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A C H A R A C T E R I Z A T I O N OF C O M P L E X AUMV B A N A C H 
SPACES V IA TANGENT MARTINGALES 

1. Introduction 
In this paper we will characterize complex separable Banach spaces B in 

which jB-valued analytic martingale difference sequences are unconditional 
(so called AUMV spaces). In these characterizations we use notion of tan-
gent analytic martingales and tangent analytic Gaussian martingales, de-
fined in this paper. These characterizations are analogical to the well-known 
theorem [4, p. 285] for UMV Banach spaces i.e. spaces in which all martin-
gale difference sequences are unconditional. 

THEOREM. LetB be a Banach spaceUMV. I f p satisfies 1 < p < oo, then 

there exists a constant cp (depending only on B and p ) such that for every 

pair {dk} and of B-valued tangent martingales difference sequences 

such that i?||c?fc||p and £||c?£||p are finite for each k, we have 

We shall prove analogical theorems to the above one for AUMV Banach 
spaces. We remark that the class of AUMV Banach spaces is strictly larger 
than the class of complex UMV Banach spaces and includes such space as 
complex i 1 [ 0 ,1 ] which is not UMV space. 

2. Main definitions 
Let ( i i , T, P) be a probability space and = { 0 , f i } C C .. .Tn C 

J~n+\ C . . . C T be a filtration (a nondecreasing sequence of sub-er-fields), 
B be a complex separable Banach space, B* be a dual space of B and Mn = 

dk be a B-valued martingale with respect to {Tn) (i.e. for each integer k, 
k=o 

n n 

n = 1,2,. . 

n 
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dk are measurable relative to Tk and Bochner integrable functions with 
E(dk+1 \Tk) = 0). 

D E F I N I T I O N 1. A sequence of random variables (v k) is (.F^-predictable 
if vk is Fk-i-measurable for k = 1 , 2 , . . . 

D E F I N I T I O N 2 . Let i i = [0, L]-^, suppose that T is the product <j-field of 
Borel subsets of [0,1] and P the product measure of the normalized Lebesgue 
maesures. We take the filtration T n on ii, where T n stand for the er-field 
generated by the first n coordinates 6\, ..6n of 6 = (6k) G ii. 

An analytic martingale is a sequence (Mn)^=0 of B-valued functions of 
the following form 

n 

k=i 
where do, ho G B and hk are ^-valued functions of variables, Tk measur-
able (with the convention that To — {0,ii}). 

D E F I N I T I O N 3. If (£J)™= 0 is a deterministic sequence of numbers from 
71 

{ —1,1}, then the martingale Nn = ^ £kdk is called (e,)-transform of the 
k=0 

martingale Mn. 

D E F I N I T I O N 4. A complex Banach space B is called AUMV (Analytic 
Unconditional Martingale Diiferences), if for each p > 1 there exists a con-
stant cp which depends only on p and B such that for every B-valued analytic 
martingale Mn and its every (¿^-transform Nn we have 

E\\Mn\\> < cpE\\Nn\\p. 

D E F I N I T I O N 5. A real-valued function : B x B —• [—oo, oo) is said to be 
skew-plurisubharmonic if for every x,y,u G B the following two functions 
(defined on the complex plane) g±(z) — \&{x + uz, y ± uz) are subharmonic 
i.e. g±(z) is upper semicontinuous and for all a G C, r G TZ, \og±(a + 
re2/KtS)dd > g±(a), where g±(z) stands for either g+(z) = )P(x + uz, y + uz) 
or g~(z) = \P(x + uz, y — uz). 

D E F I N I T I O N 6. A complex random variable £ = i s called complex 
Gaussian if £i,£2 a r e independent real-valued centered Gaussian random 
variables with equal variances; if additionally variances are equal to 1 then 
£ is called standard complex Gaussian. 

D E F I N I T I O N 7 . A random vector G with values in a complex Banach 
space B is Gaussian, if <f(G) is a complex Gaussian variable for all y G B*. 
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D E F I N I T I O N 8. A martingale Mn = dk with values in a complex 
k=o 

Banach space B is analytic Gaussian if for each positive integer k, dk has 
^"fc-i-conditinally almost surely the distribution of a Gaussian B-valued vec-
tor. 

n 

D E F I N I T I O N 9. Two (Tn) - adapted martingales Mn = ^ dk and M'n = 
k=0 . 

n 
X] d'k are said to be tangent relative to (Tn) if for each n G N the pair 
k-o 
(dn,d'n) is conditionally i.i.d. almost surely, given Tn-\. 

