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A CHARACTERIZATION OF COMPLEX AUMD BANACH
SPACES VIA TANGENT MARTINGALES

1. Introduction

In this paper we will characterize complex separable Banach spaces B in
which B-valued analytic martingale difference sequences are unconditional
(so called AUMD spaces). In these characterizations we use notion of tan-
gent analytic martingales and tangent analytic Gaussian martingales, de-
fined in this paper. These characterizations are analogical to the well-known
theorem [4, p. 285] for Y MD Banach spaces i.e. spaces in which all martin-
gale difference sequences are unconditional.

THEOREM. Let B be a Banach space U MD. If p satisfies1 < p < o0, then
there ezxists a constant c, (depending only on B and p ) such that for every
pair {di} and {d;} of B-valued tangent martingales difference sequences

such that E||di||P and E||d}||P are finite for each k, we have
B> 4
k=0

We shall prove analogical theorems to the above one for AUYMD Banach
spaces. We remark that the class of A/ MD Banach spaces is strictly larger
than the class of complex Y MD Banach spaces and includes such space as
complex L'[0, 1] which is not Y MD space.

P d P
<oB|Y |, n=12...
k=0

2. Main definitions

Let (Q,F, P) be a probability space and Fo = {8,Q} C F/; C ...F, C
Fnt1 C ... C F be a filtration (a nondecreasing sequence of sub-o-fields),
B be a complex separable Banach space, B* be a dual space of B and M,, =

Y~ di be a B-valued martingale with respect to (F,) (i.e. for each integer k,
k=0
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d; are measurable relative to F; and Bochner integrable functions with
E(di+1|Fx) = 0).

DEFINITION 1. A sequence of random variables (vj) is (Fj)-predictable
if v is Fj_j-measurable for £k = 1,2,...

DEFINITION 2. Let Q = [0, l]N, suppose that F is the product o-field of
Borel subsets of [0, 1] and P the product measure of the normalized Lebesgue
maesures. We take the filtration F,, on {2, where F, stand for the o-field
generated by the first n coordinates 6y, ..0, of § = (6;) € Q.

An analytic martingale is a sequence (M, )3, of B-valued functions of
the following form

Mp=do+ ) hk1(fy,.-.,0k_1)e" ™%,
k=1
where dg, ho € B and hy are B-valued functions of k-variables, F; measur-
able (with the convention that Fo = {0, Q}).

DerFINITION 3. If ()2 is a deterministic sequence of numbers from
n
{-1,1}, then the martingale N,, = ) exdy is called (¢;)-transform of the
k=0
martingale M,,.

DEFINITION 4. A complex Banach space B is called AUMD (Analytic
Unconditional Martingale Differences), if for each p > 1 there exists a con-
stant ¢, which depends only on p and B such that for every B-valued analytic
martingale M, and its every (¢;)-transform N,, we have

ENM,||P < cp E||Nx||P.

DEFINITION 5. A real-valued function ¥ : Bx B — [—00,00) is said to be
skew-plurisubharmenic if for every z,y,u € B the following two functions
(defined on the complex plane) g+(z) = ¥(x + uz,y + uz) are subharmonic
i.e. g+(z) is upper semicontinuous and for all @« € C, r € R, S(l) g+(a +
re?™®)df > g4 (a), where g4 (z) stands for either g4 (2) = ¥(z + uz,y + uz)
or g_(z) =V¥(z + uz,y — uz).

DEFINITION 6. A complex random variable £ = £ +1£; is called complex
Gaussian if &;,&; are independent real-valued centered Gaussian random
variables with equal variances; if additionally variances are equal to 1 then
£ is called standard complex Gaussian.

DEFINITION 7. A random vector G with values in a complex Banach
space B is Gaussian, if ¢(G) is a complex Gaussian variable for all ¢ € B*.
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n

DEFINITION 8. A martingale M, = Y, d; with values in a complex
k=0

Banach space B is analytic Gaussian if for each positive integer k, dj has

Fi._1-conditinally almost surely the distribution of a Gaussian B-valued vec-
tor.

7
DEFINITION 9. Two (F,,) - adapted martingales M, = Y dy and M}, =
k=0 .,

n

Y. d}, are said to be tangent relative to (F) if for each » € N the pair
k=0
(dn,d},) is conditionally i.i.d. almost surely, given F,_y.

