 
of vector p(m) should be conjugate with the direction of the previous iter-
ation vector. The condition is imposed, that the two directions should be 
conjugate versus the matrix A of the system. One obtains 

(III) (p ( " l + 1 ) ) T Ap ( m ) = 0. 

If the matrix A of the system were equal to the unit matrix, the two 
vectors would be orthogonal. There are, also, other equivalent manners for 
expressing the stated condition. There are different variants for deriving 
the computing formulae [2], [3], [5], [9], analyzed in paper [6]. In these vari-
ants, the condition that certain directions should be orthogonal or conjugate 
(versus certain matrices) is utilized. We shall consider two typical variants: 

1°. In the first variant [9, Part 2, p. 167,171], the set of utilized formulae 
is obtained directly, by a congruent transformation containing a dyadic de-
composition and an endogenous transformation. Thus, a quadratic matrix 
is transformed into a diagonal one, which will be inverted. 

2°. In the second variant, the set of formulae given in paper [2, p. 243] is 
obtained. This set is obtained by utilizing the iterative method with common 
steps with convergence acceleration coefficient, i.e. the method of Richard-
son, and putting the condition, that the rests (residuals) of the system of 
equations, should be conjugate with a certain symmetric matrix. It is proved, 
that one of the two main coefficients which occur corresponds to a mini-
mization procedure of a functional, whereas the second follows imposing, 
as previously, the condition that some vectors should be conjugate versus a 
certain symmetric matrix. 

We consider that in establishing the conjugate gradient methods, it 
would be best to utilize only the minimization of a functional. 

Indeed, referring to the minimization procedure, a remark we have made 
in a previous study [6] can be used, namely, in the case of numerical ap-
plications, instead of dealing with the error value (which may oscillate or 
increase, even if the iterative process is convergent), it is the value of the 
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functional that must be followed, in order to ensure that this decreases, 
meaning that the process is convergent. Moreover, according to the per-
formed numerical experiments, we have found, that the vectors which in 
accordance with the imposed conditions, should be orthogonal, do not sat-
isfy accurately this condition (because of the rounding errors). In order to 
emphasize that all the computing formulae may be obtained by minimizing 
a functional, hence without resorting to conditions which are not satisfied 
in the course of iterations, we shall give a very simple proof, which is not 
known in literature. Moreover this demonstration does not require special 
mathematical knowledge. We shall examine two computing variants. 

2.2. Establishing of the computing formulae for the first variant 
Let us search for the iterative solution of a system of n linear equations 

with n unknowns: 

(1) Ax = b. 

Generally the system of equations is assumed a normal one in the known 
sense [1, p. 306], that is matrix A is symmetric and positive definite. The 
case of an unsymmetric matrix can be examined separately. 

The solution of the system of equations (1) minimizes the functional 

(2) F = ^ x t A x - xTb, 

where x is any vector, which can be relatively simply established. The quan-
tity x which minimizes the functional (2), may be searched by an iterative 
method. The solution for any iteration m will be searched in the form 

(3) x(m + 1) = x ( m ) + a m p ( m ) , 

with 

(4) =z ( " l )+c m p( r o - 1 ) , 

and it will be adopted 

(5) 

(6) 

(7) 

where the symbols have the following meanings: M is a symmetric matrix, 
invertible, of the same order (rank) as matrix A, the quantities p and z 
represent the vectors along the directions of which the minimization is to 
be performed, and r represents the rest or residual. From relation (4) it can 
be seen that at every iteration, the previous iteration is taken into account. 

M z (m) _ r(m)j 

p(°> = z(°), 
r(m> = b - Ax ( m ) , 
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In the particular case when one takes M = A and M is easily invertible, 
and ao = 1 then, from equations (3), (5), (7) it follows immediately that 
after the first iteration, one obtains the solution. 

It is useful to be mentioned, that the previous relations are not of an 
arbitrary nature. With that end in view, we shall remark that the solution 
of the system of equations (1) is 

(a) x = A - 1 b . 

With these symbols, relations (7), (5), (4), become: 

(b) r ( m ) = A ( x - x ( m ) ) , 
(c) z w = M - I A ( x - x ( m ' ) , 
(d) p<m> = M - 1 A ( x - x ( m > ) + c tnp<m-1>. 