3. Main results 
Let us start with the following fact. 

P R O P O S I T I O N 1 [3, see Proposition 2.1.2 p.70]. If a real-valued function 
9 : D C B —• [—00,00) is upper semicontinuous and bounded from above 
then the sequence of functions &k(x) = ^Py^Di^iv) ~ &II® — 2/11) defined on 
D fork = 1,2,3 . . . fulfills: 

1. is uniformly continuous on D; 
2. 9i < supxeD ${x)-
3. 9k+i(x) < &k(x) and lim*-,«, <Pfc(x) = W(x) for x G D. 

The proof of this fact for B — C (for the complex plane) from the book 
of Steven Krantz [3] carry over to the case of arbitrary Banach space B by 
substituting the absolute value with the norm. 

We shall need also the following simple lemma proved in [5, Lemma 3]. 

LEMMA 1. Letp > 0 , cp G 1Z and let dk be random vectors with values 
in a complex Banach space B. If the inequality 

77. n p h up 

k-0 
E^Y.^dk <cpE\\^2dk 

k=0 

holds true for all sequences of predictable random variables {respectively for 
all non-random sequences) (£k) with values in { — 1,1}, then for each pre-
dictable sequence (xk),(yk) of real random variables (respectively for each 
non-random sequence) with \ Xk |, | yk |< 1, we have 

n p n 

]£(»* + UfoHfc|| <dpE\\Y,dk 
fc=0 fc=0 
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where 

¿ „ = < 2 ^ / O r ' , e ( 0 ' 1 1 

2pcp for p> 1. 
Next theorems characterize AUMV Banach spaces via analytic tangent 

martingales. 

T H E O R E M 1. A complex Banach space B is AUMV iff for each p £ 
(0, oo) there exists a constant cp depending only on p and B such that 

E „2 m8k 

k=1 
do + E ^ k ~ i ' • • •' ^ k ~ i ' ' • • •' ^fc-i ) e 2 

n 

do + £ , • • •, ifc-i, 0[,..., 0'k_ 1 )e2*< r , < cpE 
k=1 

where are measurable (with respect to a-field generated by the first coordi-
nates 9\, ..Ok, ••Q'k) and bounded functions with values in B and ho, do G B 
are constant vectors. 

P r o o f . => We shall use Fubini Theorem and Lemma 1 with constants 
+ Wk — e27™9* for A; = 1 , 2 , . . . and xq + iyo = 1- Let us fix 0[,6'2, ... 

and take dk — hk_i(0i,... ,0k_i,9[,.. .0'k_1)e2™6k in Lemma 1. Since B is 
AUMV Banach space and e27nS* is from the unite circle, then the assump-
tions of Lemma 1 are satisfied. Hence 

E 

o o 

, k= 1 
1 1 n 

= \ • • • \ || do + E ^fc-1 (#1, • • •, 6k-1, O'l, • • • Q'k-1) 

d01,...,d0k,d0[,...d0k 

< dp\.. .\\\d0 + • -^k-uO'i, • • -0'k-i) 

k=l 

X e lirtSk 

1 1 

0 0 

1 1 

k=\ 
x e2ir»eie2irt9i d01,...,d0k,d0[,...d0'k 

= dp ^ . . . u d0 + E h k ^ i ( 0 i , . . . . .0 'k_i) 
o o k= 1 

X ELK%E'K E2*T0K d0'1,...d0'k,d01,...,d0k 
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< dpE 
It 

do + hk-i (0i,..., 0k-i Q'k-i )e27r,S|t 

k=l 

<= Let (£k) be a sequence of numbers in {—1,1} . Since £o£fce2irifl* and 
e2in6k h a v e ^he s a m e distribution we have by the assumptions 

E do£o + £khk-1 (0i, • • •, Ok-i )e 
k= 1 

< cpE 

cpE 

<c2pE 

do + Y, £oekhk-i 9k-1 )e2w< 
k-1 

n 

k=1 

n 

k= 1 

This completes the proof. 

Now we shall give a characterization of AUMV Banach spaces via ana-
lytic Gaussian martingales. We shall start with the following lemma. 

