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ON A GENERAL THEORY
OF ORDERED TRAPEZIUM SPACES

Introduction

There exist many various axiom systems of Euclidean geometry, based
on various primitive notions. Usually two primitive notions are consider, one
— describes metric properties, second is responsible for order.

The approach which we propose allows to investigate in the natural way
both the metric structure and the geometrical order with the help of a single
notion.

In [1} K. Prazmowski has shown that the relation of isosceles trapez-
ium T, may be used to describe the Euclidean geometry. In this paper we
consider the relation of directed isosceles trapezium, denoted by T. This
relation may be interpreted in the Euclidean space as follows: abTcd means
that the vectors ab and cd have the same direction and the common bi-
sector hyperplane. Clearly this relation induces the metric structure of the
underlying Euclidean space, i.e. the equidistance relation. As the analogue of
geometrical order we choose an ordering function introduced by E. Sperner
in [3].

1. Relation of directed trapezium

Let X be a nonempty set. A relation T C X% x X? is trapezium relation
if T satisfies the following axioms (comp. [1}):

T1. =zyTyx,

T2. zyTzt AzyTuw =z =y V 2tTuw,

T3. zyTzt = ztTzy,

T4. (3t)zyTzt,

T5. zyTuzAzyTut=>z=yVz=1,

T6. (Jz,t)[zeTyy = z #t A 2tTzz A 2tTyy].
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Now we say that T C X? x X? is a relation of directed trapezium if T
satisfies the following axioms:

DT1. zyTyz=>z=y=2,

DT2. zyTztAzyTuw =z =yV ztTuw,
DT3. zyTzt = 2tTay AyzTtz,

DT4. (3)[zyT2tV ayTiz],

DT5. zyTuzAzyTut=>z=yVz=1t,

DT6. (3z,t)[zaTyy = z #t A ztTaz A 2tTyy).

Any structure < X, T >, where T is a relation of directed trapezium will
be called ordered trapezium space. Immediately from DT1-DT6 we obtain

PROPOSITION 1. T is an equivalence relation in the set {(a,b) € X? :
a#b}. m

One can see that the axioms DT1-DT6 are modifications of T1-T6.

Given any relation R C X2 x X2, we define the relation A(R) as follows:

abA(R)ed ;<= abRed V abRdc.
The following theorem holds:

THEOREM 2. If T is a relation of directed trapezium then A(T) is a
trapezium relation.

Proof. T1 follows from Proposition 1. The axioms T2, T4 and T6 follow
from DT2, DT3, DT4 and DT6 respectively.

To prove T3 we assume zyA(T)zt; then zyTzt or zyTtz. If zyTz2t then
2tTzy by DT3, hence 2zt(AT)zy. Now assume zyTtz; then by DT3, tzTzy
and ztTyz, hence ztA(T)zy.

To prove T5 we assume zyA(T)uz and zyA(T)ut; then (2yTuz or
zyTzu) and (zyTut or zyTtu). For example we assume zyTuz and zyTtu.
By DT2 we have ¢ = y or uzTtu. If uzTtu then zuTut by DT3, hence
z=u=t nm

A family X of involutions of a nonempty set X is called perfect family
of involutions provided it satisfies the following conditions:

S1.  (Va,be X)(Vf,g€ X)[f(a)=b=g(a)=>a=0bV f =g],
S2.  (VYa,be X)(3f € X)[f(a) =0]. (cf. [1] and [2]).

From Theorem 2 and Proposition 1 we get:

THEOREM 3. Let T C X% x X? be a relation of directed trapezium and let
of = {(z,y) : abA(T)zy} for all a,b € X; then the set T(T) = {o] : a # b}
is a perfect family of involutions of X. m
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COMMENTARY. If T is a relation of directed trapezium defined in ordered
Euclidean space then of is a reflection in the bisector hyperplane of a, b and
X(T) is the set of all reflections in hyperplanes. w

Let now (X;T) be a fixed ordered trapezium space. Let Fix(oy) be the
set of all points fixed by o?; clearly

Fix(of) = {z : of(z) = 2} = {2 : abTzz}.
For every o € X(T) we define the relation ~,C X x X as follows:

P~ q & po(p)Tqo(q).

