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SPECTRAL REPRESENTATION
AND CHARACTERIZATIONS OF LOCALLY ALGEBRAIC
LINEAR TRANSFORMATIONS

1. Introduction

The purpose of this paper is to generalize a spectral representation the-
orem of Williamson {7} and to simplify its proof. We show that this theorem
is, essentially, a spectral representation of locally algebraic linear transfor-
mations which can be deduced by elementary methods of the linear algebra.
Due to Kaplansky [3] a linear transformation T on a complex space F is said
to be locally algebraic, if, for each z € E, there exists a non-zero polynomial
f such that f(T)z = 0. As main tool for our results serves a decomposition
of the underlying space which is in the finite dimensional case well-known
from the theory of the Jordan canonical form.

We first introduce some notation. E will always be a complex linear
space. L(E) denotes the set of all linear transformations on E and E*, the
algebraic dual of E. 0,(T) = {A € C : T — Al is not one-to-one} is the
point spectrum of T. If £ is a locally convex space, then L(F) is the set
of all continuous linear transformations on E and E’ the topological dual
of E. o(T) = {) € C: T — Al has no inverse in L(E)} is the spectrum
of T. T € L(FE) is called quasi-nilpotent, if, for every z € E, there is a
non-negative integer n such that 7"z = 0. Given M C E the linear hull of
M is denoted by [M].

In the following we make several times use of the fact that a linear
transformation T € L(E) is locally algebraic if and only if [z, Tz, T?z,.. )
is finite dimensional for each z € FE.

2. Williamson’s spectral representation theorem
If J is an arbitrary index set, then C/ = []..;C and C; = {(n;) €
C’ : n; # 0 for at most finitely many j € J}. Given z = (§;) € C/ and
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y = (n;) € Cy let (z,y) = ¥ &;n;. This bilinear form places C’ and C; in
duality. C’ and C; shall be endowed with the respective weak topologies
o(C’,Cy) and o(C;,C’). The dual transformation T’ of T € L(C7) is
defined by (Tz,y) = (z,T'y).

DEFINITION. [7] A continuous linear transformation T on alocally convex
space E is called adequately restricted (a.r.), if
lim sup [I(T"z)|*/" < 0o forall z € E, [ € E'.
n—00

Williamson establishes the following spectral representation theorem (see
[7, Theorems 4.1, 4.2 and Lemma 4.1}):

THEOREM 1. Let J be a countable indez set. If T € L(C’) is a.r., then
for each A € o(T) there are unique a.r. linear transformations Py and Q)
such that

P\P, = 6,P\, PQu=06,Qx, @xQu=00,(T - @1,
I= 3 P, T= ) (Pi+Q)

A€o(T) Aeo(T)

The transformations Py and Q) commute with T and with each other. The
Q> are quasi-nilpotent.

We show in §5 that the countability condition can be dropped and specify
the transformations Py.

It can be shown that C; = C} and £(Cy) = L(Cy). By dual transfor-
mation £(C’) and £(C;) = L(Cy) are isomorphic. Obviously T € £(C7) is
a.r. if and only if T’ is a.r.. Furthermore o(T") = ¢(7”). In consequence of
these facts the theorem remains valid, if £(C”) is replaced by L(Cy) and
one can look for a proof with the methods of linear algebra.

Remark. Korber [4, Satz 6] shows that, if J is a countable set, then
T € L(C’) is ar. if and only if ¢(T) is countable. If T is not a.r., then
C\ o(T) is countable ([4, Satz 2]).

We proceed with deriving our main tool.

3. Decomposition of a linear space relative to a locally algebraic
linear transformation

It is well-known from the theory of the Jordan canonical form that a
finite dimensional space E decomposes into a direct sum relative to a linear
transformation T on F due to
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(1) E= @ HA(T), H\(T)=|]ke(T- D"

A€o ,(T) n€eEN
(see, e.g., [1, (13.18)]). In the infinite dimensional case we have

PROPOSITION 1. Given T € L(E), decomposition (1) holds if and only if
T is locally algebraic.

Proof. We first assume T to be locally algebraic. Let z be an arbitrary
point in E, E, = [z,Tz,T?z,..]and T} the restriction of T onto E,. Since T
is locally algebraic, F, is finite dimensional and, therefore, decomposes due
to (1). Taking additionally into account that o,(T;) C 0,(T) and Hx(T) C
H\(T), we obtain

r€f,= @ HAT)C D, HAD).
A€op(Tz) A€o p(T)

Since z is arbitrary, it follows that £ = } 7, oo (1) H A(T'). Suppose the sum
is not direct. Then there exist A1,..., A, € 0,(T),A; # A; for ¢ # 7, and
vectors o € Hy,(T)\ {0} such that Y ;_, zx = 0. For each z there is a
ng € N with (T — ApI)™z, = 0. We assume ny to be chosen minimal, so
that &1 := (T — MI)™ 12y # 0. Now let g(X) = [[}_,(X — Ax)™. From
(T' = MI)™zy =0 it follows that & is an eigenvector of T' with eigenvalue
A1. Hence ¢(T)Z1 = g(A1)Z1 # 0. However, this is a contradiction to 0 =
Ck=12k = (T =MD)™ 7 g(T) Ykoq 2 = (T = M) 7 g(T)21 = g(T)é1.
Conversely, if (1) applies, then for fixed € E there exist Ay,..., A, €
0,(T) and vectors z € Hy,(T) such that z = Y, _, 2. Since x4 € H» (T),
there are non-negative integers ng with (T — ApJ)™ ), = 0 which implies

that [[4_, (T — Axl)™ 2z = 0. Thus T is Jocally algebraic. m

4. A characterization of locally algebraic linear transformations

For the spaces C; with countable index set J the following result is also
contained in {7, Lemma 3.3], but the proof does not carry over to the general
case.

