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1. Introduction 
The purpose of this paper is to generalize a spectral representation the-

orem of Williamson [7] and to simplify its proof. We show that this theorem 
is, essentially, a spectral representation of locally algebraic linear transfor-
mations which can be deduced by elementary methods of the linear algebra. 
Due to Kaplansky [3] a linear transformation T on a complex space E is said 
to be locally algebraic, if, for each x £ E, there exists a non-zero polynomial 
/ such that f(T)x = 0. As main tool for our results serves a decomposition 
of the underlying space which is in the finite dimensional case well-known 
from the theory of the Jordan canonical form. 

We first introduce some notation. E will always be a complex linear 
space. L(E) denotes the set of all linear transformations on E and E*, the 
algebraic dual of E. CRP(T) = {A £ C : T — XI is not one-to-one} is the 
point spectrum of T. If E is a locally convex space, then JC(E) is the set 
of all continuous linear transformations on E and E' the topological dual 
of E. O(T) = {A £ C : T — XI has no inverse in C{E)} is the spectrum 
of T. T £ LIE) is called quasi-nilpotent, if, for every x £ E, there is a 
non-negative integer n such that TNX = 0. Given M C E the linear hull of 
M is denoted by [M]. 

In the following we make several times use of the fact that a linear 
transformation T £ L(E) is locally algebraic if and only if [x,Tx,T2x,...] 
is finite dimensional for each x £ E. 

2. Williamson's spectral representation theorem 
If J is an arbitrary index set, then CJ = C and C j — {(rjj) £ 

CJ : rjj ^ 0 for at most finitely many j £ J}. Given x = (£,) £ CJ and 
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y = ( r j j ) 6 Cj let (x,y) = This bilinear form places CJ and C j in 
duality. CJ and Cj shall be endowed with the respective weak topologies 
a(CJ,Cj) and cr(Cj,CJ). The dual transformation T' of T G £(CJ) is 
defined by (Tx,y) = (x,T'y). 

D E F I N I T I O N . [7] A continuous linear transformation T on a locally convex 
space E is called adequately restricted (a.r.), if 

limsup \l{Tnx)\1/n < o o for all x G E, I G E'. 
71—»00 

Williamson establishes the following spectral representation theorem (see 
[7, Theorems 4.1, 4.2 and Lemma 4.1]): 

T H E O R E M 1. Let J be a countable index set. IfT G £(CJ) is a.r., then 
for each A G cr(T) there are unique a.r. linear transformations P\ and Q\ 
such that 

PxP» = S^Px, PxQ» = SXllQXt QxQ» = SXlt(T - AI)QX, 

I= Y .
 P^ T= E ( a p a + QA). 

A6<7 (T) A E<R(T) 

The transformations P\ and Q\ commute with T and with each other. The 
Q\ are quasi-nil-potent. 

We show in §5 that the countability condition can be dropped and specify 
the transformations P\. 

It can be shown that Cj = C} and C(Cj) = L(Cj). By dual transfor-
mation £ ( C J ) and C(Cj) = L(Cj) are isomorphic. Obviously T G C(CJ) is 
a.r. if and only if T' is a.r.. Furthermore cr(T) = f (T ' ) - consequence of 
these facts the theorem remains valid, if £ ( C J ) is replaced by Z(Cj ) and 
one can look for a proof with the methods of linear algebra. 

R e m a r k . Korber [4, Satz 6] shows that, if J is a countable set, then 
T G C(CJ) is a.r. if and only if o{T) is countable. If T is not a.r., then 
€ \ a{T) is countable ([4, Satz 2]). 

We proceed with deriving our main tool. 

3. Decomposit ion of a linear space relative to a locally algebraic 
linear transformation 

It is well-known from the theory of the Jordan canonical form that a 
finite dimensional space E decomposes into a direct sum relative to a linear 
transformation T on E due to 
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(1) E = 0 H\(T), Hx(T) = ( J ker(T - A/)" 

(see, e.g., [1, (13.18)]) . In the infinite dimensional case we have 

P r o p o s i t i o n 1. Given T £ L(E), decomposition ( 1 ) holds if and only if 
T is locally algebraic. 

