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ON A GENERAL THEORY 
OF ORDERED TRAPEZIUM SPACES 

Introduction 
There exist many various axiom systems of Euclidean geometry, based 

on various primitive notions. Usually two primitive notions are consider, one 
— describes metric properties, second is responsible for order. 

The approach which we propose allows to investigate in the natural way 
both the metric structure and the geometrical order with the help of a single 
notion. 

In [1] K. Prazmowski has shown that the relation of isosceles trapez-
ium T, may be used to describe the Euclidean geometry. In this paper we 
consider the relation of directed isosceles trapezium, denoted by T. This 
relation may be interpreted in the Euclidean space as follows: ablcd means 
that the vectors ab and cd have the same direction and the common bi-
sector hyperplane. Clearly this relation induces the metric structure of the 
underlying Euclidean space, i.e. the equidistance relation. As the analogue of 
geometrical order we choose an ordering function introduced by E. Sperner 
in [3], 

1. Relation of directed trapezium 
Let X be a nonempty set. A relation T C I 2 x X2 is trapezium relation 

if T satisfies the following axioms (comp. [1]): 

T l . xyTyx, 
T2. xyTzt A xyTuw x = y V ztTuw, 
T3. xyTzt =>• ztTxy, 
T4. (3t)xyTzt, 
T5. xyTuz A xyTut =>x = yVz = t, 
T6. (3 2, t)[xxTyy z^t A ztTxx A ztTyy], 
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Now we say tha t T C X2 x X2 is a relation of directed trapezium if T 
satisfies the following axioms: 

D T I . xylyz =>• x = y = z, 
DT2. xyTzt A xyTuw => x = y V ztTuw, 
DT3. xyTzt =i> ztJxy A yxTtz, 
DT4. (3i)[a:?/T2iVa:t/Ttz], 
DT5. zj/Twz A xyJut x = y\/ z = t, 
DT6. ( 3 z , t ) [ x x T y y z ^ t A z i T z z A ztTyy]. 

Any structure < X, T > , where T is a relation of directed trapezium will 
be called ordered trapezium space. Immediately from D T 1 - D T 6 we obtain 

PROPOSITION 1. T is an equivalence relation in the set {(a, b) € X2 : 
a ^ b}. m 

One can see tha t the axioms D T 1 - D T 6 are modifications of T 1 - T 6 . 
Given any relation R C I 2 x X2, we define the relation A(R) as follows: 

abA(R)cd abRcd V abRdc. 

The following theorem holds: 

T H E O R E M 2 . If T is a relation of directed trapezium then A(T) is a 
trapezium relation. 

P r o o f . T 1 follows from Proposition 1. The axioms T2, T4 and T6 follow 
from DT2, DT3, DT4 and DT6 respectively. 

To prove T3 we assume xyA(T)zt; then xyTzt or xyTtz. If xyTzt then 
ztJxy by DT3, hence zt(M)xy. Now assume xyltz; then by DT3, tzTxy 
and ztJyx, hence ztA(T)xy. 

To prove T 5 we assume xyA(T)uz and xyA(J)ut; then ( x y J u z or 
xyTzu) and ( x y l u t or xyTtu). For example we assume xyTuz and xyTtu. 
By DT2 we have x — y or uzTtu. If uzTtu then zuJut by DT3, hence 
z = u — t. • 

A family E of involutions of a nonempty set X is called perfect family 
of involutions provided it satisfies the following conditions: 

51. (Va, 6 G X)(Vf,ge S)[f(a) = b = g(a) a = b V / = g], 
52. (Va, b G X ) ( 3 / € S)[f(a) = b]. (cf. [1] and [2]). 

From Theorem 2 and Proposition 1 we get: 

THEOREM 3 . Let T C X2 xX2 be a relation of directed trapezium and let 
ab - {(^ y) '• abA(T)xy} for all a,b € X; then the set X'(T) = {cr% : a ± 6} 
is a perfect family of involutions of X. m 
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C O M M E N T A R Y . If T is a relation of directed trapezium defined in ordered 
Euclidean space then of is a reflection in the bisector hyperplane of a, b and 
£ ( T ) is the set of all reflections in hyperplanes. • 

Let now (X;T) be a fixed ordered trapezium space. Let Fix(of) be the 
set of all points fixed by ab

a; clearly 

Fix (o f ) = {x : of (a;) = 2} = {x : abTxx}. 

