

Marek Piasecki

A CHARACTERIZATION OF COMPLEX \mathcal{AUMD} BANACH SPACES VIA TANGENT MARTINGALES

1. Introduction

In this paper we will characterize complex separable Banach spaces \mathcal{B} in which \mathcal{B} -valued analytic martingale difference sequences are unconditional (so called \mathcal{AUMD} spaces). In these characterizations we use notion of tangent analytic martingales and tangent analytic Gaussian martingales, defined in this paper. These characterizations are analogical to the well-known theorem [4, p. 285] for \mathcal{UMD} Banach spaces i.e. spaces in which all martingale difference sequences are unconditional.

THEOREM. *Let \mathcal{B} be a Banach space \mathcal{UMD} . If p satisfies $1 < p < \infty$, then there exists a constant c_p (depending only on \mathcal{B} and p) such that for every pair $\{d_k\}$ and $\{d_k^*\}$ of \mathcal{B} -valued tangent martingales difference sequences such that $E\|d_k\|^p$ and $E\|d_k^*\|^p$ are finite for each k , we have*

$$E\left\|\sum_{k=0}^n d_k^*\right\|^p \leq c_p E\left\|\sum_{k=0}^n d_k\right\|^p, \quad n = 1, 2, \dots$$

We shall prove analogical theorems to the above one for \mathcal{AUMD} Banach spaces. We remark that the class of \mathcal{AUMD} Banach spaces is strictly larger than the class of complex \mathcal{UMD} Banach spaces and includes such space as complex $L^1[0, 1]$ which is not \mathcal{UMD} space.

2. Main definitions

Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{F}_0 = \{\emptyset, \Omega\} \subset \mathcal{F}_1 \subset \dots \subset \mathcal{F}_n \subset \mathcal{F}_{n+1} \subset \dots \subset \mathcal{F}$ be a filtration (a nondecreasing sequence of sub- σ -fields), \mathcal{B} be a complex separable Banach space, \mathcal{B}^* be a dual space of \mathcal{B} and $M_n = \sum_{k=0}^n d_k$ be a \mathcal{B} -valued martingale with respect to (\mathcal{F}_n) (i.e. for each integer k ,

d_k are measurable relative to \mathcal{F}_k and Bochner integrable functions with $E(d_{k+1}|\mathcal{F}_k) = 0$.

DEFINITION 1. A sequence of random variables (v_k) is (\mathcal{F}_k) -predictable if v_k is \mathcal{F}_{k-1} -measurable for $k = 1, 2, \dots$

DEFINITION 2. Let $\Omega = [0, 1]^{\mathcal{N}}$, suppose that \mathcal{F} is the product σ -field of Borel subsets of $[0, 1]$ and P the product measure of the normalized Lebesgue measures. We take the filtration \mathcal{F}_n on Ω , where \mathcal{F}_n stand for the σ -field generated by the first n coordinates $\theta_1, \dots, \theta_n$ of $\theta = (\theta_k) \in \Omega$.

An analytic martingale is a sequence $(M_n)_{n=0}^{\infty}$ of \mathcal{B} -valued functions of the following form

$$M_n = d_0 + \sum_{k=1}^n h_{k-1}(\theta_1, \dots, \theta_{k-1}) e^{2\pi i \theta_k},$$

where $d_0, h_0 \in \mathcal{B}$ and h_k are \mathcal{B} -valued functions of k -variables, \mathcal{F}_k measurable (with the convention that $\mathcal{F}_0 = \{\emptyset, \Omega\}$).

DEFINITION 3. If $(\varepsilon_i)_{i=0}^n$ is a deterministic sequence of numbers from $\{-1, 1\}$, then the martingale $N_n = \sum_{k=0}^n \varepsilon_k d_k$ is called (ε_i) -transform of the martingale M_n .