From relations (a)-(d) and (3), it follows that by relation (3), at every 
iteration, just the deviation from the solution is compensated. From relations 
(7), (3), one obtains 

(8) r K i ) = r W _ a m A p H i 

At the beginning one takes x^0^ and one obtains In order to obtain 
the value of the quantity x which ensures the minimum value of the func-
tional, we shall determine am and cm so that the value of the functional 
should be minimum. From the minimum condition 

^ ^ dam 

and utilizing relation (3), we obtain successively 

(10) ( p ' m ' ) r [ A x ' m + 1 ' — b] = 0, 
(11) (p(m))T r(m+l) = 0 ) 

(12) (p(TO))TA[x(m> + a m P W ] - (p ( m ) ) T b = 0. 

It follows that 
^p(m))Tr(m) 

( 1 3 ) ° m = (p(m))TAp(m)-

Taking into account relation (4), we can write 

(14) (p("0)Tr(m> = [ Z M + cmp(m"1)]Tp<m). 

Taking into account the relation of the form (11), we get 

(15) ( p ( ™ ) ) V m ) = ( z ( m ) ) T r ( m ) . 
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From relations (13), (15), (5), it follows that 

_ ( z < m f M z ( m ) 

( 1 6 ) ° m " (p(m))TAp<™)' 

From the minimum condition 

(») tf-"' 
t/cm 

we obtain successively 

(18) ( p ( m - 1 ) ) T [ A x ( m + 1 ) - b ] = 0, 

(19) (p(m-l))T r(m+l) = Q) 

(20) (p(m-1))T[Ax(™) + a m A z ' m ' + amcmApi"-1* - b] = 0, 

(21) ( p ( — D f [ _ r ( » ) + am AzW + amcm A p ^ " 1 ) ] = 0. 

Multiplying relation (4) by (r(" l+1^)T and utilizing relations (11), (19), 
(5), we get 

(22) (r("0)Tz(m+i) _ 0 -

Taking into account relation (11), the first term of relation (21) is null 
and it follows that 

_ (,(">) )T A p (m- l ) 
{ > m ~ ( p M i f A p l " 1 - 1 ) ' 

Taking into account relations of the form (8), (11), (15), the denomina-
tor of expression (23) may be expressed in terms of vector z. Considering 
relations of the form (8), (22), (5), the numerator of expression (23) may 
be, also expressed in terms of vector z. Finally, we get 

_ ( z(™))TM z(") 
{ } m ~ ( z (m-l ) )T M z (m-l ) * 

If the quantities given by relations (16) and (24) are always positive, it 
follows that the minimum conditions are satisfied. For this purpose it is 
necessary and sufficient that besides matrix A, the matrix M should be, 
also, positive definite. 

Similarly, other relations between the matrices p, z, r, A may be estab-
lished. For instance, from relations (8), (11), (19), it follows that 

(25) (p<m - 1>) rAp ( m ) = 0 . 

It is important to know, if in the course of computations, conditions 
(11), (19) are satisfied, hence to know if the values of the left-hand side are 
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near to zero. The usual manner, known in literature, (of considering the 
values of the left-hand side, so as they are obtained), cannot be accepted as 
satisfactory, because the results are almost always different from zero. To 
avoid this disadvantage, we referred to the case of the product of two vectors. 
In this case, for obtaining the value of the cosine of the angle between the 
two vectors, it is necessary to divide their scalar product by the product of 
their moduli. We have replaced the values of the vectors in the left-hand side 
of the referred relations, by their values divided by moduli of corresponding 
vectors. The obtained results can be compared regardless of the number of 
equations or of the values of the system coefficients. 

Further on, we shall give the results that we have obtained in the course 
of iterations for relation (22), with the mentioned divisions, for the system of 
equations considered in Table 1 given at the end of this paper and obtained 
from a computation problem of an electromagnetic field. 

The results are given below in Table a. 

Table a: Numerical results 

(¿01)^(00) = _O.1196241E-14 

(r<n))Tz(10> = -0.1965751E-06 
(r(21))Tz<20> = -0.1128731E-06 
(r(3i))Tz(30) _ _O.2166486E-06 

(r (41))Tz (40) = -0.4953121E-07 
(r (51))Tz (50) = -0.3179850E-07 
(r(61>)Tz(60> = —0.6660150E—07 

If we had not performed the specified divisions, we would have obtained 
other results, given in Table b, for instance. 

