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ON EXISTENCE OF SOLUTIONS
OF A SINGULAR CAUCHY-NICOLETTI PROBLEM
FOR A SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS

Abstract. In the paper a singular problem of the type of Cauchy-Nicoletti for a
system of integro-differential equations is considered. The existence of solutions the graph
of which remains in a properly choosen domain is proved. Moreover, the theorem about
uniqueness of solution in this domain is given. The applicability of results is showed on
an illustrative example.

1. Introduction
Consider the following singular problem of the type of Cauchy-Nicoletti
for the system of n ordinary integro-differential equations

V(@) = fulz,y(2)) + | gx(z, 5, 9(z), y(s)) ds,
1) -
yi(z) = filz,y()) + { ai(z, 5, 9(z), u(s)) ds,

k=1,2,...,h, 1<h<n, I=h+1,...,n,
(2) yk(a‘+) = Alw yl(b—) = Bla

where ¢ € I = (a,b), y(z) = (n1(z), y2(2),- .-, yn(2)), a,b, Ak, B; are real
constants, ¢ < b and (z,y) € I X D, where the set D C R" is indicated
below.

The Cauchy-Nicoletti problem, the generalized Cauchy problems or the
boundary value problems for systems of ordinary differential equations have
been considered by many authors. Singular problems of such types have
been studied e.g. in works [1]-[9], [11]. Singular initial problem for systems
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of integro-differential equations was considered in [10]. In this paper we give
sufficient conditions for solvability and uniqueness of the problem (1), (2)
and some estimations of the components of solutions. The solution of (1),
(2) is defined in the sense of following definition.

DEFINITION. The solution of the problem (1), (2) is defined as a vector-
function y(z) = (y1(z),y2(2),- .., yn(z)) € C(I) which on I satisfies the
system (1)7 (IL‘,y(JT)) € D on I and yk(a+) = Ak7 yl(b—) = Bl7 k=
1,2,... h, Il=h+1,... 0

2. Main results
We will consider real functions 7v;(z), é:(z), (i(z,s), ni(z,s), ¢ =
1,2,...,n, which satisfy the following conditions (H1)-(H2):
(H1):
Ye(z), 6x(z) € C(a,b], vx(x) < 6k(z) on (a,b], k=1,2,...,h,
71(z), 6i(z) € Cla,b), 7i(z) < 6i(z) on [a,b), I=h+1,...n

and, moreover, there are finite integrals

b b
Vrimyat, \6(nydt, i=1,2,...,n.
(H2):
Ck(z, ), mk(z,s) € C((a,b] x (a,b]), C(z,s) < mi(z,s) on (a,b] x (a,b],
k=1,2,...,h,
G(z,s),m(z,s) € C([a,b) X [a,d)), ¢(z,s) < m(z,s) on [a,bd) X [a,b),
I=h+1,...,n
and, moreover, there are finite integrals
bb bb
HQ(w,s)dsdw, “n,-(w,s)dsd:z: i=1,2,...,n.

Define for £ = 1,2,...,h; I=h +1,...,n on [a,b] continuous functions
ak7ﬁk7al7ﬁl:

ar(z) = Ak + S'yk(t)dt + \\ (k(t, 8) dsdt; ar(a) = ar(e + 0);

nk(t, 8) dsdt; Bi(a) = Br(a +0);

At 8 O e
B ™ o O s b

ﬂk(.’l?) = Ax + S&k(t)dt +
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b bb
a(z) =B — S&;(t)dt - “m(t,s) dsdt; a;(b) = ay(b - 0);
’ v
Bi(z) = B — | m(t)dt — {{Gu(t, ) dsdt; Bu(b) = Bi(b - 0).

Denote by D and D, the domains

D ={(z,y):2 € I,a;i(z) <y; < Bi(z),i=1,2,...,n} and

Dy = {(z,8,9,w): (z,y) € D, (s,w) € D, s < x}.