DEFINITION 4. A complex Banach space \mathcal{B} is called *AUMD* (Analytic Unconditional Martingale Differences), if for each $p > 1$ there exists a constant c_p which depends only on p and \mathcal{B} such that for every \mathcal{B} -valued analytic martingale M_n and its every (ε_i) -transform N_n we have

$$E\|M_n\|^p \leq c_p E\|N_n\|^p.$$

DEFINITION 5. A real-valued function $\Psi : \mathcal{B} \times \mathcal{B} \rightarrow [-\infty, \infty)$ is said to be skew-plurisubharmonic if for every $x, y, u \in \mathcal{B}$ the following two functions (defined on the complex plane) $g_{\pm}(z) = \Psi(x + uz, y \pm uz)$ are subharmonic i.e. $g_{\pm}(z)$ is upper semicontinuous and for all $a \in \mathcal{C}$, $r \in \mathcal{R}$, $\int_0^1 g_{\pm}(a + re^{2\pi i \theta}) d\theta \geq g_{\pm}(a)$, where $g_{\pm}(z)$ stands for either $g_+(z) = \Psi(x + uz, y + uz)$ or $g_-(z) = \Psi(x + uz, y - uz)$.

DEFINITION 6. A complex random variable $\xi = \xi_1 + i\xi_2$ is called complex Gaussian if ξ_1, ξ_2 are independent real-valued centered Gaussian random variables with equal variances; if additionally variances are equal to 1 then ξ is called standard complex Gaussian.

DEFINITION 7. A random vector G with values in a complex Banach space \mathcal{B} is Gaussian, if $\varphi(G)$ is a complex Gaussian variable for all $\varphi \in \mathcal{B}^*$.

DEFINITION 8. A martingale $M_n = \sum_{k=0}^n d_k$ with values in a complex Banach space \mathcal{B} is analytic Gaussian if for each positive integer k , d_k has \mathcal{F}_{k-1} -conditionally almost surely the distribution of a Gaussian \mathcal{B} -valued vector.

DEFINITION 9. Two (\mathcal{F}_n) -adapted martingales $M_n = \sum_{k=0}^n d_k$ and $M'_n = \sum_{k=0}^n d'_k$ are said to be tangent relative to (\mathcal{F}_n) if for each $n \in N$ the pair (d_n, d'_n) is conditionally i.i.d. almost surely, given \mathcal{F}_{n-1} .

3. Main results

Let us start with the following fact.

PROPOSITION 1 [3, see Proposition 2.1.2 p.70]. *If a real-valued function $\Psi : D \subset \mathcal{B} \rightarrow [-\infty, \infty)$ is upper semicontinuous and bounded from above then the sequence of functions $\Psi_k(x) = \sup_{y \in D} \{\Psi(y) - k\|x - y\|\}$ defined on D for $k = 1, 2, 3 \dots$ fulfills:*

1. Ψ_k is uniformly continuous on D ;
2. $\Psi_1 \leq \sup_{x \in D} \Psi(x)$;
3. $\Psi_{k+1}(x) \leq \Psi_k(x)$ and $\lim_{k \rightarrow \infty} \Psi_k(x) = \Psi(x)$ for $x \in D$.

The proof of this fact for $\mathcal{B} = \mathcal{C}$ (for the complex plane) from the book of Steven Krantz [3] carry over to the case of arbitrary Banach space \mathcal{B} by substituting the absolute value with the norm.

We shall need also the following simple lemma proved in [5, Lemma 3].

LEMMA 1. *Let $p > 0$, $c_p \in \mathcal{R}$ and let d_k be random vectors with values in a complex Banach space \mathcal{B} . If the inequality*

$$E \left\| \sum_{k=0}^n \varepsilon_k d_k \right\|^p \leq c_p E \left\| \sum_{k=0}^n d_k \right\|^p,$$

holds true for all sequences of predictable random variables (respectively for all non-random sequences) (ε_k) with values in $\{-1, 1\}$, then for each predictable sequence $(x_k), (y_k)$ of real random variables (respectively for each non-random sequence) with $|x_k|, |y_k| \leq 1$, we have

$$E \left\| \sum_{k=0}^n (x_k + iy_k) d_k \right\|^p \leq d_p E \left\| \sum_{k=0}^n d_k \right\|^p,$$

where

$$d_p = \begin{cases} \frac{2c_p}{2^p - 1} & \text{for } p \in (0, 1] \\ 2^p c_p & \text{for } p \geq 1. \end{cases}$$

Next theorems characterize \mathcal{AUMD} Banach spaces via analytic tangent martingales.