L E M M A 2 . Let ¡3 > 1 and let B be a complex Banach space such that 

E\\Mn\\ < 2?/?||jVn||, 

n 
for all martingales Mn = do + • • with respect to the 

k=1 
filtration Tn — <r(£i,...£n) and its (e,)-transforms Nn, where hi = x € B, 
hk : C k-1 B are measurable and bounded functions and is a 
sequance of independent, standard complex Gaussian random variables. Let 
$(x,y) = /3||y|| — ||x|| for x,y 6 B and let us define 

f ) = V > f n ,u E * ( X + M ^ y + N n ) , M„,Nn,d0=0,\\hk II<n 

where infimum is taken over all martingales Mn of the above form and its 
(Ei)-transforms Nn. Then 

W(x,y)= lim 9n(x,y) 
n—*oo 

for x,y G B exists and is the maximal function among functions & satisfying 
the following conditions: 
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= EE 

1. !? is upper semicontinuous and locally bounded; 

2. for each x,y,u 6 B E&(x + u£,y ± u£) is finite and 

E¥(x + u{,y±ut)>9(x,y), 

where £ is a standard complex Gaussian variable; 
3. W(x, y) < $(x, y), 0 = 9(0,0) < W(x, ±x). 

P r o o f . !? is well defined since < Let us assume that another 
function & enjoys conditions 1,2,3, then we have 

E${x + Mn,y + Nn) > 

> EW(x + Mn,y + Nn) 

n—1 n—1 
+ ^hktk + hn£n,y+ SkhkZk + | 

k-1 k=1 

> ... > W(x,y) 

(by the induction over n ). Hence )Pn > W and & > \P . Putt ing Mn = 
0, Nn = 0 in the definition of we obtain, that Wn < Clearly, is upper 
semicontinuous as the infimum of continuous functions. Since 0 < !?(0,0) < 
#(0 ,0) = 0 then !P(0,0) = 0. Moreover, applying E$(y + Mn, ±y + Nn) > 0, 
we have 

9n(x,y)= inf E$(x + Mn,y + Nn) Mn,Nn,do=0,}lhkll<n 

inf Ep\\y + Nn\\-E\\x + Mn\\ Mn,Nn,do=0,\[hk\\<n 

^M M >f„lfc || s Efi\\y + Nn\\-E\\y + Mn\\)-\\x-y\\ Mn,Nn,do=0,\\hk || <n 

> " I k -2/11-

Hence - y|| < 9(x, y) < Vn(x, y) < $(x, y) = /%|| - ||z|| < (3\\y\\ + | |z||. 
Therefore 9+(xty) < ¡3\\y\\ + ||x|| , 9~(x,y) < \\x - y||. So \\Vn\\ < Q3 + 
l) | |y| | + 2||*|| and | |? | | < (/J + 1)||2/|| + 2||z||. Hence EV(x + u£,y ± «£) is 
finite and are locally bounded. 

To show that EW(x + y ± > \P(x,y) it suffies to show that for 
the function and ||u|| < n we have EWn(x + y ± u£) > &n+i(x,y). By 
Lebesgue Theorem we have 

E9(x + u£,y± tt£) = lim E$n(x + u£,y± u f ) 
n-+oo,n>||u|| 

> lim 9n+1(x,y) = 9(x,y). 
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Let us define a norm on B X B as ||(®,2/)|| := ||®|| + \\y\\- We have 

|$(x,y) - *(si,yi)| = |/?||iH| - Nl - /?||j/i|| + ||zi||| 

< P(\\y — 2/111 + Ik - ^iII) 

= (3\\(x,y)-(x1,y1)\\. 

Hence <P(x,y) is the Lipschitz function with the constant (3. 
Let us fix x,y,u € B, ||u|| < n , c > 0. Now let us divide the complex 

plane C into countably many disjoint squeres Kj without the top and the 
right edges such that the dimeters di of sets D{ C B x B,Di = {(x,y) + 
(u, ±u)z, z 6 Ki} satisfy 

c 
di = sup {(u,±u)(2i - z2)} < 2||u|| sup \z\ - z21 < -r. 

zi,z2eKi zi,z2eKi P 

Now we define for all m £ M and for (a:, y) € { (x, y) + (u, ±u)z, z € C} 
the following functions 

9?(x,y) = sup yi) - m||(®,y) - yi)||} for (x, 

Since # is Lipschitz function we have that is bounded from above 
on D{. Hence from Proposition 2 l imm-^ = and the functions £ —• 
&™(x + y ± £) are continuous on Ki. Let us fix e > 0. Then by the 
definition of }Pn, for each £ £ Ki, we have 

+ y ± u£) > Vn{x + y ± <) 

> E$(x + u£ + Mt,y±u£ + N*) - e, 

for some martingale and its (et)-transform N^. 
Let us observe that by taking in the definition of the function the 

supremum over Di = {(a;,j/) + (u,±u)z , z € /i ,} we can extend 
continuously on Di. Since < s u p x e j r and Di is bounded, the 
extention is bounded from above. 