P r o o f . We first assume T to be locally algebraic. Let x be an arbitrary 
point in E, Ex = [a:, Tx, T2x,...] and Tx the restriction of T onto Ex. Since T 
is locally algebraic, Ex is finite dimensional and, therefore, decomposes due 
to (1). Taking additionally into account that ap(Tx) C &P(T) and H\(TX) C 
H\(T), we obtain 

x e E x = © HX(TX)C £ 
A e<T„(Tx) A6 ffp(T) 

Since x is arbitrary, it follows that E — X^Ae^ (T) - ^ ( i 1 ) - Suppose the sum 
is not direct. Then there exist A i , . . . , A n £ ap(T),Xi ^ Aj for i ^ j, and 
vectors Xk £ H \ k { T ) \ { 0 } such that Xk = 0. For each Xk there is a 
nk £ N with (T — Ak I ) n h Xk = 0. We assume ni to be chosen minimal, so 
that xi : = ( T - A i / ) " 1 " 1 ^ ^ 0. Now let g(X) = ]Tk=2(X ~ From 

( T — Xil)nixi — 0 it follows that x\ is an eigenvector of T with eigenvalue 
Ai. Hence g(T)xi = ^ ( A i ) i i ^ 0. However, this is a contradiction to 0 = 
E L i xk = { T - Ai/r-^OO E L i *k = ( T - g(T)x\ = g(T)x,. 

Conversely, if (1) applies, then for fixed x £ E there exist A i , . . . , An £ 
o-p(T) and vectors Xk £ H\k(T) such that x = Xk• Since Xk € H\k{T), 
there are non-negative integers with ( T — AkI)nicXk = 0 which implies 
that E [ L i ( T ~ A k l ) n k x = 0. Thus T is locally algebraic. • 

4. A characterization of locally algebraic linear transformations 
For the spaces C j with countable index set J the following result is also 

contained in [7, Lemma 3.3], but the proof does not carry over to the general 
case. 

P r o p o s i t i o n 2. T £ L(E) is locally algebraic if and only if 

lim sup |/(Tnx)|1/n < oo for all x £ E, I £ E*. 
71—t-oo 

P r o o f . Suppose T is locally algebraic. We first consider the case x £ 
HX(T) for fixed A € ap(T). Let N £ N be such that ( T - A I ) N x = 0. If 
A = 0, then, obviously, limsupn_00|/(Tna;)|1/n = 0 for every I £ E*. If 
A ^ 0 and n> N, then 

N-l 
Tnx = [(T - A I) + A I]nx = An £ 

k=0 
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Using ( f y < nk < nN whenever k < N we obtain 
N-l 

\l(Tnx)\ < |A| V |A |- fc |/((r - Xlfx)\ for all I € E\ 
k=o 

The sum on the right-hand side is independent of n. Hence 

limsup |/(T ,nx)|1/n < |A|. 
n—voo 

Now let x be arbitrary. Since T is locally algebraic, by Proposition 1, there 
exist certain Ak G vv{T) and Xk £ H\k(T), k = 1 , . . . , m , such that x — 
^2xk- From the above it follows at once that 

(2) lim sup \l(Tnx)\lln < sup |Afc| < oo, I G E*. 
n—>oo k=1 

On the other hand, if T is not locally algebraic, then there exists a vector 
x G E such that the set M = {x,Tx,T2x,...} is linearly independent. Now 
let I be a linear form on [M] defined by l(Tnx) = n!, n 6 No, and I an 
extension of I onto E. Then limsupn_>00 |/(Tna;)|1/ 'n = oo. • 

R e m a r k s . 1. For other characterizations of locally algebraic linear 
transformations see [5]. 