THEOREM 1. *A complex Banach space \mathcal{B} is \mathcal{AUMD} iff for each $p \in (0, \infty)$ there exists a constant c_p depending only on p and \mathcal{B} such that*

$$\begin{aligned} E \left\| d_0 + \sum_{k=1}^n h_{k-1}(\theta_1, \dots, \theta_{k-1}, \theta'_1, \dots, \theta'_{k-1}) e^{2\pi i \theta_k} \right\|^p \\ \leq c_p E \left\| d_0 + \sum_{k=1}^n h_{k-1}(\theta_1, \dots, \theta_{k-1}, \theta'_1, \dots, \theta'_{k-1}) e^{2\pi i \theta'_k} \right\|^p, \end{aligned}$$

where h_k are measurable (with respect to σ -field generated by the first coordinates $\theta_1, \dots, \theta_k, \theta'_1, \dots, \theta'_{k-1}$) and bounded functions with values in \mathcal{B} and $h_0, d_0 \in \mathcal{B}$ are constant vectors.

Proof. \Rightarrow We shall use Fubini Theorem and Lemma 1 with constants $x_k + iy_k = e^{2\pi i \theta'_k}$ for $k = 1, 2, \dots$ and $x_0 + iy_0 = 1$. Let us fix $\theta'_1, \theta'_2, \dots$ and take $d_k = h_{k-1}(\theta_1, \dots, \theta_{k-1}, \theta'_1, \dots, \theta'_{k-1}) e^{2\pi i \theta_k}$ in Lemma 1. Since \mathcal{B} is \mathcal{AUMD} Banach space and $e^{2\pi i \theta'_k}$ is from the unite circle, then the assumptions of Lemma 1 are satisfied. Hence

$$\begin{aligned} E \left\| d_0 + \sum_{k=1}^n h_{k-1}(\theta_1, \dots, \theta_{k-1}, \theta'_1, \dots, \theta'_{k-1}) e^{2\pi i \theta_k} \right\|^p \\ = \int_0^1 \dots \int_0^1 \left\| d_0 + \sum_{k=1}^n h_{k-1}(\theta_1, \dots, \theta_{k-1}, \theta'_1, \dots, \theta'_{k-1}) \right. \\ \times \left. e^{2\pi i \theta_k} \right\|^p d\theta_1, \dots, d\theta_k, d\theta'_1, \dots, d\theta'_k \\ \leq d_p \int_0^1 \dots \int_0^1 \left\| d_0 + \sum_{k=1}^n h_{k-1}(\theta_1, \dots, \theta_{k-1}, \theta'_1, \dots, \theta'_{k-1}) \right. \\ \times \left. e^{2\pi i \theta'_k} e^{2\pi i \theta_k} \right\|^p d\theta_1, \dots, d\theta_k, d\theta'_1, \dots, d\theta'_k \\ = d_p \int_0^1 \dots \int_0^1 \left\| d_0 + \sum_{k=1}^n h_{k-1}(\theta_1, \dots, \theta_{k-1}, \theta'_1, \dots, \theta'_{k-1}) \right. \\ \times \left. e^{2\pi i \theta'_k} e^{2\pi i \theta_k} \right\|^p d\theta'_1, \dots, d\theta'_k, d\theta_1, \dots, d\theta_k \end{aligned}$$

$$\leq d_p^2 E \left\| d_0 + \sum_{k=1}^n h_{k-1}(\theta_1, \dots, \theta_{k-1}, \theta'_1, \dots, \theta'_{k-1}) e^{2\pi i \theta'_k} \right\|^p.$$

\Leftarrow Let (ε_k) be a sequence of numbers in $\{-1, 1\}$. Since $\varepsilon_0 \varepsilon_k e^{2\pi i \theta'_k}$ and $e^{2\pi i \theta'_k}$ have the same distribution we have by the assumptions

$$\begin{aligned} E \left\| d_0 \varepsilon_0 + \sum_{k=1}^n \varepsilon_k h_{k-1}(\theta_1, \dots, \theta_{k-1}) e^{2\pi i \theta_k} \right\|^p \\ \leq c_p E \left\| d_0 + \sum_{k=1}^n \varepsilon_0 \varepsilon_k h_{k-1}(\theta_1, \dots, \theta_{k-1}) e^{2\pi i \theta'_k} \right\|^p \\ = c_p E \left\| d_0 + \sum_{k=1}^n h_{k-1}(\theta_1, \dots, \theta_{k-1}) e^{2\pi i \theta'_k} \right\|^p \\ \leq c_p^2 E \left\| d_0 + \sum_{k=1}^n h_{k-1}(\theta_1, \dots, \theta_{k-1}) e^{2\pi i \theta_k} \right\|^p. \end{aligned}$$

This completes the proof.