THEOREM 1. Let the functions v;(z), 6i(z), (i(z,s), ni(z,s), ¢ =
1,2,...,n satisfy the condition (H1)-(H2) and, moreover,

a’) ft("l"ay) € C(D)a gi(a:,s, y,’UJ) € C(Dl),

b) 7i(z) < fi(=,y) < bi(z) where (z,y) € D,

C) Q(z,s) < gi(:c,s,y,w) < 77:'(%3) where (a:,s,y,w) € Dy,

d) for arbitrary points (z,%), (z,y) € D

|fi@,9) - fi(@, DI < Y Mis(2)lF; - T

j=1
where M;;(z) € C(I) are nonnegative functions such that

b
| Mi;(2)(B(z) - a(2))dz < oo,

a

e) for arbitrary points (z, s, ¥, ), (z,s,9, W) € Dy

n n
|gi(x,s,§,ﬁ) - gi(zv Saiaﬁ)l < Z Nij(zv S)I-gj - ?JI + Z P;j(ﬁl?, s)l'u7] - ﬁ]'
j=1 i=1
where N;;(z,s) € C(I x I), Pij(z,s) € C(I x I) are nonnegative functions
such that
bb

S SNij(a:, s)(Bj(z) — aj(z)) dsdx < oo,

aa
bbd

S sP,'j(a:, 8)(Bi(s) — aj(s))dsdz < oo.

aa

Then there is a solution y(z) = (11(z),y2(2),...,yn(z)) of the Cauchy-
Nicoletti problem (1), (2).
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Remark 1. Notethat the conditions of Theorem 1 are necessary simul-
taneously. Indeed, if a function y = ¢(z) = (p1(z), ..., pn(z)) is a solution
of (1), (2) then there can be put

72'(27) = 61($) = f,'((l), (,0(97)), Ci(wv 3) = 7li($, 3) = g,'(.’lf, 3, ‘10(1‘)7 (P(s))
and, consequently, a;(z) = Bi(z), ¢ = 1,2,...,n. In this case we put
Mij(z) = Nij(z,s) = Pyj(z,8)=0, i=12,...,n

THEOREM 2. Let all assumptions of Theorem 1 hold and, moreover,

b bb bb
q(SM(m)da:-I—HN(:L‘,s)dsdz+SSP(z,s)dsdw) <1

where
g = max{h, n—h}, M(z)= max M;;(z),
ij

N(z,s)= IIE?;XNiJ’(.T,S), P(z,s) = max P;j(z,s); ¢,j=1,2,...,n.
ij

Then the solution

y(w) = (yl(m)y yZ(m), .. -,yn(z))

of the Cauchy—Nicoletti problem (1), (2) with the property (z,y(z)) € D on
I is unique.

THEOREM 3. Let all asumptions of Theorem 1 hold and, moreover, there
is a constant p € [0,1) such that on I

n T

® 3§ [Mu0Bi©) - a0+

+ §(Nei(t, 9)(Bi(2) = @i(1)) + Pis(t, 8)(B(s) — @;(s))) dS] dt

< p(Bi(z) — ak(2))
ifk€{1,2,...,h} and

n b
(4) ZS [sz(t)(ﬂj(t) —a;j(t)+
b

+ §(Wi5(2, $)(B5(t) = @;(0)) + Pis(2, s)(Bi(s) — @s(s))) dS] dt
< p(Bi(e) - ai())
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ifl € {h+1,...,n}. Then the solution y(z) = (y1(), y2(2),-- -, yu(z)) of
the Cauchy-Nicoletti problem (1), (2) with the property (z,y(z)) € D on I
is unique.

Proof of Theorem 1. In view of a), b), ¢) and (H1)~(H2) the
problem (1), (2) is equivalent in D; with the system of integral equations

(5)  we(e) = Ak + | (e, 9(@) di+ [ {92, ,9(2), 3(s)) ds dt,

k=1,2,...h,

bb
(6) wyi(z)= B~ Sf,(tyt))dt “gz(tsy(t)ys))dsdt
’ Il=h+1,...,n

Define, with the aid of (5), (6), the sequences of functions {y(z)}, i =
1,2,...,n,m=0,1,..., on interval I as follows

W(z) = %(ai(w) + i), i=1,2,...,m,

gy (@) = Ax + | filt,y™(8)) dt +

IR [ gx(ts 5,47 (1),y™(s)) ds dt,

ai(t, s,y™ (1), y™(s)) ds dt.

tiz_’-o- 0 e 8
et O D Cwmem B

b
fl(t7ym(t))dt S

g (z) =

\

where k = 1,2,...,h; I=h+1,...,n

I. By method of induction it may be easily proved (with the aid of
(H1)-(H2), a)-c)) that all elements of these sequences can be continued
continuously on the closed interval [a,b] and, moreover, (z,y™(z)) € D if
z € [a,b], m =0,1,2,... We will take this into account in the next text.