3. Main results
Let us start with the following fact.

PROPOSITION 1 [3, see Proposition 2.1.2 p.70]. If a real-valued function
V:DCB — [~00,00) is upper semicontinuous and bounded from above
then the sequence of functions ¥x(z) = sup,cp{¥(y) — kllz — y||} defined on
D fork=1,2,3... fulfills:

1. ¥, is uniformly continuous on D;

2. ¥y <sup,.p¥(z);
3. Vi (2) < Ur(2) and limy_, o ¥i(z) = ¥(z) for z € D.

The proof of this fact for B = C (for the complex plane) from the book
of Steven Krantz [3] carry over to the case of arbitrary Banach space B by
substituting the absolute value with the norm.

We shall need also the following simple lemma proved in [5, Lemma 3].

LEMMA 1. Let p > 0, ¢, € R and let di be random vectors with values
in a complez Banach space B. If the inequality

n n
B| L esde]|” < o L
k=0 k=0

holds true for all sequences of predictable random variables (respectively for
all non-random sequences) (ex) with values in {—1,1}, then for each pre-
dictable sequence (z),(yx) of real random variables (respectively for each
non-random sequence) with | zx |, | yx |< 1, we have

B en o <] Sl
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where

2¢,
o=zt frpel
2P¢, forp > 1.
Next theorems characterize AUMD Banach spaces via analytic tangent
martingales.
THEOREM 1. A complez Banach space B is AUMD iff for each p €
(0,00) there exists a constant ¢, depending only on p and B such that

= P
E“do + Z hk—1(01> sy ek—la 0;., e '70;—1)621”6"
k=1

n
S C,,E”do + Z hk_1(01, ey Bk_l, 0{, ey 2_1)627”0“ ”p,
k=1

where hy are measurable (with respect to o-field generated by the first coordi-
nates 0y, ..0x,01,..0;) and bounded functions with values in B and ho,dy € B

are constant vectors

Proof. = We shall use Fubini Theorem and Lemma 1 with constants
zp +oyr = e¥™% for k = 1,2,... and 7o + 1o = 1. Let us fix 6},6),...
and take dy = hg_1(01,--.,0k-1,0},...60,_,)e*™® in Lemma 1. Since B is
AUMD Banach space and €2™*% is from the unite circle, then the assump-
tions of Lemma 1 are satisfied. Hence

i P
E”do + 5 b (B, B5e1, 6, By )2
. k=1

1 n
.S”do-i-zhk—l(el,-- y0k—1,0,...05_1)
0 k=1

x 2™ |" a9, ... do,, d8,, .. .d8,

1 1 n
S dps"'s“do+th—1(017"',0k_1’01,... Sc—l)
0 0 k=1

']
X 627”91: e21r2€k

Y4
dby,...,d0,d6,,...do\,

1 1 n
:dps...§|‘do+zhk_1(91, 2 0k—1,0,...051)
0 0 k=1

' 4
« 2™ €m0k dog, .. d0;c7 de,,...,do
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o = ; ! 226’ ||P
< d,,E”do + ;hk—l(el,---,91:-1,91,---91:—1)6 *

< Let (&) be a sequence of numbers in {—1,1}. Since coere?™® and
€™ have the same distribution we have by the assumptions

i p
E”doeo + E exhi_1(01,- .., 0c-1)e* ™%
k=1

n 1 ||P
< cpElldo + ZEOEkhk—l(()l, R i
k=1

n 1 |IP
= ¢, E|ldy + E Bi—1(B1,...,0k_1)e2™%

n
P
< C?,E do + th—l(ely ce ey Opog )R
k=1

This completes the proof.

Now we shall give a characterization of AU MD Banach spaces via ana-
lytic Gaussian martingales. We shall start with the following lemma.