Table b: Numerical results 

^(01)^(00) = _o.4862583E-12 
(r (11))Tz (10) = -0.6910249E-03 
(r (21))Tz (20) = —0.4738768E—04 
( p ( 3 i ) j T z ( 3 0 ) _ — 0 . 4 3 7 0 6 9 4 E — 0 5 

Also, in the numerical experiments performed relating to formulae (13) 
and (16), we have found that relation (16) leads to a better convergence 
than relation (13). 
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2.3. Es tab l i sh ing of t h e compu t ing fo rmulae for t h e second 
var ian t 

In order to obtain another expression of the solution, it is possible to 
proceed as follows. One considers the relations obtained from formula (3) 
for m and m - 1, one expresses p<m) and p*"1-1). Then, with the help of 
formula (4), one eliminates p(m) and p ( m _ 1 ) . It results that: 

(26a) x<m+1> = x ^ - 1 ) + u;m + 1 [<smz<m> + x<m> - x ^ " 1 * ] , 

(26b-c) am = a™ ; um+1 = 1 + 
1 + ^ ' m + 1 _ Om-l ' «m-l 

(26d-f) a m = — ; w m + i = — ; wi = 1. 
Um+1 1 ~ am_7Wm

 C™ 

In order to obtain a more simple expression for a m we can proceed as 
follows. We multiply both sides of relation (26 a) first by A and then by 
(z(™))T and we emphasize the quantities and instead of x ^ and 
xi"1 - 1) . Taking into account relations (22) and (5), we obtain immediately 
the expression 

( z(m))TM z(m) 

( 2 6 g ) = (z(m))TAz(m) • 

These results are those obtained for the variant of point 2° of section 2, and 
established in literature starting from quite different considerations. 

Because relations (3) and (26) have been obtained above starting from 
the same formulae, we must expect to obtain the same results when applying 
the two methods, apart from the rounding errors. When applying the two 
variants, for enough complicated cases, including those of paper [6], we have 
found that the rounding errors have not had any influence and the results 
are exactly the same. 

Also, it is possible to establish the general relations 

(27) ( p W f r ^ = 0; Vz 6 [0, n - 1], j 6 [1, n]; i < j ; 
(28) (p(l>)TAp(J'> = 0; Vi € [0, n - 1], j € [1, n]; i < j. 

We have shown [6], that these relations may be obtained directly by utilizing 
conveniently relations (4), (5), (8), (11), (19)- The deduction may be done 
by an inductive reasoning, considering successively, the relations obtained 
for the superscript indices of orders: i = 0 , 1 , 2 , . . . , fc; j = k + 1, putting 
k = 0 , 1 , 2 , . . . , n — 1. Also, it is possible to establish, at the same time, the 
general relation 

(29) (z<*'>)TMzfc'> = 0; Mi ^ j\ i,j G [0,n]. 
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However, for computations, only relations (11), (19), (25), derived above 
in the paper, are of interest. 

3. Pre-conditioning of the matrix of the coefficients of the 
system 

There are various manners for proving that the convergence of the conju-
gate gradient method depends on the conditioning degree (condition num-
ber) K = Amax/Amin of the matrix ( M - 1 A ) of the system of equations, 
where Amax and Amin represent the greatest and the smallest eigenvalue re-
spectively of the matrix referred to above. For the particular case where 
M = A, the condition number is equal to unity and the solution is ob-
tained after the first iteration. The closer to unity the conditioning degree 
of ( M - 1 A ) is, the more rapidly convergent the iterative process will be. 

The principles for obtaining a pre-conditioning matrix are presented in 
paper [8]. There are different procedures for obtaining these matrices. We 
have experimented several pre-conditioning matrices. We have obtained the 
best results with the matrix obtained by incomplete Cholesky factorization. 
There are several procedures for obtaining a matrix of this type. 

For a better explanation of the results, we shall present shortly the uti-
lized procedure [2, p. 207, 211], [6] adding, also, some specifications useful 
for the procedure. Generally, one can search to obtain the relation 

(30) A = LSU, 

operation called decomposition or factorization (we shall use both terms). 
For the same matrix, one can search the relation 

(31) A = LSU - R, 

operation called incomplete factorization, where the following symbols have 
been used: L - lower left matrix (sub-diagonal triangular matrix) with unit 
diagonal; U - upper right matrix (over-diagonal triangular matrix) with 
unit diagonal; S - diagonal matrix; R - matrix containing the elements 
deliberately not included in the matrix product factors. In the case of a 
symmetric matrix, the relation U = L T is fulfilled. 

At first sight, it might seem, that the incomplete factorization would not 
have advantages as compared to the complete factorization, if the last were 
possible. In fact, the incomplete factorization is more advantageous, because 
it requires a number of arithmetical operations, and a storage zone, both 
much smaller. 

The matrix assumed to serve as a pre-conditioning matrix is 

(32) A = LSU, 
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and the matrix R must not be stored. The computation of the elements of 
the matrices of relation (32) are performed by the known procedures [2], [3], 
[4], [6], [8]. 