Let us define for fixed f 6 Ki the following functions 

g^t]) = + urj, y ± ut]) - E$(x + UTJ + M*, y±wq + N*). 

The Lebesgue Theorem implies that is continuous and g ^ ) > —e. By 
the comptactness of Ki we have, that there exist finitely many points 
in Ki and disjoint sets P f , € Pf covering Ki and corresponding martin-
gales Mn , Mn such that || < n and g^(rj) > —e for i] £ P f , s = 
1 ,2 , . . . , n i . From these martingales we build for £ £ Ki a random vector 
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MUZ, • • • ,(n) = + for £eP* such that we have 

9™(x + <,V± O > E${x + Ml
n,y + N%

n) - e. 

Since we have countably many sets Ki, we have also countably many mar-
ts 

tingales. Since ||u|| < n, y/i^ || < n then for these martingales h\ are mea-
surable and uniformly bounded by n. Finally, let us define a martingale Mn 

as follows: 
M n + 1 ( £ , . . . B ) = M*(e , . . .£„) for e € Ki. 

For this martingale the functions hk are measurable and ||/i¿|| < n + 1. 
Moreover the following inequality is true 

9™(x + u£,y± uO > E$(x + Mn+1,y + Nn+1) - e. 

If £ is a standard complex Gaussian random variable independent on , . . . 
then integrating both sides and applying Fubini theorem and the 

definition of function 9n+\ we obtain 

E9?(x + u£,y± uO > 9n+1(x, y) - e. 

Now passing to infinity with m we obtain 

E9n(x + y ± O > 9n+1 (x,y)-e. 

This completes the proof of lemma because e was arbitrary small. 

To prove Theorem 3 we will need the following results proved in [5]. 

LEMMA 3. Let $ : B X B —» [—00 ,00 ) be a continuous function lo-
cally bounded from above [i.e. a function bounded from above on bounded 
sets), 9(x,y) — infjvfn,N„ E$(x + Mn,y-\- Nn), where the infimum is taken 
over all bounded analytic martingales Mn starting from x = 0 and their 
£i-transforms Nn. 

Then 9 is a maximal skew-plurisubharmonic function such that 

9{x, y) < $(x, y) for (x, y) £ B X B. 

THEOREM 2. A complex Banach space B is AUMV i f f there exists a 
function 9 : B x B —> [ — 0 0 , 0 0 ) such that 

1. 9 is skew-plurisubharmonic; 
2. 9(x,±x) > ¥(0,0) > 0; 
3 . 9(x, y) < 9(0,0) + ||y|| for x,y e B\ 
4. 9(x,y) < ||Y|| on the set {(x,y) : ||Z|| + ||Y|| > 1}. 

Now we shall state and prove the main theorem. 
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T H E O R E M 3 . A complex separable Banach space B is AUMV iff for all 
tangent analytic Gaussian martingales Mn,M'n with values in B and a fixed 
p > 0 there exists a constant dp > 1 such that 

E\\Mn\\> < dvE\\M'n\\v-

P r o o f . Let B be a separable AUMV Banach space with constant 
cp for p > 0. Let us take the function 9P from Lemma 3 for the following 
function 

$p{x,y) = cp\\y\\P-M\P if p € (0,1], 

* p (x ,y) = 2 * - 1 c „ | | y r - | | * r if p > 1. 
First we will check integrability of the function !Pp(* + y + ?/), where £ 

and r] are ^-valued Gaussian vectors. Let us notice that for all x, y G B we 
have 

\\x + y\\p<Mp + \\v\\p if p g ( o , i ] 

and 

Hence, for p G (0,1], we have 

-II* + M„||" = -Hy + Mn + x- y||p > - | | y + Mn\\p - ||x - y||p 

and for p > 1, we have 

-Ik + Mn\\p > -2*-l\\y + Mn | |p - 2P _ 1 | |* - y||p. 