LEMMA 2. Let 3 > 1 and let B be a complex Banach space such that
E|| My < EB|| N,

for all martingales M,, = do + E hi(&1,. .., €k-1)Ek with respect to the

filtration F,, = o(&1,...€,) and zts (5 )-transforms N, where hy = z € B,
hy : C¥~1 — B are measurable and bounded functions and (£;)§, is a

sequance of independent, standard complez Gaussian random variables. Let
&(z,y) = Byl — llz|| for z,y € B and let us define

Tnlz,9) = Mn,Nn,diIlfo,um l<n E®(@+ Ma,y+ Na),

where infimum is taken over all martingales M,, of the above form and its
(&;)-transforms N,. Then

U(z,y)= lim ¥,(z,y)

for z,y € B exists and is the mazimal function among functions ¥ satisfying
the following conditions:
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1. ¥ is upper semicontinuous and locally bounded;
2. for each z,y,u € B EW(z + uf,y + uf) is finite and
E¥(x + uf,y + u) > ¥(z,y),

where { is a standard complez Gaussian variable;

3. ¥(z,y) < &(z,y), 0 = ¥(0,0) < ¥(z,£z).

Proo_f. ¥ is well defined since ¥,,41 < ¥,. Let us assume that another
function ¥ enjoys conditions 1,2,3, then we have
Ed(z+ My,y+ Nyn) >

> EW(z + M,y + Ny,)

n—1 n—1
= EE[F(a+ kg_j_l Rk + hnbn, y + ; exhibs + enhnbn) | €1,y kot

> ... .>U(z,y)

(by the induction over n ). Hence ¥, > ¥ and ¥ > ¥ . Putting M,, =
0, N, = 0in the definition of ¥,, we obtain, that ¥, < @. Clearly, ¥, is upper
semicontinuous as the infimum of continuous functions. Since 0 < ¥(0,0) <
&(0,0) = 0 then ¥(0,0) = 0. Moreover, applying E®(y+ M,,+y+ N,) > 0,
we have

Uo(z,y) = M..,N..,dilifo,nhkngn E®(z + Mn,y+ N,)
= Mmde(i};g,”hk 1< EB|ly+ Nyl — Ellz + M,||
- anNn,diI;fO,"hk"Sn EBlly+ Noll - Elly + Mel) - llz - |l
2 —llz —yll.

Hence —||z —y|| < ¥(z,y) < ¥n(z,y) < B(z,y) = Bllyll - ll=|| < Bllyll + |||l
Therefore ¥*+(z,y) < Blyll + llall , ¥~ (,9) < llz — yll- So [@al| < (8+
Dllyll + 2[lz|} and [|#]| < (8 + 1)lly|l + 2||z[|. Hence E¥(z + uf,y £ uf) is
finite and ¥,,, ¥ are locally bounded.

To show that E¥(z + ué,y + uf) > ¥(z,y) it suffies to show that for
the function ¥, and ||u|| < n we have E¥,(z + u,y £ u€) > ¥, 41(z,y). By
Lebesgue Theorem we have

EV(z +ul,yxuf) = lim  EW.(z+ u€,y £ uf)
n

—oo,n2|lull

> lim ¥ny1(2,y) = ¥(2,9)
n—00
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Let us define a norm on B x B as ||(z,y)|| := |||l + ||y]|. We have

19(z,y) — 2(z1,31)| = |Bllyll = 1=l = Bllysll + flzl]
< 181l = Bllwalll + llfzall = =0l
< Bly = yifi + llz — 21 l)
= Bli(z,9) = (z1, 91)Il-

Hence &(z,y) is the Lipschitz function with the constant 3.

Let us fix z,y,u € B,||u|| < n, ¢ > 0. Now let us divide the complex
plane C into countably many disjoint squeres K; without the top and the
right edges such that the dimeters d; of sets D; C B x B,D; = {(z,y) +
(u,tu)z, z € K;} satisfy

c
di= sup {(u,2u)(z1—2)} <2llul] sup |z —z=|< 2.
21,22€K; 21,22€K; g

Now we define for all m € AN and for (Z,7) € { (z,y) + (v, tu)z, z € C}

the following functions

U (z,9) = sup {¥u(z1,91) ~ m||(Z,9) — (z1,9)]|} for (Z,7) € D.
(z1,)€ED;
Since @ is Lipschitz function we have that ¥, is bounded from above
on D;. Hence from Proposition 2 lim,,—c ¥,;;* = ¥,, and the functions £ —

Ur(z + uf,y £ £) are continuous on K;. Let us fix ¢ > 0. Then by the
definition of ¥, for each £ € K;, we have

Tz + uf,y £ uf) > Tn(z + u,y + uf)
> E®(z +ué + Mi,y+ uf + Nf) — ¢,

for some martingale M¢ and its (¢;)-transform N§.