Now we shall give a characterization of \mathcal{AUMD} Banach spaces via analytic Gaussian martingales. We shall start with the following lemma.

LEMMA 2. Let $\beta \geq 1$ and let \mathcal{B} be a complex Banach space such that

$$E\|M_n\| \leq E\beta\|N_n\|,$$

for all martingales $M_n = d_0 + \sum_{k=1}^n h_k(\xi_1, \dots, \xi_{k-1}) \xi_k$ with respect to the filtration $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$ and its (ε_i) -transforms N_n , where $h_1 = x \in \mathcal{B}$, $h_k : \mathcal{C}^{k-1} \rightarrow \mathcal{B}$ are measurable and bounded functions and $(\xi_k)_{k=1}^\infty$ is a sequence of independent, standard complex Gaussian random variables. Let $\Phi(x, y) = \beta\|y\| - \|x\|$ for $x, y \in \mathcal{B}$ and let us define

$$\Psi_n(x, y) = \inf_{M_n, N_n, d_0=0, \|h_k\| \leq n} E\Phi(x + M_n, y + N_n),$$

where infimum is taken over all martingales M_n of the above form and its (ε_i) -transforms N_n . Then

$$\Psi(x, y) = \lim_{n \rightarrow \infty} \Psi_n(x, y)$$

for $x, y \in \mathcal{B}$ exists and is the maximal function among functions $\bar{\Psi}$ satisfying the following conditions:

1. $\bar{\Psi}$ is upper semicontinuous and locally bounded;
2. for each $x, y, u \in \mathcal{B}$ $E\bar{\Psi}(x + u\xi, y \pm u\xi)$ is finite and

$$E\bar{\Psi}(x + u\xi, y \pm u\xi) \geq \bar{\Psi}(x, y),$$

where ξ is a standard complex Gaussian variable;

3. $\bar{\Psi}(x, y) \leq \Phi(x, y)$, $0 = \bar{\Psi}(0, 0) \leq \bar{\Psi}(x, \pm x)$.

Proof. Ψ is well defined since $\Psi_{n+1} \leq \Psi_n$. Let us assume that another function $\bar{\Psi}$ enjoys conditions 1,2,3, then we have

$$\begin{aligned} E\Phi(x + M_n, y + N_n) &\geq \\ &\geq E\bar{\Psi}(x + M_n, y + N_n) \\ &= EE\left[\bar{\Psi}\left(x + \sum_{k=1}^{n-1} h_k \xi_k + h_n \xi_n, y + \sum_{k=1}^{n-1} \varepsilon_k h_k \xi_k + \varepsilon_n h_n \xi_n\right) \mid \xi_1, \dots, \xi_{k-1}\right] \\ &\geq \dots \geq \bar{\Psi}(x, y) \end{aligned}$$

(by the induction over n). Hence $\Psi_n \geq \bar{\Psi}$ and $\Psi \geq \bar{\Psi}$. Putting $M_n \equiv 0$, $N_n \equiv 0$ in the definition of Ψ_n we obtain, that $\Psi_n \leq \Phi$. Clearly, Ψ_n is upper semicontinuous as the infimum of continuous functions. Since $0 \leq \Psi(0, 0) \leq \Phi(0, 0) = 0$ then $\Psi(0, 0) = 0$. Moreover, applying $E\Phi(y + M_n, \pm y + N_n) \geq 0$, we have

$$\begin{aligned} \Psi_n(x, y) &= \inf_{M_n, N_n, d_0=0, \|h_k\| \leq n} E\Phi(x + M_n, y + N_n) \\ &= \inf_{M_n, N_n, d_0=0, \|h_k\| \leq n} E\beta\|y + N_n\| - E\|x + M_n\| \\ &\geq \inf_{M_n, N_n, d_0=0, \|h_k\| \leq n} E\beta\|y + N_n\| - E\|y + M_n\| - \|x - y\| \\ &\geq -\|x - y\|. \end{aligned}$$

Hence $-\|x - y\| \leq \Psi(x, y) \leq \Psi_n(x, y) \leq \Phi(x, y) = \beta\|y\| - \|x\| \leq \beta\|y\| + \|x\|$. Therefore $\Psi^+(x, y) \leq \beta\|y\| + \|x\|$, $\Psi^-(x, y) \leq \|x - y\|$. So $\|\Psi_n\| \leq (\beta + 1)\|y\| + 2\|x\|$ and $\|\Psi\| \leq (\beta + 1)\|y\| + 2\|x\|$. Hence $E\bar{\Psi}(x + u\xi, y \pm u\xi)$ is finite and Ψ_n, Ψ are locally bounded.