2. From relation (2) it is clear that locally algebraic linear transforma-
tions with bounded point spectrum 0P(T) are characterized by the property 

sup lim sup |/(T"a:)|1/'n < oo. 
xeE, l£E* n-t-oo 

5. Spectral representation of locally algebraic linear transfor-
mations 

For fixed locally algebraic linear transformation T we denote by P\ = 
P\(T) the projection of E onto H\{T) relative to the direct sum decompo-
sition (1), i.e. the mapping x = xv xThen I = and 
P\Pn = 6\fj,P\- There is no question about convergence, since ^ P\x has 
at most finitely many non-zero terms for each x € E. Further we define 
Q\ = (T — A I )P\ . We note that P\, as a projection, is locally algebraic; Q\ 
is locally algebraic, since it turns out to be quasi-nilpotent. 

THEOREM 2. IfT e L(E) is locally algebraic, then 

T= + 
A €<7„(T) 

P\Q„ = S\nQx, Q\Qti = hu.(T - XI)Q\. 
The transformations P\ and Q\ commute with T and with each other. The 
Qx are quasi-nilpotent. 
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Essential for our proof is decomposition (1), the remaining conclusions 
are largely those of Williamson. 

P r o o f . Since TP\ = AP x + Q\, it holds that T = TI = T £ P a = 

TP\ = XX^-PA + QA)- Because of the T-invariance of the spaces Hx(T) we 
have P\TP/j, = S^TPy, thus PXT = P x T E ^ , ( t ) = E^e^T) 

= (T) — TP\. From this it follows that P\ and Q\ commute 
with T and with each other. The other relations are easy to see. Given 
x £ E and A G 0P(T) we have (T — XI)nP\x = 0 for some n G N. Since 
(T — XI)nP\ = Q™, t h e t r a n s f o r m a t i o n s Q\ a re quas i -n i lpo t en t . • 

P ROPOSIT ION 3 . I f T e L(E) is locally algebraic, then op(T) = { A £ C : 

T — XI has no inverse in L(E)}. 

P r o o f . It is sufficient to show that every one-to-one locally algebraic 
linear transformation is onto as well. If T G L(E) is locally algebraic and 
one-to-one, then the restrictions T\ex of T onto Ex = [x,Tx,T2x,...] are 
one-to-one and, since the spaces Ex are finite dimensional, onto as well. 
Hence TEX = Ex and TE = r (J Ex = |J TEX = {JEX = E. m 

We are now able to show that the countabilty condition in Williamson's 
theorem is dispensable: Let J be an arbitrary index set and T E £ ( C J ) a.r.; 
then X" 6 £ ( C j ) is a.r. and therefore, by Proposition 2, locally algebraic 
(recall that Cj = € } and C(Cj ) = L(Cj j). Thus Theorem 2 is applicable 
on T' and, if we take into account that <JP(T') = cr(T') due to Proposition 3 
and that <r(T') — <?(T), the assertions of Theorem 1 follow by dual trans-
formation. This consideration reveals the P\ in Theorem 1 to be the dual 
transformations of the projections of C j onto H\{T'). 

R e m a r k . In finite dimensional spaces E a suitable decomposition of 
the spaces H\(T) into T-invariant subspaces leads to the Jordan canonical 
form. We did not succeed in generalizing this decomposition to the infinite 
dimensional case. For the spaces E = CJJ such a generalization can be found 
in a work of Korber [4, Satz 4 and 5]. But his proof makes use of the following 
non-valid assertion [4, Lemma 5]: Let T G Z(<Cn) be locally algebraic and 

MX = [X,TX,T2X, . . . ] , x G C r . If M x and MY are not decomposable into T -

invariant subspaces, then either Mx C My or My C Mx or Mx p ) My = { 0 } . 

For a counterexample we define the matrix 

A = 

/0 0 0 
1 0 0 •• 
0 0 0 •• 

v ; ! ! / 

which can be regarded as a locally algebraic linear transformation on 
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Let e/c = (Sjk)jeN, k 6 N (6jk is the Kronecker symbol). Then the spaces 
Mei+es = [ei + e3 ,e2] and Mei = [ei,e2] are not decomposable into A-
invariant subspaces, but none of the relations asserted above hold. 

Herzog [2] gives a normal form for the non-locally-algebraic linear trans-
formations on Qj. His result goes back to a work of Ulm [6]. 
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