Let us observe that by taking in the definition of the function ¥* the
supremum over D; = {(z,y) + (u,+u)z , 2 € K;} we can extend ¥
continuously on D;. Since ¥, < supze-D—‘_|d5(:n)| and D; is bounded, the
extention is bounded from above.

Let us define for fixed £ € K; the following functions

ge(m) =¥ (z+un,ytun)— ES(z+ un+ Mfl, ytun+ Nﬁ)

The Lebesgue Theorem implies that g¢ is continuous and g¢(¢) > —¢. By

the comptactness of K; we have, that there exist finitely many points &

in K; and disjoint sets P?,£7 € P covering K; and corresponding martin-
1 "y s

gales My ,....MS" such that ||hi" | < n and ge:(n) > ~¢ for n € P?,s =

1,2,...,n;. From these martingales we build for £ € K; a random vector
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Mi(€,6, ..., &) = ub+ Mﬁ"s for £ € P? such that we have
Oz + ut,y + uf) > ES(z + M,y + Ni) —e.

Since we have countably many sets K;, we have also countably many mar-

tingales. Since ||u|| < =, ||hi:|| < n then for these martingales hi are mea-
surable and uniformly bounded by n. Finally, let us define a martingale M,
as follows: ‘

Mesr(6y. . £n) = MA(E,...6) for £ € K.

For this martingale the functions h; are measurable and ||hxl] < n + 1.
Moreover the following inequality is true

V(2 +ub y £ uf) > ES(z + Mptr,y+ Nnga) — €.

If £ is a standard complex Gaussian random variable independent on &, ...
..., &n, then integrating both sides and applying Fubini theorem and the
definition of function ¥, we obtain

E¥ M z+ ul,ytub) > Vpiq(2,y) —¢.
Now passing to infinity with m we obtain
EWn(e + b,y £ u) > Yoy (2,9) ~ -
This completes the proof of lemma because ¢ was arbitrary small.
To prove Theorem 3 we will need the following results proved in [5].

LEMMA 3. Let & : B x B — [~00,00) be a continuous function lo-
cally bounded from above (i.e. a function bounded from above on bounded
sets), ¥(z,y) = infar, N, E®(x + My, y+ Ny), where the infimum is taken
over all bounded analytic martingales M,, starting from ¢ = 0 and their
gi-transforms N,.

Then ¥ is a mazimal skew-plurisubharmonic function such that

V(z,y) < &(z,y) for (z,y) € BxB.

THEOREM 2. A complex Banach space B is AUMD iff there exists a
function ¥ : B x B — [—00,00) such that

1. ¥ is skew-plurisubharmonic;

2. ¥(z,+z) > ¥(0,0) > 0;

3. ¥(z,y) <¥(0,0)+ ||y|| for z,y € B;

4. (2,9) < Ilyll on the set {(=,3): [l=]l + [lyll > 1}.

Now we shall state and prove the main theorem.
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THEOREM 3. A complez separable Banach space B is AUMD iff for all
tangent analytic Gaussian martingales M,,, M, with values in B and a fized
p > 0 there ezists a constant d, > 1 such that

E||\Ma||” < dp B M|P.

Proof. => Let B be a separable AUMD Banach space with constant
¢p for p > 0. Let us take the function ¥, from Lemma 3 for the following

function
Pp(z,y) = cpllyll® — ||| if p € (0,1],
&p(z,9) = 27 e, |lyll? — |l2IP if p> 1.

First we will check integrability of the function ¥,(z + £,y + 7), where £
and 7 are B-valued Gaussian vectors. Let us notice that for all z,y € B we
have

lz + ylI” < ll=lI” + llyll” if p € (0,1]
and
e+ yllP < 2272 (l|=l” + |lgl?) if p > 1.
Hence, for p € (0,1}, we have
e+ Ml =l + Mo+ 2= 4l 2 g+ Mol = o P
and for p > 1, we have
~llz + MallP > =227 |y + M,||? — 2P ||z — y|j?.
Since B is AUMD, we have for p € (0, 1]
Yp(z,y) = Jnf cplly + Null? = ||z + Ma||?

nii¥n

> ol eplly + Nall? = lly + Mall? = llz = o|I” 2 ~llz - yIP

nyt'tn

and for p > 1, we have
By(o,9) = juf, ¢2 My + Nall? = flo + Mo
> il 277 cplly + Nall” = lly + Mall?) ~ 221z — y]?
> =207 |z — y]IP.