To show that $E\Psi(x + u\xi, y \pm u\xi) \geq \Psi(x, y)$ it suffies to show that for the function Ψ_n and $\|u\| \leq n$ we have $E\Psi_n(x + u\xi, y \pm u\xi) \geq \Psi_{n+1}(x, y)$. By Lebesgue Theorem we have

$$\begin{aligned} E\Psi(x + u\xi, y \pm u\xi) &= \lim_{n \rightarrow \infty, n \geq \|u\|} E\Psi_n(x + u\xi, y \pm u\xi) \\ &\geq \lim_{n \rightarrow \infty} \Psi_{n+1}(x, y) = \Psi(x, y). \end{aligned}$$

Let us define a norm on $\mathcal{B} \times \mathcal{B}$ as $\|(x, y)\| := \|x\| + \|y\|$. We have

$$\begin{aligned} |\Phi(x, y) - \Phi(x_1, y_1)| &= |\beta\|y\| - \|x\| - \beta\|y_1\| + \|x_1\|| \\ &\leq |\beta\|y\| - \beta\|y_1\|| + (\|x_1\| - \|x\||) \\ &\leq \beta(\|y - y_1\| + \|x - x_1\|) \\ &= \beta\|(x, y) - (x_1, y_1)\|. \end{aligned}$$

Hence $\Phi(x, y)$ is the Lipschitz function with the constant β .

Let us fix $x, y, u \in \mathcal{B}, \|u\| \leq n, c > 0$. Now let us divide the complex plane \mathcal{C} into countably many disjoint squares K_i without the top and the right edges such that the diameters d_i of sets $D_i \subset \mathcal{B} \times \mathcal{B}, D_i = \{(x, y) + (u, \pm u)z, z \in K_i\}$ satisfy

$$d_i = \sup_{z_1, z_2 \in K_i} \{(u, \pm u)(z_1 - z_2)\} \leq 2\|u\| \sup_{z_1, z_2 \in K_i} |z_1 - z_2| \leq \frac{c}{\beta}.$$

Now we define for all $m \in \mathcal{N}$ and for $(\bar{x}, \bar{y}) \in \{(x, y) + (u, \pm u)z, z \in \mathcal{C}\}$ the following functions

$$\Psi_n^m(\bar{x}, \bar{y}) = \sup_{(x_1, y_1) \in D_i} \{\Psi_n(x_1, y_1) - m\|(\bar{x}, \bar{y}) - (x_1, y_1)\|\} \text{ for } (\bar{x}, \bar{y}) \in D_i.$$

Since Φ is Lipschitz function we have that Ψ_n is bounded from above on D_i . Hence from Proposition 2 $\lim_{m \rightarrow \infty} \Psi_n^m = \Psi_n$ and the functions $\xi \rightarrow \Psi_n^m(x + u\xi, y \pm \xi)$ are continuous on K_i . Let us fix $\varepsilon > 0$. Then by the definition of Ψ_n , for each $\xi \in K_i$, we have

$$\begin{aligned} \Psi_n^m(x + u\xi, y \pm u\xi) &\geq \Psi_n(x + u\xi, y \pm u\xi) \\ &\geq E\Phi(x + u\xi + M_n^\xi, y \pm u\xi + N_n^\xi) - \varepsilon, \end{aligned}$$

for some martingale M_n^ξ and its (ε_i) -transform N_n^ξ .

Let us observe that by taking in the definition of the function Ψ_n^m the supremum over $\overline{D_i} = \{(x, y) + (u, \pm u)z, z \in \overline{K_i}\}$ we can extend Ψ_n^m continuously on $\overline{D_i}$. Since $\Psi_n \leq \sup_{x \in \overline{D_i}} |\Phi(x)|$ and $\overline{D_i}$ is bounded, the extention is bounded from above.