Since B is AUMV, we have for p € (0,1] 

9p(x, y) = inf cp||y + iVn||p - ||x + Mn | |p 

Mn,Nn 

> inf cp||y + Nn\\> - ||y + Mn | |p - ||x - y||p > - | | * - y||p 
Mn,Nn 

and for p > 1, we have 

9p(x, y) = inf Cp2p_1 ||y + ^„ | | p - ||z + Mn | |p 
Mn,Nn 

> inf 2p_1(cp | |y + iV„||p - ||y + Mn||p) - 2""1 | |* - y||p 
Mn,Nn 

> -2*-x\\x-y\\*. 

Hence !?+(* + £, y + rj) and (x + y + r¡) are integrable. So ^p(x+^,y+T)) 
is integrable for p > 0. Moreover, iPp(x, ±x) > !?p(0,0) = 0. 
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n n 

Let Mn = dk , M'n = YJ d'k be two tangent analytic Gaussian mar-
k=0 k-0 

tingales. Then , d k ^ k a r e Fk-i-conditionally independent and they 
have .T^-i-conditionally the same symmetric Gaussian distributions as dk 
and d'k. 

L e t dp = cp f o r p £ ( 0 , 1 ] a n d dp = 2 p ~ 1 c p f o r p > 1. 

If B is AUMV then the function is skew-plurisubharmonic and such 
that !Pp(0,0) = 0 and &p(x,y) < dp\\y\\p - ||a;||p. Hence 

dpE\\M'n\\v - E\\Mn\\* 

> E\Pp(Mn,M'n) = EE[Wp(Mn-\ + dn,M'n_x + d'J 

= EE[&p(Mn-i + + 

1 1 
rr <>2ifiSj ,„2rtB' ji „Jrii j 2n6' ¡1 

= S \EE[9p{Mn-X + + }d9d9' 

0 0 
1 1 

Sr 2*1® j , 2n6' j! 2>i9 j 2 x t l 

EE\[9p{Mn.x + e d S M + r n - i W M 
0 0 

1 

o 

> EVv{Mn-X,M'n_x) > ... > Vp(d0,±d0) > ¥ (0 ,0 ) = 0 

(by the induction over n). 

<=• Let us take the following martingales 

n 

Mn = d0 + 6 - 1 ) 6 , 

k=0 

n 

fc=0 

where hk are measurable and bounded valued functions, ••••>€n, 
. . . , are two independent copies of independent sequence of standard 

complex Gaussian random variables. 
If we take transform Nn of the martingale Mn than Mn, M'n are 

tangent analytic Gaussian and M'n,£nNn are also tangent analytic Gaussian. 
Hence 

E\\Mn\\* < dpE\\M'n\\* < 4||iVn||f. 
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Let $(x, y) = c?i||i/|| — ||ar||. In this case the function from Lemma 2 is the 
maximal (the maximality is crucial for the proof) function satisfying: 

a) for all x,u G B E9(x + y ± u£) > &(x, y), where £ is a standard 
complex Gaussian random variable; 

b) 9(x, ±x) > ^ (0 ,0 ) = 0 !? < The proof will be finished if we show 
that 9 is skew-plurisubharmonic because of Theorem 2. 

Let us define Wr(x, y) = Eit{x + ur£\, y±ur£i) for r > 0, u € B, where 
is a standard complex Gaussian random variable. Clearly, 9r(x, y) > 9(x, y) 
and \Pr(x, y) is upper semicontinuous. We shall show that l im r_o 9r(x, V) — 
W(x,y). Let us notice that 9r+s(x,y) > Ws(x,y) if r,s > 0. Namely, if 
are two independent copies of , then 

Vr+s{x, y) = EV(x + u ( r + , y ± u(r + 

= EV(x + ii(rei + \ A 2 + 2 r s g ) , y ± u(r(} + V s 2 + 2 r a £ ) ) 

> EW(x + ur£,y + ur^1) = 9r(x,y). 

Let us assumme that 9(x, y) = l i m ^ o 9r(x, y)• Clearly &(x, y) > W(x, y). 
Since < d\\\y\\ + ||x|| and 9~ < ||z - y||, then 

\Vr(x,y)\ < E\V(x + urt1,y±ur(1)\ 

= E($+ + )(x + u r f ! , y ± u r f r ) 

< E{d\ + 1)||2/ ± ur^W + E2\\x + tirfcH 

< ( ^ + l)||j/|| + 2||x|| + ( ^ + 3 ) | | U | | r i ; | 6 | . 