3.1 . P r o c e d u r e for performing an incomplete Cholesky decom-
position (factorization) 

In this decomposition one keeps only those elements which correspond 
to those places of the matrix A, the elements of which are different from 
zero; then, to store matrices L, S, U, a storage zone, equal to that for storing 
the matrix A is necessary. In some cases, when the convergence is slow, a 
certain increase, called shifting, of the elements of the principal diagonal 
of the matrix A [4, p. 482] is recommendable. In the cases that we have 
examined, this increase has not been necessary. 

4. The number of iterations necessary for obtaining the solution 
To establish the number of iterations necessary for obtaining the solution, 

we shall search the number of the iteration for which the rest (residual) is 
null. 

The derivation will be in accordance with the proof of the formulae and 
differs from those given in literature which concern the formulae without 
pre-conditioning, or are based on other considerations [5, p. 181]. 

We shall use relation (29) in the form 

(33) ( r ( m ) ) T M - l r ( m + l ) = 0 

The last equation may be written 

(34) ( r ( m ) ) T M - l / 2 M - l / 2 r ( m + l ) = o 

We shall denote 

(35) r<m) = M - ^ V " 1 * , 

and from relations (33) and (35) we get 

(36) ( f(m))T f(m+l) = q 

If one utilizes relations (4), (5), (3), successively, one obtains for any 
iteration, expressions of the form 

m 
(37) r(m) = J c m f c ( A M - 1 ) M ° ) . 

k=0 

From relations (37) and (35) we obtain 
m 

(38) r<m> = ^ M - ^ f A M - ^ M ^ M - 1 / 2 ^ ) . 
k=0 
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Considering the general relation [1, p. 377] 

(39) S - 1 (A) f c S = (S _ 1AS) f c , 

where S is a non-singular matrix, we get 
m 

(40) r<m> = ^ c m f c ( M - 1 / 2 A M - 1 / 2 ) f e r ( ° ) . 
k-0 

We shall suppose that is not an eigenvector of the matrix 
otherwise, one would have obtained the solution after 

the first iteration, m = 1. It may be noted that the matrices ( M - 1 A ) and 
( M - ^ A M - 1 ' 2 ) , 

have the same eigenvalues, but different eigenvectors. 
It can be mentioned that the vectors (41) A*f<°>, (A = 0 , 1 , 2 , . . . , « - 1); A = M ^ A M " 1 ' 2 , 

form a vector basis of the linear space S of s < n dimensions, and if the 
eigenvalues of the matrix A are distinct, s = n. It follows that all the vectors 
r(m) for m > 5 — 1 are in the same linear space. 

For m = s — 1, according to relation (36), we obtain 

(42) ( f i - i ) ) ^ « ) = 0. 

At the same time, the vector must satisfy a relation of the form (29), 
written in the form of (42), for j — s, and i = 0,1,2, ...,s — 1. Taking into 
account that the vector f ^ must be in the same linear space with the vector 

it follows that it must be null. Hence 

(43) r ^ = 0, 

and 

(44) = 0. 

Therefore the solution is obtained after s < n iterations at the most. 

5. T h e c o m p u t a t i o n e r r o r s 
The conjugate directions methods permits, if the rounding errors are 

not taken into consideration, i.e. in the idealized case, to obtain the solution 
after a number of iterations equal, at the most, to the number of equations. 
That is why, in the idealized case the examined methods may be considered 
as direct methods. 

From a practical point of view, the solution may be obtained after a 
much smaller number of iterations, but sometimes the number of iterations 
may be larger than the number of equations. That is why, in a non-idealized 
case, the examined methods may be considered as iterative methods. Thus, 
in the idealized case, if in a system of n equations, one introduces x^0) and 



Conjugate gradient method 771 

the solution will be obtained after exactly n iterations, then the solution will 
be As it is shown in paper [8], different measures of the error can be 
used for evaluating the accuracy of the results and for stopping the iterative 
process. In this study, the errors have been computed by the formulae we 
have proposed and utilized previously [6]. 

Firstly, the values of the functional must be verified, in order to ensure 
that this decreases after every iteration, regardless of the values of the con-
sidered errors, meaning that the process is convergent, else the process must 
be interrupted. Then, the following errors have been considered. 

The global relative error with respect to the right-hand side 

(45) eTb = |rjm>|/ £ |6t|, r(m) = b - Ax<»>. 
¿=1 »=1 

The maximum relative error corresponding to the equation of the row i 
of the system, with respect to the right-hand side 

n 

(46) e H = m a x ( n | r S m ) | / £ l 6 ' l ) -
x=i 

The maximum absolute error corresponding to the equation of the same 
row of the system 

(47) ew = max(|rjm) |). 