Let us define for fixed $\xi \in \overline{K_i}$ the following functions

$$g_\xi(\eta) = \Psi_n^m(x + u\eta, y \pm u\eta) - E\Phi(x + u\eta + M_n^\xi, y \pm u\eta + N_n^\xi).$$

The Lebesgue Theorem implies that g_ξ is continuous and $g_\xi(\xi) > -\varepsilon$. By the compactness of $\overline{K_i}$ we have, that there exist finitely many points ξ_i^s in K_i and disjoint sets $P_i^s, \xi_i^s \in P_i^s$ covering K_i and corresponding martingales $M_n^{\xi_i^1}, \dots, M_n^{\xi_i^{n_i}}$ such that $\|h_k^{\xi_i^s}\| \leq n$ and $g_{\xi_i^s}(\eta) > -\varepsilon$ for $\eta \in P_i^s, s = 1, 2, \dots, n_i$. From these martingales we build for $\xi \in K_i$ a random vector

$M_n^i(\xi, \xi_1, \dots, \xi_n) = u\xi + M_n^{\xi^i}$ for $\xi \in P_i^s$ such that we have

$$\Psi_n^m(x + u\xi, y \pm u\xi) \geq E\Phi(x + M_n^i, y + N_n^i) - \varepsilon.$$

Since we have countably many sets K_i , we have also countably many martingales. Since $\|u\| \leq n$, $\|h_k^{\xi^i}\| \leq n$ then for these martingales h_k^i are measurable and uniformly bounded by n . Finally, let us define a martingale M_n as follows:

$$M_{n+1}(\xi, \dots, \xi_n) = M_n^i(\xi, \dots, \xi_n) \quad \text{for } \xi \in K_i.$$

For this martingale the functions h_k are measurable and $\|h_k\| \leq n + 1$. Moreover the following inequality is true

$$\Psi_n^m(x + u\xi, y \pm u\xi) \geq E\Phi(x + M_{n+1}, y + N_{n+1}) - \varepsilon.$$

If ξ is a standard complex Gaussian random variable independent on ξ_1, \dots, ξ_n , then integrating both sides and applying Fubini theorem and the definition of function Ψ_{n+1} we obtain

$$E\Psi_n^m(x + u\xi, y \pm u\xi) \geq \Psi_{n+1}(x, y) - \varepsilon.$$

Now passing to infinity with m we obtain

$$E\Psi_n(x + u\xi, y \pm u\xi) \geq \Psi_{n+1}(x, y) - \varepsilon.$$

This completes the proof of lemma because ε was arbitrary small.

To prove Theorem 3 we will need the following results proved in [5].

LEMMA 3. *Let $\Phi : \mathcal{B} \times \mathcal{B} \rightarrow [-\infty, \infty)$ be a continuous function locally bounded from above (i.e. a function bounded from above on bounded sets), $\Psi(x, y) = \inf_{M_n, N_n} E\Phi(x + M_n, y + N_n)$, where the infimum is taken over all bounded analytic martingales M_n starting from $x = 0$ and their ε_i -transforms N_n .*

Then Ψ is a maximal skew-plurisubharmonic function such that

$$\Psi(x, y) \leq \Phi(x, y) \quad \text{for } (x, y) \in \mathcal{B} \times \mathcal{B}.$$

THEOREM 2. *A complex Banach space \mathcal{B} is ALMD iff there exists a function $\Psi : \mathcal{B} \times \mathcal{B} \rightarrow [-\infty, \infty)$ such that*

1. Ψ is skew-plurisubharmonic;
2. $\Psi(x, \pm x) \geq \Psi(0, 0) > 0$;
3. $\Psi(x, y) \leq \Psi(0, 0) + \|y\|$ for $x, y \in \mathcal{B}$;
4. $\Psi(x, y) \leq \|y\|$ on the set $\{(x, y) : \|x\| + \|y\| \geq 1\}$.

Now we shall state and prove the main theorem.