Hence ¥f (z+£,y+n) and ¥ (2 +£,y+n) are integrable. So ¥,(z+&,y+17)
is integrable for p > 0. Moreover, ¥,(z, +z) > ¥,(0,0) = 0.
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n n
Let M, = 5 dg, M) = > d| be two tangent analytic Gaussian mar-

k=0 k=0
tingales. Then % d:-d 5pe Fi_1-conditionally independent and they
& vZ /2

have F_i-conditionally the same symmetric Gaussian distributions as d
and dj.

Let d, = ¢, for p € (0,1] and d,, = 2P~ 1¢, for p > 1.

If B is AUMD then the function ¥, is skew-plurisubharmonic and such
that ¥,(0,0) = 0 and ¥,(z,y) < dp||y||” — ||«||®. Hence

dp E|| M| — E||Ma|?
> EV,(Mn, M) = EE[Wy(My_1 + dn, M} _y + d},)|Fr1]

_EE[W( n—1+ \/-n M, n—l]
11 821I3d +e21rt9’ 4’ 2r|6d _22758 dl

=\ EEW, (M1 + e My + T )| Py ]d6dg
00

1 1
2xs6 2218’ ; b 18! »
(EE @ (Mg + S0t gy g T ey e d
0 0

21r|9d

1
> {EEW,(My_y + 282 M), + 2 2"” 0 s )| £, _1]dO
0

2 E!pp(Mn—-laMT,,,—l) Z s 2 !pp(do,:hdo) Z W(0,0) =0

(by the induction over n).
< Let us take the following martingales

Mn = dO + th(§l7 .. ')Ek—l)&k?

k=0

n
M:L =dp + Z hk(glv .. '7£k—1)€;c7
k=0

where hj, are measurable and bounded B-valued functions, &i,...,&,,
£,...,& are two independent copies of independent sequence of standard
complex Gaussian random variables.

If we take (g;)-transform N, of the martingale M, than M,,M] are
tangent analytic Gaussian and M}, o N, are also tangent analytic Gaussian.
Hence

E||Mall? < dpE| My [IP < dy| NaIP-



Characterization of compler Banach spaces 725

Let ®(z,y) = d?||yll — ||z||. In this case the function ¥ from Lemma 2 is the
maximal (the maximality is crucial for the proof) function satisfying:

a) for all z,u € B E¥(z + u,y £ u€) > ¥(z,y), where { is a standard
complex Gaussian random variable;

b) ¥(z,xz) > ¥(0,0) = 0 ¥ < &. The proof will be finished if we show
that ¥ is skew-plurisubharmonic because of Theorem 2.

Let us define ¥,.(z,y) = E¥(z+uréy,yturéy) for r > 0,u € B, where &
is a standard complex Gaussian random variable. Clearly, ¥,(z,y) > ¥(z,y)
and ¥,(z,y) is upper semicontinuous. We shall show that lim, o ¥,(z,y) =
¥(z,y). Let us notice that ¥, ;(z,y) > ¥,(z,y) if ,s > 0. Namely, if £}, £
are two independent copies of £, then

Uris(2,y) = B¥(z +u(r + 5)61,y £ u(r + 5)61)
= E¥(z + u(ré] + /% + 2rs€3), y £ u(réf + /% + 2rs€?))
> E¥(z +urll,y +urfl) = ¥(z,y).

Let us assumme that ﬁ(z, y) = lim,_,o ¥,(z, y). Clearly !f(a:, y) > ¥(z,y).
Since ¥t < d¥||y|| + ||z]} and ¥~ < ||z — y]|, then

[, (z,y)| < E|¥(z+ uréy,y £ urfy))
= E@0Y + U7 )(z + urky,y + uréy)
< E(d + Dlly £ wrlall + E2|je + uréy |
< (df + Dyl + 22l + (df + 3)lullrEJ&.