ProposITION 2. T € L(E) is locally algebraic if and only if

lim sup |I(T"z)|/" < 00 forall z € E, | € E*.

Proof. Suppose T is locally algebraic. We first consider the case z €
H\(T) for fixed A € 0,(T). Let N € N be such that (T — AXI)Mz = 0. If
A = 0, then, obviously, limsup,,_, . [{(T"z)|'/® = 0 for every | € E*. If
A#0and n > N, then

N-1 §
Trg = [(T = M) + Mz = A" "YAK(T = AD*z.
(@) ae =20 3 (At -
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Using (}) < n*¥ < n whenever k < N we obtain
N-1
(T 2)] < AN ST INTFIT - Al x)| forall | € E*.
k=0
The sum on the right-hand side is independent of n. Hence
lim sup [{(T"z)*/™ < |\
n—00
Now let z be arbitrary. Since T is locally algebraic, by Proposition 1, there
exist certain Ay € 0,(T) and z, € Hy (T), k = 1,...,m, such that 2 =
Y 2. From the above it follows at once that
(2) lim sup |I(T™z)|}/™ < stp |Ax] < 00, 1€ E*.
n-—00 k=1
On the other hand, if T is not locally algebraic, then there exists a vector
¢ € F such that the set M = {z,Tz, Tz, ...} is linearly independent. Now
let [ be a linear form on [M] defined by I(T"z) = n!, n € Ng, and [ an
extension of [ onto E. Then lim sup,,_, ., [[(T"2)[*/" = . =

Remarks. 1. For other characterizations of locally algebraic linear
transformations see [5].

2. From relation (2) it is clear that locally algebraic linear transforma-
tions with bounded point spectrum ¢,(T’) are characterized by the property

sup  lim sup J{(T"z)|"/" < co.
z€E, lEE* n—oo

5. Spectral representation of locally algebraic linear transfor-
mations

For fixed locally algebraic linear transformation 7' we denote by Py =
P,(T) the projection of E onto H»(T') relative to the direct sum decompo-
sition (1), i.e. the mapping ¢ = Zuea,,(T) z, — 2. Then I = Y Py and
P\P, = é5,P>. There is no question about convergence, since ) Pyz has
at most finitely many non-zero terms for each ¢ € FE. Further we define
Qx = (T — AI)P,. We note that Py, as a projection, is locally algebraic; () »
is locally algebraic, since it turns out to be quasi-nilpotent.

THEOREM 2. If T € L(E) is locally algebraic, then
T= Z (’\PA + Q)\),
A€oy(T)
PaQu = 6:,Qx, QxQu = 62u(T — AI)Q .

The transformations Py and Q) commute with T and with each other. The
@ are quasi-nilpotent.
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Essential for our proof is decomposition (1), the remaining conclusions
are largely those of Williamson.

Proof. Since TPy = AP, + @, it holds that T = TI = T Y, Py =
S TPy = Y (AP,+@)). Because of the T-invariance of the spaces H(T') we
have P\T P, = 6),T Py; thus P\T = P,\T Euea,(T) P, = Eueo,,(T) P\TP,
= Zuea,,(T 6x,T P\ = TP). From this it follows that Py and @) commute
with T and with each other. The other relations are easy to see. Given
z € E and X € 0,(T) we have (T — AI)"Pyz = 0 for some n € N. Since
(T — AI)" Py = Q7, the transformations @ are quasi-nilpotent. m

ProposiTioN 3. If T' € L(E) is locally algebraic, then o,(T) = {A € C:
T — A has no inverse in L(E)}.

Proof. It is sufficient to show that every one-to-one locally algebraic
linear transformation is onto as well. If ' € L(FE) is locally algebraic and
one-to-one, then the restrictions T'|g, of T onto E, = [z,Tz,T?z,.. ] are
one-to-one and, since the spaces E, are finite dimensional, onto as well.

Hence TE, = E; and TE=TE, = UTE; = UE, = E. m

We are now able to show that the countabilty condition in Williamson’s
theorem is dispensable: Let J be an arbitrary index set and T € £(C”) a.r.;
then T’ € L£(Cy) is a.r. and therefore, by Proposition 2, locally algebraic
(recall that C'; = C; and £(Cy) = L(Cy)). Thus Theorem 2 is applicable
on T’ and, if we take into account that o,(7’) = o(T”) due to Proposition 3
and that o(T') = o(T'), the assertions of Theorem 1 follow by dual trans-
formation. This consideration reveals the Py in Theorem 1 to be the dual
transformations of the projections of Cy onto Hx(T").

Remark. In finite dimensional spaces E a suitable decomposition of
the spaces H»(T) into T-invariant subspaces leads to the Jordan canonical
form. We did not succeed in generalizing this decomposition to the infinite
dimensional case. For the spaces £ = Cy such a generalization can be found
in a work of Kérber {4, Satz 4 and 5]. But his proof makes use of the following
non-valid assertion [4, Lemma 5]: Let T € L(Cy) be locally algebraic and
M, =[z,Tz,T%,..], ¢ € Cy. If M; and M, are not decomposable into T-
invariant subspaces, then either M, C M, or My C M, or M, M, = {0}.
For a counterexample we define the matrix

000
100
A=19 0 o

which can be regarded as a locally algebraic linear transformation on Cy.
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Let ex = (6jk)jen, k € N (6;& is the Kronecker symbol). Then the spaces
M. te, = [e1 + e3,€2) and M., = [e;,ey] are not decomposable into A-
invariant subspaces, but none of the relations asserted above hold.

Herzog [2] gives a normal form for the non-locally-algebraic linear trans-
formations on Cy. His result goes back to a work of Ulm [6].
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