PROPOSITION 4. For every o € X(T) the following conditions are satis-
fied:

(i) the relation ~, is an equivalence relation in the set X\ Fix(o);
(ii) ~, divides X\ Fix(o) into ezactly two equivalence classes.

Proof. (i) follows immediately from Proposition 1.

(ii) Let a # o(a) = a'. If not @ ~, a' then, by the definition, aa'Taa,
so a = a’ by DT1; thus a ~, a'. Now let z be any element of X such that
z # o(z). By DT4 we have aa'Tzz’ or aa'Tz'z for some 2’ € X. Hence
ao(a)Tzo(z) or d'o(a’)Tzo(z)ie. a~y zora’ ~; 2. =

Note that if X' = o(T) is a family of reflections in hyperplanes of an
ordered Euclidean space and ¢ € X then the hyperplane Fix(c) divides
the space into two (open) halfspaces which are exactly the two equivalence
classes of ~,.

For a given family X' of transformations of X wecallamapw : ¥ — X
a selecting map for X if o(w(0)) # w(o) for every o € X.

LEMMA 5. Fvery family X of transformations of a nonempty set X, wich
does not cotain the identity on X has a selecting map.

Proof. Cleary X\ Fix(c) # @ for every ¢ € ¥. By the axiom of choice
there exists a choice function w : ¥ — X such that w(o) € X\ Fix(o) for
o € X; of course o(w(o)) # w(o). =

For every selecting map w for X(T) (thus associated with the relation
T) we consider the function v = ¥(T,w): ¥ x X — {-1,0,1} defined by
0 ifo(z)=2
vio,z)=1<1 ifw(o)~, (2)

—1 otherwise.
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LEMMA 6. If T is an ordered trapezium relation and w is any selecting
map for the set X = X(T) then the map v = v(T,w) has the following
properties:

N1. v(o,2)=0¢& o(z)==z,
N2.  v(o,z)-v(o,0(z))# 1,
N3. Ifo(z)#z ando(y)#y thenz ~, y & v(o,2) -v(o,y)=1. n

Note that if we consider (classical) example of directed trapezium T in
an ordered Euclidean space and we identify every reflection ¢ € X' = X(T)
with its axis Fix(o) then every function v = v(T,w) defined as above with
w being a selecting map for X' corresponds to an ordering function in the
sence of Sperner (cf. [3]) suitable for Euclidean space.

2. Family of involutions and ordering function v
Let X' be an arbitrary family of bijections of a set X and let v be a map
v:Y x X —{-1,0,1}. We define the relation II = II(X,r) as follows:

abll( X, v)ed <= (3f € D)[f(a)=bA f(c) =dAv(f,a) -v(f,c) £ —1].

THEOREM 7. If X is a perfect family of involutions of X and v : X X
X —{-1,0,1} has the properties N1 and N2 from Lemma 5, then the rela-
tion Il = (X, v) is a relation of directed trapezium.

Proof. To prove DT1 we assume that f(z) = y and f(y) = 2z for
some f € X; then z = z. If 2 # y then v(f,2) - v(f,y) = —1 by N2 but
v(f,z) -v(f,y) # —1 from definition of II. Hence z = y.

To prove DT2 we consider z,y, 2,1, v, w such that zyIlzt and zylluw.

Then f(z) =y, f(z) =1, 9(z) =y, g(u) = w for some f,g € ¥. Assume
T # y; then f = g by S1. Moreover v(f,z) # 0, v(f,z)-v(f,z) # —1 and
V(f,:l))-l/(f,u) 7/: —1. Hence [V(f,(l:)]z'V(f,Z)'l/(f,’u,) = V(f,Z)'I/(f,u) # -1
and thus ztlluw.

To prove DT3 we assume that zyllzt; then f(z) = y, f(2) = ¢ and
v(f,z) -v(f,z) # —1 for some f € X. Immediately we obtain 2tIlzy. To
obtain yzIltz it is enough to prove v(f,y) - v(f,t) # —1. We can assume
that y # f(y) and ¢ # f(2); v(f,9) - v(f,) = ~1 and v(f,1) - v(f, z) = 1.
Hence V(f,x) 'V(f7y) ) V(f7t) ) I/(f,Z) = 1. Since I/(f,(li) ) V(f’z) # —1 we
have v(f,9) - v(f,8) = 1 # —1.