6. Numerical experiments 

6.1. The experimented cases 
We have experimented on numerical computer, the methods examined 

in the present paper, for the case of the system of equations obtained from 
a type problem. The type problem has been represented by the computing 
example examined in the study [6]. 

The example of paper [6] refers to an enough complicated configuration 
of a rotating electrical machine with ferromagnetic parts for which some 
electromagnetic performances are to be computed. The problem results in 
computing the vector potential of the magnetic field for a two-dimensional 
domain. For this purpose it is necessary to solve a partial differential equa-
tion of the second order of elliptic type. For obtaining the solution, a finite 
element method, involving a discretization net (mesh) was used. The appli-
cation of this method requires solving of large systems of linear equations. 

6.2. The properties of the matrix of the coefficients 
To facilitate the understanding, we recall that the discretization net for 

the mentioned example has 701 nodes, and if one leaves out the equations 
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corresponding to the nodes at which first kind boundary conditions (namely 
the vector potential) are given, there remain 636 equations. 

1°. The matrix is symmetric and positive definite and weak conditioned. 
The first two properties derive from the type of the mathematical problem, 
whereas the third depends on the conditioning degree which depends on the 
properties of the parts of the domain. 

We have established the conditioning degree (the condition number) of 
the matrix A and we have obtained [6] the value K =0.2043377E+08. 

2°. The matrix has 636 rows and 636 columns and each row contains at 
the most 9 elements different from zero, thus it is a sparse matrix. The fact 
that each row contains 9 elements is due to the finite element method. 

3°. These 9 elements are distributed on each row of the matrix, so that 
the matrix does not represent a band matrix with a small width. This dis-
tribution yields from the numbering of the net nodes utilized in the finite 
element method. For obtaining a band matrix it is necessary to renumber 
the unknowns, i.e. the same, to renumber the nodes of the net nodes. 

4°. The width of the band matrix after the renumbering of the nodes 
was 2 x 98 + 1. 

5°. The order of magnitude of the matrix elements max|ajj | and min|ajj | 
considering only the elements a^- ^ 0 are 107 and 10° respectively. In the 
case of the experimented method, the input data, i.e. the coefficients matrix, 
have been introduced in simple precision (4 bytes per word), whereas the 
computations have been carried out in double precision (8 bytes per word). 

6.3. Considerations regarding the results 
1°. The beginning value (starting value) of the iterative procedure was 

always x^0^ = 0. 
2°. The conjugate gradient method, in each of the two variants given by 

formulae (3) and (26) respectively, ensures the same precision of the results 
for the same number of equations. 

3°. The conjugate gradient method with pre-conditioning by incomplete 
Cholesky factorization, leads to very small errors. We have examined two 
situations: a. The matrix of the coefficients is sparse; b. The matrix of the 
coefficients of the same system of equation is in the form of a band matrix of 
width 2 X 98 + 1 obtained by renumbering the nodes (hence the unknowns) 
in the previously described manner [6]. In both situations the necessary 
storage zone was the same, a supplementary vector excepted (for the case 
of the band matrix). 

One can observe, that the errors are sensibly smaller for the case of the 
sparse matrix, what is convenient, the renumbering being not necessary. 
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6.4. Numerical results 
The numerical results that we have obtained are given in Table 1. 

T a b l e 1: The results obtained by solving the system of equations for the test problem 

Nb. Method Number Duration Relative Relative Absolute 

of iterations in time units global error maximal error maximal error 

1 Cholesky - 1782 0.5425692E-02 0.6295747E-01 0.3263733E+01 

2 Conjugate gradient 66 808 0.5829649E-04 0.1090070E-02 0.5650950E-01 

I 104 1141 0.7410503E-06 0.2041079E-04 0.1058100E-02 

3 Conjugate gradient 66 808 0.6780558E-01 0.9768320E+00 0.5063920E+02 

II 104 1141 0.3460083E-04 0.4289385E-03 0.2223627E-01 

C h o l e s k y (SCHB of [6]: method for unsymmetric band matrix, simple precision. 
C o n j u g a t e G r a d i e n t I (SOLVE3 or SOLVE31 of [6]): a. Pre-conditioning by incom-

plete Cholesky factorization, from paragraph 3.1. Duration of pre-conditioning 211 time 
units (included in the table in duration), b . The matrix of the system is sparse. 

C o n j u g a t e G r a d i e n t I I (SOLVE3 or SOLVE31 of [6]): a. Pre-conditioning by in-
complete Cholesky factorization, from paragraph 3.1. Duration of pre-conditioning 211 
time units (included in the table in duration), b . The matrix is of the band type. 
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