For every a G E(~X) we define the relation X X X as follows: 

p q p<7(p)~tq<r(q)-

PROPOSITION 4 . For every a G £ ( T ) the following conditions are satis-
fied: 

(i) the relation is an equivalence relation in the set X\ Fix(a); 
(ii) divides X\ Fix(a) into exactly two equivalence classes. 

P r o o f , (i) follows immediately from Proposition 1. 
(ii) Let a ^ a(a) — a'. If not a a' then, by the definition, aa 'Ta 'a , 

so a = a' by DTI; thus a a'. Now let x be any element of X such that 
x ^L a(x). By DT4 we have aa'Txx' or aa'Tx'x for some x' G X. Hence 
aa(a)Jxa(x) or a'<j(a')Txa(x) i.e. a x or a1 x. m 

Note that if E = o"(T) is a family of reflections in hyperplanes of an 
ordered Euclidean space and a G E then the hyperplane Fix(a) divides 
the space into two (open) halfspaces which are exactly the two equivalence 
classes of 

For a given family E of transformations of X we call a map u> : E ^ X 
a selecting map for E if a(u(a)) ^ u(a) for every a G E. 

LEMMA 5 . Every family E of transformations of a nonempty set X , wich 
does not cotain the identity on X has a selecting map. 

P r o o f . Cleary X\ Fix(<r) / 0 for every a G E. By the axiom of choice 
there exists a choice function u : E 1-* X such that CJ(<T) G X \ F i x ( a ) for 
a G E; of course CT(o;((7)) uj(a). m 

For every selecting map u for E(T) (thus associated with the relation 
T ) we consider the function u = v(T,u): E x X {—1,0,1} defined by 

{0 if a(x) = x 
1 if w(o-) (z) 
— 1 otherwise. 
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LEMMA 6 . If T is an ordered trapezium relation and u is any selecting 
map for the set E = X'(T) then the map v = v(T,io) has the following 
properties: 

N L . v(a, x) = 0 a{x) = x, 
N2. v(a,x)-v(a,cr(x)) ^ 1, 
N3. If a(x) ^ x and a(y) ^ y then v(a, x) • u(a, y) = 1. • 

Note that if we consider (classical) example of directed trapezium T in 
an ordered Euclidean space and we identify every reflection a £ E = E(T) 
with its axis Fix(cr) then every function v — z/(T,u>) defined as above with 
u being a selecting map for E corresponds to an ordering function in the 
sence of Sperner (cf. [3]) suitable for Euclidean space. 

2. Family of involutions and ordering function v 
Let E be an arbitrary family of bijections of a set X and let ¡ / b e a map 

v : E x X I-»{-1,0,1}. We define the relation II = II(i7, v) as follows: 

abR(E, v)cd ( 3 / £ E)[f(a) = b A / (c) = d A v ( f , a) • v { f , c) ± -1 ] , 

T H E O R E M 7 . If E is a perfect family of involutions of X and u : E x 
X ^{-1,0,1} has the properties N l and N 2 from Lemma 5, then the rela-
tion II = I I ( E , v ) is a relation of directed trapezium. 

P r o o f . To prove DTI we assume that f(x) — y and f(y) = z for 
some / £ E; then x = z. If x ^ y then v(f,x) • v(f,y) — - 1 by N 2 but 
v { f , x) • v { f , y) —1 from definition of II. Hence x — y. 

To prove DT2 we consider x,y, z,t,u,w such that xyllzt and xylluw. 
Then f(x) = y, f(z) — t, g(x) = y, g{u) = w for some f,g £ E. Assume 

x ^ y; then f = g by SI. Moreover i>{f,x) ^ 0, v{f,x) • v(f,z) ± - 1 and 
K/»®)-"(/>«) + -1- Hence Kftx)]2-v(f,z)-i/(f,u) = i;(f,z)-v(f,u) ± -1 
and thus ztHuw. 

To prove DT3 we assume that xyllzt; then f(x) = y, f(z) = t and 
u(f,x) • v ( f , z ) 7^—1 for some / £ E. Immediately we obtain ztllxy. To 
obtain yxTltz it is enough to prove v(f,y) • v { f , t ) - 1 . We can assume 
that y f(y) and t ^ f(t); v{f,y) • v(f,x) = - 1 and v { f , t ) • v ( f , z ) = -1. 
Hence v(f,x) • v(f,y) • v ( f , t ) • v ( f , z ) = 1. Since v(f,x) • u(f,z) ± - 1 we 
have . / ( / ,» ) •" ( /»<) = 1 ^ - 1 -

To prove DT4, let x, y, z be arbitrary elements of X. By S2 we consider 
/ £ E such that f(x) = y and we put t = f(z). We have v ( f , x)-u(f, y) ^ —1. 
If x = y then, by N l , v ( f , x) = 0 so i / ( f , x) • v ( f , z) = 0 ^ — 1 ; hence xyllzt. 
Analogously, z = t yields xyllzt. 