To prove DT4, let z,y, 2 be arbitrary elements of X. By S2 we consider
f € Y suchthat f(z) = yand weput t = f(2). We have v(f,z)-v(f,y) # —1.
If z = y then, by N1, v(f,z) = 0so v(f,z)-v(f,2) = 0 # —1; hence zyllzt.
Analogously, z = t yields zyllzt.

Now assume z # y and z # t. By N2 we get v(f,z) - v(f,y) = -1
and v(f,2) - v(f,t) = —-1. If v(f,z) - v(f,2) = 1 then zyllzt. Let
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v(f,z)-v(f,z) = —1 then we have —v(f,t) = v(f,t)-(v(f,2)-v(f,2)) =
v(f,z)-(v(f,t)-v(f,2)) = —v(f,z). Hence zyllt2.
DT5 and DT6 are obvious. =

Finally we obtain

THEOREM 8. A structure (X;T) is an ordered trapezium space iff there
ezists X - a perfect family of involutions of X and a functionv : X x X —
{-1,0,1} satisfying N1 and N2 from Lemma 6 such that T = II(X,v).

Proof. The implication (<=) follows by Theorem 7. Now let (X;T) be
an ordered trapezium space and let ¥ = ¥(T). By Theorem 3, X' is a perfect
family of involutions of X. By Lemma 5, there exists a selectiong map w for
2 let v = y(T,w). By Lemma 6, v satisfies the conditions N1 and N2.

Now we prove that T = II( X, v). Let T' = II( ¥, v). Assume that zyTz't'.
If z = y and 2’ = y' then by Theorem 7 zyT'z'y’. Assume that = # y, then
with 0 = of € X we have o(2') = y'; thus zo(z)llz’'0(z’) hence z ~, 2’
and v(o,2) - v(0,2') =1 # —1; thus zyT'2'y’.

On the other hand, if zyT'z'y’ then there exists ¢ € X such that o(z) = y
and o(z') = ¢ and v(o,z)-v(0,2') # —1. If v(0,z) # 0 and v(o,2") # 0
then v(o,z)-v(o,2’) = 1 hence, by Lemma 6, z ~, z' and zyTz'y’. Notice
that v(o,z) = 0 and v(o,2") = 0 gives us zyTz'y' as well. =

All the above considerations we may recapitulate in

THEOREM 9 (representation theorem).
T =1I(X(T),v(T,w)). m

In general, given any perfect family of involutions X of a nonempty set
X and arbitrary functions vy, s : X x X —{-1,0,1} satisfying N1 and N2;
one asks when II(X, 1) = II(X, v;). We have

THEOREM 10. If 0 is a perfect family of involutions of X, vy,vy : X X
X —{-1,0,1} are functions satisfying N1 and N2 then the following con-
ditions are equivalent:

(l) H(Z,I/l) = H(E,l/g),
(i) for every o € X there ezists a constant ¢ = +1 such that v,(o,z) -
(o, z) = ¢, for every z € X\ Fix(o).

Proof. (i=ii) Let 0 € X, a € X\ Fix(0). Assume e.g. v1(0,a)-v2(0,a) =
1. Let y € X\ Fix(o) with »1(0,y)-v2(0,y) = —1. H v1(0,a) = v1(0,y) = 1,
then 1y(0,e) =1 and vy (0,y) = vi(0,0(a)) = 1 = v1(0,0(y)) = v2(0,0(a))
= —1. Hence ao(a)II(X, v1)yo(y) but not ac(a)II(X,v2)yo(y).
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(ii=i) Let o € ¥ and e.g. v1(0,z)-1v5(0,z) = 1, for every x € X\ Fix(o).
Assume ao(a)II( X, v;)bo(b) for some a,b € X\ Fix(c); then v1(0,a)-1,(0,b)
= 1. If y(0,a) = 1 then v(0,b) = 1 and by assumption v,(c,b) = 1.
To prove ac(a)II(X, v2)bo(b) it suffices to show that v2(c,a) = 1. Assume

vy(o,b) = —1 then vy(0,a) - v2(0,b) = —1. Hence v1(0,a)-v2(0,a) v1(0,b)-
vy(0,b) = —1 but it is not true. w
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