I1. We show by Arzeli’s theorem that there are subsequences {y.""(z)}
of the sequences {y(z)} which converge uniformly on [a, b]. It is necessary
to prove that all members of these sequences are uniformly bounded and
equicontinuous. The uniform boundedness follows from fact that (z,y™(z))
€ D,m=0,1,2,...0n [a,b] and functions a;(z), B;(z) are bounded on [a, b].

Prove the equicontinuity. Let k € {1,2,...,h}, m =0,1,2,... Define for
z € (a,d]

¥ul(e) = max{ln(@)h 6=},
xi(z) = max { | [Gu(z, ) ds,{ Ine(, )] ds .
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Then from b), ¢), (H1), (H2)
Ifk(1:, ym(z))l < ¢k(z)’ S (a”b]7

Vlgu(z, s,5™(2), y™(s) ds < x(2), @ € (a,b].

Define
wr(z) = max{lax(z) — Ak, |Br(z) — Akl}, = € [a,].

Then on [a, ]

|§ 5ty @) dt + [§gu(t, 8, 9™(2), y™(9)) ds dt] < ().

Choose arbitrary positive number €. Then, because ¢x(a) = 0 and @i(z) is
continuous, there is a wx = wi(€x), 0 < wx < b — @, such that pr(z) < %8k
if z € [a;a + wg). Let

w
Iy = (a + —f,b], My = sup ¢(z), Np= sup xx(z),
z€l} z€l}
" Ek ) L 1
0< Ak < m, /\k = min {/\k,’é'w'k}.
We obtain for ¢/, z" € [a,b], m > 1 and |2’ — 2"| < A:
a) if 2/,z" € Iy, then

lyg(z") — yi(a")| <

11 "

z 't
S‘ | |fk(t,y’”‘1(t))dt|l+l | Vlge(t,s,9™ 71 (2), 9™ (s)) ds dtf| <

<| et +] § xue) dt] <
< Milz' — 2" + Nila' — 2" < Ae(M + Ni) < Ap( My + Ny) < ex;

B)if 2',z" & Iy, or ' € Iy, 2" & I, then 2',2" € [a,a 4+ wi} and

i (") = 9 (") £
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’
x

< H et y™ @) dt+ § V1gr(t,8,9™ 71 (2), 9™ 7 (5))] ds dtl+

1
z" x

¢
| Ay @)l et | Flante,s,ymH@),0m (o) ds ] <
a a a
! n 1 1
< pi(e’) + or(a”) < Zex + ek = ex-

For m = 0 we can proceed analogously. The equicontinuity for indices
k € {1,2,...,h} is proved. By an analogy we can prove the equicontinu-
ity for indices [ € {h + 1,...,n}. Therefore the equicontinuity is proved
and by Arzeli’s theorem above-mentioned subsequences {y;""(z)} exist. We
denote the limits of these subsequences as y;(z), ¢ = 1,2,...,n. In the next
reasonings we will use, without loss of generality, the previous sequences
instead of these subsequences. Because (z,y™(z)) € D for each m = 0,1,...
and z € [a, b] then (z,y(z)) € D on [a, b] too.

II1. Prove that the limit function y(z) = (y1(2), y2(2), ..., ya(z)) satis--
fies on I the system (5), (6).

For each positive € there is (in view of uniform convergence) an index
me such that for m > mz : |yi(2) — y™(z)| < €,i=1,2,...,n on [a,b].
Because (z,y(z)) € D and (z,y™(z)) € D on [a, b] then

(8) lyi(z) — y7(2)] < min{§, Bi(z) - ai(2)}, i=1,2,...,n

From d), e) and (8) we conclude that for each positive ¢ there are: an
index n. (sufficiently large) a value z! € [a,b] (perhaps sufficiently near to
the point a) and a value z2 € [a,b], z} < % (perhaps sufficiently near to
the point b) such that for m > n,, ¢,7=1,2,...,n

o

k4

® | [Mu@lw) - @+

+§ (Wt 9)lui(0) = 97O + Pt lys(s) = v (s)]) s dt <
10)  § [Mis(olwt) - o)1+

£

+ Wi 90 = 47 O + Pt 9)lys(s) = v () ds] i < o,

a
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b
(1) § [Mu@ls) - s+

2
T

(Vi )y = 57O + Pt 9)lus(s) = v (o)) ds] it < o=

The integral in (10):

2
P

J = {2yt 9)lyi(s) — y7(s) ds dt

o

can be made sufficiently small (if n. is sufficiently large) because

2 tl 2 b

J< (1414 0)Pitt9)lus(s) - (o) dsat

where a value ¢! € [a, b] is, if necessary, sufficiently near to the point a and a
value t2 € [a, b] is, if necessary, sufficiently near to the point b. Analogously
the correspondence integrals can be considered in (9), (11).