If r < 1, then |¥:(z, ) < (df + )llyll + 2ljz| + (d} + 3)||ul| E|¢1| and |&(= +
uréy, yrurdy)| = |df[ly2ur&a ||~ |z +ur&al] << dillyll+le]l+(dF + Dllufiél.
Hence from Lebesgue Theorem we obtain

f(:c, y)= 31_% EV(z + urfy,y £ uréy)
< ll_rg E®(z + uréy,y £ uréy)
= Elim dilly £ urés]| - [lz + uréa | = iyl ~ llall = #(a,v).
Since 7 < 1 then we have
(2 +v€, y£ v€)| < (di + Dllyll +2llzl + (@3 + 3)llvll €] + (d + 3)ull Eléal -
Then again from Lebesgue Theorem follows that

E¥(c + 6,y £ v6) = lim EV,(a + o€,y + v) > lim ,(2,y) = ¥(z, 7).
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Hence from Fubini Theorem we have
EU.(z + v€,y £ vf) = EEV, (¢ + u&y + v€,y+ uéy £ vE)

r& &ainde Py (3 + uby + v€, y + uby £ vf)
Z EWT(‘E + uflay + ufl) = Wr(w’y)‘

So ¥ satisfies the following conditions:
L <dyll - llzll;
2. EV(z + v€,y £ v€) > ¥(z,y);
3.U>V0.

Finally, because ¥ is the maximal function satisfying the above conditions,
then ¥ = lim,_,o ¥, = V.

To show that 2 — ¥(z + vz,y £ vz) is subharmonic it suffies to show
that z — ¥, (z 4+ vz,y + vz) is subharmonic. Applying again the Lebesgue
theorem we obtain for r < 1 that

|9 (z + ve’ ™, y £ 0e®™)| < (d + Dllyll + 2flel| + (@ + 3)(lloll + el El&1))-

Let us notice that in the definition of ¥, we have used a fix vector
u € B, but we have showed that lim,_,o ¥, = ¥, independently on vector
u . If we take u = v, in the definition of ¥,, then ¥.(z + vz,y £ vz) =
E¥(z 4+ v(z+ &),y + v(£z + &) will be a smooth function of complex z.
From a general theory of subharmonic functions follows that if z — ¥,.(z +
vz,ytvz)is smooth and EV¥,(z+v€, y£vf) > ¥,.(z,y), where £ is standard 2-
dimensional normal random variable, then the function 2 — ¥,(z+vz, yvz)
is subharmonic. Hence we have a skew-plurisubharmonic function such that

U(z,xz) 2 ¥(0,0)=0, ¥(z,y) < dilly] - [l
Finally let us define the following function
_ 1+ ¥(z,y)
Vi(z,y) = BT

We shall show that W, satisfies conditions 1,2,3,4 from Theorem 2. Namely,
we have

1 !I/(a:,:tz)

= 1/ =y >V .
Wl(0,0) d%-f-l > Oa 1(11),:[:33) 1(070)+ d%-{-l et 1(070)
For all z,y € B we have
14 d2 ~ ||z
By (z,y) < A=) gy 0,004 .

d? +1
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For z,y € B such that ||z]| 4+ ||y|| > 1 we have

1+ diligll - llell . (di+ Dilyll

e L

Wl(x’ y) S

Clearly, ¥, is skew-plurisubharmonic as a linear transform of a skew-pluri-
subharmonic function ¥. Hence B is a complex AU MD Banach space. This
completes the proof.

The following theorems easily follow from the proof of Theorem 3.

THEOREM 4. A complezx separable Banach space B is AUMD iff there
exists § > 1 such that

E||My|| < EB||Nal|

for any martingale M,, = dy + Z hi(€1y. .. €k—1)Ek and its any (&;)-

k=
transform N, where hy € B are measumble and bounded B-valued functions,
hi,dy € B and &,...,&, is a sequence of standard, independent complex
Gaussian random variables.

THEOREM 5. A complex separable Banach space B is AUMD iff there
erists B > 1 such that

E||M.|| < EB||M,|

for all martingales

Mn = dO + Z hk(gl’ . -vfk—-l)fka

k=1

M, = do + th(ﬁl,- cer €r-1)Ek,

k=1

where hy € B are measurable and bounded B-valued functions, hy,dy € B
and &,...,&n, &1, . ., &L, are two independent copies of independent sequence
of complez standard Gaussian random variables.
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