If r < 1, then \Vr(x, y)| < {d\ + l) | |y| | + 2||z|| + (d\ + 3 ) | M | £ | 6 | and |<P(z + 
u r e L y i t t r i i ) ! = \d l \ \y±ur^ | | - | | x+«re i |H < < ^ | | » | | + H + ( < 3 + l)IMII£il-

Hence from Lebesgue Theorem we obtain 

9(x,y) = lim E9(x + ur£i,y± ur£i) 
r—•() 

< l im E$(x + u r ^ ! , y ± ur£i) 
r—+0 

= E n m d ? | | y ± urhW - \\x + ur^\\ = - \\x\\ = *(x,y). 

Since r < 1 then we have 

\9t{X + v£,y±v£)\ < (d\ + 1)||?/|| + 2||x|| + (¿i + 3)||t>|||£| + (d j + 3)||u||-E|£i|. 

Then again from Lebesgue Theorem follows that 

E#(x + v{,y± v ( ) = l im E9r{x + w f , y ± v{) > l im 9r(x, y) = $(x, y). 
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Hence from Fubini Theorem we have 

E#r(x + v£,y± v{) = EE$r{x + + v{, y + <1 ± v£) 
f o r ^ i n d e p . ^ + ^ + + ^ ± ^ 

> EWr(x + u£i, y + ) = Wr{x,y). 

So 9 satisfies the following conditions: 

1.V^d\\\y\\-\\x\\-
2. E$(x + vZ,y±vt) > &(x,y); 

Finally, because 9 is the maximal function satisfying the above conditions, 
then W = l im r _ 0 = 

To show that z —> &(x + vz,y ± vz) is subharmonic it suffies to show 
that z —> Wr(x + vz, y ± vz) is subharmonic. Applying again the Lebesgue 
theorem we obtain for r < 1 that 

\9r(x + ve^\y ± v^9)\ < {d\ + l)||j/|| + 21^11 + (d? + 3)(|M| + |M |£ |6D-

Let us notice that in the definition of !?r we have used a fix vector 
u 6 B, but we have showed that lim r_o = $•> independently on vector 
u . If we take u — v, in the definition of Hfr, then iPT(x + vz,y ± vz) — 
EW(x + v(z + £i), y + v(±z + £i) will be a smooth function of complex 2. 
From a general theory of subharmonic functions follows that if z —> lPr(x + 
vz, y±vz) is smooth and ElPr(x+v£, y±v£) > )Pr(x, y), where £ is standard 2-
dimensional normal random variable, then the function z —> &r(x+vz, yhvz) 
is subharmonic. Hence we have a skew-plurisubharmonic function such that 

V(x,±x) > ff(0,0) = 0, 9{x,y) < d\\\y\\ - ||z||. 

Finally let us define the following function 

We shall show that !?i satisfies conditions 1,2,3,4 from Theorem 2. Namely, 
we have 

1 }P(X i x ) 
*i(o,o) = ^ r > = + d [ + i ~ ! ? l ( 0 ' 0 ) -

For all x, y G B we have 
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For x,y e B such that ||a;|| + ||j/|| > 1 we have 

9 (r ^ < 1 + IN < 1)Hyll _ ..„M 
* l ( l ' y ) - — d f T i — - d? + i ~ 

Clearly, is skew-plurisubharmonic as a linear transform of a skew-pluri-
subharmonic function Hence B is a complex AUMV Banach space. This 
completes the proof. 

The following theorems easily follow from the proof of Theorem 3. 

T H E O R E M 4 . A complex separable Banach space B is AUMV i f f there 
exists f3 > 1 such that 

E\\Mn\\ < E(3\\Nn\\ 
n 

for any martingale Mn = ¿0 + S • • and its any (£i)~ 
A;=0 

transform Nn, where hk £ B are measurable and bounded B-valued functions, 
h\, do € B and £1,.. is a sequence of standard, independent complex 
Gaussian random variables. 

T H E O R E M 5 . A complex separable Banach space B is AUMV i f f there 
exists ¡3 > 1 such that 

E\\Mn\\ < EPWM'nW 

for all martingales 
n 

M n = d o + M £ i . 
k= 1 

n 

fc=i 

where hk € B are measurable and bounded B-valued functions, hi,do G B 
and £1, • • •, fn > > • • • > £n are two independent copies of independent sequence 
of complex standard Gaussian random variables. 
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