In view of d), e), (9)-(11) for = € [a,b], k = 1,2,...,h:

' S fe(t,y(t)) dt+ S Sgk(t, s, y(t), y(s)) ds dt—

= § St y™ () dt = [ gult, 3,9™(2), y™(s)) ds ] <

a aa

< | Vit 9() - Sty @)l dtf+

+| 1119885, 902, 9(5)) — ga(t, 5,5™(8), y™ ()] ds dt] <

<Y M)l () - o ()] dt+
aj=1
+ S S (zn:Nkj(t,s)lyj(t) - y;n(t)l + Z ij(t73)|yj(5) — y}""’(s)l) dsdt <

i=1
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n

i(Mkj(t)lyj(t) -y (M

.

+JW o)) = 9O+ Pt )lus(e) = o7 () o) de <
n b
< L1060l - P Wl

+ S(Nkj(t, $)|y;(t) = 7" (0| + Prj(t, 8)ly;(s) — v (s)]) ds) dt =

2
T,

:JZ:;(ZS+ S ot § ) <e.

a zl z?

Consequently, if € — 0 then

[ (felty™(0) + §g(t,5,5™(0),y™(5)) ds ) de

a

T t
— | (fult 90) + § 9x(2,5,3(0), (5))ds ) dt
By analogy we can prove that forl € {h+1,...,n}
b b
§ (£t (1)) + § (2, 5,4™(2),5™(5)) ds) dt

b b
— | (fk(t7 y(t) + Sgk(t,s,y(t),y(s))ds) dt

if z € [a,b] and € — 0.

Therefore the vector function y(z) is a solution of (5), (6), and, conse-
quently, a solution of the problem (1), (2) with mentioned properties too.
The theorem is proved.

Proof of Theorem 2. Let there exist two different solutions y(z)
and u(z) = (u1(z), u2(z), ..., un(z)) of the problem (1), (2) with properties
indicated in Theorem 1. Then by the condition d), e) of Theorem 1 and
from (5) for k € {1,2,...,h} on I it follows that
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(12)  Jye(z) — ur(z)| <

<[ §1Aet, 9 - fult, u)] de]+

a
zt

+ 11885, 52, 9(5)) - gu(t, 5, u(), u(s)) | ds dt| <

aa

<V M)l (1) — ui()|de+

a j=1
15 (Wit Dl 0) = w1+ 3 Pii(t, )lai(s) = ws(s)l) st <

T

<MY lustt) - ui(0lde+

zt

15 (V69 2 05(0) - w1+ P(t,9) Y lus(s) = us(s)]) ds dt =

= §M(t)A(t) dt + § (¥ (2, 9)A@) + P(t, 5)A(s)) ds dt,

a aa

where A(z) = E;.L:l lyj(z) — u;j(z)|. Analogously from (6) for | € {h +
1,...,n} we obtain

(13)  Julz) - w(z) <
b bb
< | M@OAQ) di+ [[(V(5,9)A®Q) + P(t,)A(s)) ds dt.

ferd

Denote A = maxz¢[q,4 A(2). In view of (12), (13) we have

h n

(3 lu(@) = we@)l) + (D In(e) - w(@)]) = Ale) <
k=1 I=h+1

M(t)A(t) dt + § [ (N (t,8)A() + P(t,5)A(5)) ds dt) +

aa

<3

h
k=1

R e §

n b bb
+ Y (TM@a@)dt+ ([N (2 9)AR) + P(t, 5)A(s)) ds dt) <
I=h+1 = Tt



On existence of solutions 757

h n b
gA[(;EM(t)dt+IZ;1§M(t)dt)+
h zt n bb
(Z“N(t s)dsdt+ Z “N(t s)dsdt)
k=laa I=h+1zxt

n

bb
P(t,s)dsdt+ z “P(t,s)dsdt)] <

I=h+1

R e B
0 Cmmm o

3

=1
b bb bb
< Aq( | M(t)dt + |\ N (2, ) dsdt+ | P(t,5) ds dt)
We obtain a contradiction because

bb
0<A< Aq(SM(t)dt+ “(N(t s)+ P(t, s))dsdt) <A.

The theorem is proved.