THEOREM 3. *A complex separable Banach space \mathcal{B} is \mathcal{AUMD} iff for all tangent analytic Gaussian martingales M_n, M'_n with values in \mathcal{B} and a fixed $p > 0$ there exists a constant $d_p \geq 1$ such that*

$$E\|M_n\|^p \leq d_p E\|M'_n\|^p.$$

Proof. \Rightarrow Let \mathcal{B} be a separable \mathcal{AUMD} Banach space with constant c_p for $p > 0$. Let us take the function Ψ_p from Lemma 3 for the following function

$$\begin{aligned}\Phi_p(x, y) &= c_p\|y\|^p - \|x\|^p & \text{if } p \in (0, 1], \\ \Phi_p(x, y) &= 2^{p-1}c_p\|y\|^p - \|x\|^p & \text{if } p > 1.\end{aligned}$$

First we will check integrability of the function $\Psi_p(x + \xi, y + \eta)$, where ξ and η are \mathcal{B} -valued Gaussian vectors. Let us notice that for all $x, y \in \mathcal{B}$ we have

$$\|x + y\|^p \leq \|x\|^p + \|y\|^p \quad \text{if } p \in (0, 1]$$

and

$$\|x + y\|^p \leq 2^{p-1}(\|x\|^p + \|y\|^p) \quad \text{if } p > 1.$$

Hence, for $p \in (0, 1]$, we have

$$-\|x + M_n\|^p = -\|y + M_n + x - y\|^p \geq -\|y + M_n\|^p - \|x - y\|^p$$

and for $p > 1$, we have

$$-\|x + M_n\|^p \geq -2^{p-1}\|y + M_n\|^p - 2^{p-1}\|x - y\|^p.$$

Since \mathcal{B} is \mathcal{AUMD} , we have for $p \in (0, 1]$

$$\begin{aligned}\Psi_p(x, y) &= \inf_{M_n, N_n} c_p\|y + N_n\|^p - \|x + M_n\|^p \\ &\geq \inf_{M_n, N_n} c_p\|y + N_n\|^p - \|y + M_n\|^p - \|x - y\|^p \geq -\|x - y\|^p\end{aligned}$$

and for $p > 1$, we have

$$\begin{aligned}\Psi_p(x, y) &= \inf_{M_n, N_n} c_p 2^{p-1}\|y + N_n\|^p - \|x + M_n\|^p \\ &\geq \inf_{M_n, N_n} 2^{p-1}(c_p\|y + N_n\|^p - \|y + M_n\|^p) - 2^{p-1}\|x - y\|^p \\ &\geq -2^{p-1}\|x - y\|^p.\end{aligned}$$

Hence $\Psi_p^+(x + \xi, y + \eta)$ and $\Psi_p^-(x + \xi, y + \eta)$ are integrable. So $\Psi_p(x + \xi, y + \eta)$ is integrable for $p > 0$. Moreover, $\Psi_p(x, \pm x) \geq \Psi_p(0, 0) = 0$.

Let $M_n = \sum_{k=0}^n d_k$, $M'_n = \sum_{k=0}^n d'_k$ be two tangent analytic Gaussian martingales. Then $\frac{d_k + d'_k}{\sqrt{2}}$, $\frac{d_k - d'_k}{\sqrt{2}}$ are \mathcal{F}_{k-1} -conditionally independent and they have \mathcal{F}_{k-1} -conditionally the same symmetric Gaussian distributions as d_k and d'_k .

Let $d_p = c_p$ for $p \in (0, 1]$ and $d_p = 2^{p-1}c_p$ for $p > 1$.

If \mathcal{B} is \mathcal{ALMD} then the function Ψ_p is skew-plurisubharmonic and such that $\Psi_p(0, 0) = 0$ and $\Psi_p(x, y) \leq d_p\|y\|^p - \|x\|^p$. Hence

$$\begin{aligned}
& d_p E\|M'_n\|^p - E\|M_n\|^p \\
& \geq E\Psi_p(M_n, M'_n) = EE[\Psi_p(M_{n-1} + d_n, M'_{n-1} + d'_n) | \mathcal{F}_{n-1}] \\
& = EE[\Psi_p(M_{n-1} + \frac{d_n + d'_n}{\sqrt{2}}, M'_{n-1} + \frac{d_n - d'_n}{\sqrt{2}}) | \mathcal{F}_{n-1}] \\
& = \int_0^1 \int_0^1 EE[\Psi_p(M_{n-1} + \frac{e^{2\pi i \theta} d_n + e^{2\pi i \theta'} d'_n}{\sqrt{2}}, M'_{n-1} + \frac{e^{2\pi i \theta} d_n - e^{2\pi i \theta'} d'_n}{\sqrt{2}}) | \mathcal{F}_{n-1}] d\theta d\theta' \\
& = \int_0^1 EE \int_0^1 [\Psi_p(M_{n-1} + \frac{e^{2\pi i \theta} d_n + e^{2\pi i \theta'} d'_n}{\sqrt{2}}, M'_{n-1} + \frac{e^{2\pi i \theta} d_n - e^{2\pi i \theta'} d'_n}{\sqrt{2}}) | \mathcal{F}_{n-1}] d\theta' d\theta \\
& \geq \int_0^1 EE[\Psi_p(M_{n-1} + \frac{e^{2\pi i \theta} d_n}{\sqrt{2}}, M'_{n-1} + \frac{e^{2\pi i \theta} d_n}{\sqrt{2}}) | \mathcal{F}_{n-1}] d\theta \\
& \geq E\Psi_p(M_{n-1}, M'_{n-1}) \geq \dots \geq \Psi_p(d_0, \pm d_0) \geq \Psi(0, 0) = 0
\end{aligned}$$