Now assume x ± y and z ^ t. By N 2 we get v(f,x) • v(f,y) = — 1 
and i'(f,z) • v{f,t) = —1. If u{f,x) • v ( f , z ) = 1 then xyllzt. Let 
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u ( f , x ) • v { f , z ) = - 1 then we have - i / ( / , t ) = u ( f , t ) • ( u ( f , x ) • v { f , z ) ) = 
u ( f , x) • ( i i f , t) • v ( f , z)) = - i / ( / , a;). Hence syl l te . 

DT5 and DT6 are obvious. • 

Finally we obtain 

THEOREM 8. A structure ( X ; T ) is an ordered trapezium space i f f there 
exists £ - a perfect family of involutions of X and a function v : £ X X 
{—1,0,1} satisfying N 1 and N 2 from Lemma 6 such that T = I I ^ , ^ ) . 

P r o o f . The implication («i=) follows by Theorem 7. Now let (X;T) be 
an ordered trapezium space and let £ = X"(T). By Theorem 3, £ is a perfect 
family of involutions of X . By Lemma 5, there exists a selectiong map u for 
£ \ let v = u(J,u). By Lemma 6, u satisfies the conditions N 1 and N 2 . 

Now we prove that T = n( i7, v). Let T' = i/). Assume that xyTx't'. 
If x = y and x' = y' then by Theorem 7 xyT'x'y'. Assume that x ^ y, then 
with a = Oy € £ we have cr(x') — y'\ thus xa(x)Hx'(t(x') hence x x' 
and v(a,x) • u(a,x') = 1 ^ —1; thus xyT'x'y'. 

On the other hand, if xyT'x'y' then there exists o £ £ such that cr(x) = y 
a n d ct(x') — y' a n d v(o,x) • v(a,x') ^ - 1 . If v{a, a;) 0 a n d v(a,x') ^ 0 
then i>(a,x) • v(a,x') = 1 hence, by Lemma 6, x x' and xyJx'y'. Notice 
that f(<7, x) — 0 and i>(a, x') — 0 gives us xyJx'y' as well. • 

All the above considerations we may recapitulate in 

T H E O R E M 9 (representation theorem). 

T = IL(£(T),v(T,u)). m 

In general, given any perfect family of involutions £ of a nonempty set 
X and arbitrary functions : £ X X >->{-1,0,1} satisfying N 1 and N2; 
one asks when U ( £ , v i ) = I i ( £ , v 2 ) . We have 

THEOREM 10. If a is a perfect family of involutions of X , v\,i>2 £ x 
X !-»•{-1,0,1} are functions satisfying N 1 and N 2 then the following con-
ditions are equivalent: 

(i) U{£,v1) = U{£,u2), 
(ii) for every a £ £ there exists a constant c = ± 1 such that V\{a,x) • 

i>2(f, x) = c, for every x 6 X\Fix(a). 

P r o o f . (i=^ii) Let <7 6 £, a 6 X\Fix(<r). Assume e.g. Vi((T,a)-1/2(0,a) = 
1. Let y G X \ Fix(o-) with ui(a, y) • v2{<j, y) = - 1 . If v\{<J,a) = ux(a,y) = 1, 
then u2(cr, a) = 1 and v2(cr,y) = ui((T,a(a)) = 1 = v\(a, cr(y)) = 1/2(a,a(a)) 
= — 1. Hence ao(a)IL(£, v\)ya(y) but not aa(a)Ii(£, V2)ya(y). 
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(ii=H) Let a 6 £ and e.g. Vi (o, x) • 1/2(0, x) = 1, for every x € X \ Fix(cr). 
Assume ao(a)Ii(£, v\)bo(b) for some a,b G X \ Fix(cr); then v\ (o, a)-i/2(o, b) 

= 1. If v\(a, a) = 1 then i>i(o,b) = 1 and by assumption i/2(o,b) = 1. 
To prove ao(a)Tl(£,i>2)bo(b) it suffices to show that 1/2(0-, a) = 1. Assume 
1/2(0, b) = - 1 then 1^2(f, a) • ^2(0, ft) = — 1- Hence a) • 1/2(0, a) • ui(o, b) • 

v2(a,b) = - 1 but it is not true. • 
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