Proof of Theorem 3. Let there exist two different solutions y(z)
and u(z) of the problem (1), (2) with properties indicated in Theorem 1.
Then by (5) and (3) for z € I,k € {1,2,...,h}

(14)  yr(z) —ur(z)| £

n

< ZS [Mk,-(t)(yj(t) - u;(t)+

+ §(Vii(t, 9)(w5(8) — wi(2)) + Pj(t, 8)(wi () — u5(s))) dS] dt <

< 3§ [Mri()(85(8) - ai())+

=1

o,

+ [ (Nt )(B1(2) = 5(0) + Pest,5)(By(s) - a(s))) d] dt <
< PBH(2) - ax(2)),

(15) lyk(z) — ue(2)| < p(Bi(z) — ar(x)).

If we repeat again reasonings (14) taking into account (15), we can prove
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the inequality
lye(z) — u(2)] < p°(Br(2z) — a(c))

for s = 2 and, consequently, for each s € N, s > 2. Therefore, if s — 00, then
p° — 0 and yx(z) = uk(z). By an analogy, using (6) and (4), we can prove
that y;(z) = wi(z) on I for each / € {h +1,...,n}. The theorem is proved.

3. Example
Consider the Cauchy-Nicoletti problem (16), (17)

y{ = f(x)yl + F(‘T, yl7y2)7

T
(16) vy = {wi(s)ds,
(17) y1(04) =0, %(T-)=-q,

where 0 < T, 0 < a. Let there exist positive function x(z) € C(I),
I; = (0,T), and negative function w(z) € C?(I;), such that x'(z) > 0 on I,
x(04+) =0, w(z) < —aon I1, w(T-) = —o, ' (T-) = 0, x(z) < —w"(z),
and let there exist integrals Sg x'(s) ds, Sg w"(s)ds.

Introduce a domain

Dy ={(z,5,y2) 1z € [,0 <y < x(2), w(z) <y2 < —a}
THEOREM 4. Let f(z) € C(I1) be a nonnegative function, Sg f(s)x(s)ds
< 00, f(z)x(z)+ n(z) < X'(2), ¢ € I} where n(z) € C(I1) is a nonnegative
funCtiona F($7y17y2) € C(DZ)a 0 < F(w,ylayZ) < 7['(.’12) on D27 Sg 7T(8) ds <
w,
|F(2,71, %) — F(2,91,52)] < Mi(2)[Fy — Tl + M2(2)|7; — B2l
where My(z), My(z) € C(L1), (2,91,%2), (2,71, Y,) € D2, and

T T
| Mi(2)x(e) dz < 00, | My(z)(—a - w(z))de < oo.
0 0

Then there is a solution y = y(z) of the problem (16), (17) such that
(z,91(2),y2(2)) € D2 on I,. Such solution is unique if, moreover, there
is a constant p € [0,1) such that on I

V@) + Mu(t))x(2) + Ma(t)(—e ~ w(2))] dt < px(z),
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and
TT

|| x(s)dsdt < p(—a - w(z)).
zt
Proof of Theorem 4. It is not difficult to verify all assumptions of
Theorems 1 and 3ifa=0,b=T,n=2,h=1,A; =0, By = —a, D = D,,
1(z) = 12(2) = 8(2) =0, 81(z) = X'(2), (1(z, 3) = (2, 5) = m(z,5) =0,
UZ(Q:,S) = _w"(s)a f1($,y1,y2) = f(z)yl"'F(x,yl’y?)’gl = f2 =0,9: = m,
Mu((l?) = f(:L‘) + Ml(ili), M12($) = Mg(.’l?), Mg](.’r) = M22($) = Nn(m,s) =
Ni2(z,8) = Nai(z,s) = Nog(z,s) = Pz, s) = Pia(z,s) = Py(z,s) =0,
Pyi(z,8) = 1 and a3(z) = 0, f1(z) = x(z), a2(z) = w(z), fa2(z) = —0.
From its conclusions follows the conclusion of Theorem 4. The theorem is
proved.
Consider the concrete singular problem of the type of (16), (17):

y1(0+) =0, y2(1-) = - 1.
The conditions of Theorem 4 are valid for @ = 1, T = 1, f(z) = =71,
4,2
Flz,y1,12) = 52, x(z) = n(z) = 2%, w(z) = -1 - (1 -2)}, M; =
0, Mp(z) = 24, p € [-;—,1). Therefore, there is a unique solution y(z) =
(1(z), y2(z)) of this problem on (0,1) for which 0 < y;(z) < 2*, ~1 - (1 -
z)? <p(z) < -1,
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