(by the induction over n).

Let us take the following martingales

$$\begin{aligned}
M_n &= d_0 + \sum_{k=0}^n h_k(\xi_1, \dots, \xi_{k-1}) \xi_k, \\
M'_n &= d_0 + \sum_{k=0}^n h_k(\xi'_1, \dots, \xi'_{k-1}) \xi'_k,
\end{aligned}$$

where h_k are measurable and bounded \mathcal{B} -valued functions, ξ_1, \dots, ξ_n , ξ'_1, \dots, ξ'_n are two independent copies of independent sequence of standard complex Gaussian random variables.

If we take (ε_i) -transform N_n of the martingale M_n than M_n, M'_n are tangent analytic Gaussian and $M'_n, \varepsilon_0 N_n$ are also tangent analytic Gaussian. Hence

$$E\|M_n\|^p \leq d_p E\|M'_n\|^p \leq d_p^2 \|N_n\|^p.$$

Let $\Phi(x, y) = d_1^2\|y\| - \|x\|$. In this case the function Ψ from Lemma 2 is the maximal (the maximality is crucial for the proof) function satisfying:

- a) for all $x, u \in \mathcal{B}$ $E\Psi(x + u\xi, y \pm u\xi) \geq \Psi(x, y)$, where ξ is a standard complex Gaussian random variable;
- b) $\Psi(x, \pm x) \geq \Psi(0, 0) = 0$. $\Psi \leq \Phi$. The proof will be finished if we show that Ψ is skew-plurisubharmonic because of Theorem 2.

Let us define $\Psi_r(x, y) = E\Psi(x + ur\xi_1, y \pm ur\xi_1)$ for $r > 0, u \in \mathcal{B}$, where ξ_1 is a standard complex Gaussian random variable. Clearly, $\Psi_r(x, y) \geq \Psi(x, y)$ and $\Psi_r(x, y)$ is upper semicontinuous. We shall show that $\lim_{r \rightarrow 0} \Psi_r(x, y) = \Psi(x, y)$. Let us notice that $\Psi_{r+s}(x, y) \geq \Psi_s(x, y)$ if $r, s > 0$. Namely, if ξ_1^1, ξ_1^2 are two independent copies of ξ_1 , then

$$\begin{aligned} \Psi_{r+s}(x, y) &= E\Psi(x + u(r+s)\xi_1, y \pm u(r+s)\xi_1) \\ &= E\Psi(x + u(r\xi_1^1 + \sqrt{s^2 + 2rs}\xi_1^2), y \pm u(r\xi_1^1 + \sqrt{s^2 + 2rs}\xi_1^2)) \\ &\geq E\Psi(x + ur\xi_1^1, y + ur\xi_1^1) = \Psi_r(x, y). \end{aligned}$$

Let us assume that $\tilde{\Psi}(x, y) = \lim_{r \rightarrow 0} \Psi_r(x, y)$. Clearly $\tilde{\Psi}(x, y) \geq \Psi(x, y)$.

Since $\Psi^+ \leq d_1^2\|y\| + \|x\|$ and $\Psi^- \leq \|x - y\|$, then

$$\begin{aligned} |\Psi_r(x, y)| &\leq E|\Psi(x + ur\xi_1, y \pm ur\xi_1)| \\ &= E(\Psi^+ + \Psi^-)(x + ur\xi_1, y \pm ur\xi_1) \\ &\leq E(d_1^2 + 1)\|y \pm ur\xi_1\| + E2\|x + ur\xi_1\| \\ &\leq (d_1^2 + 1)\|y\| + 2\|x\| + (d_1^2 + 3)\|u\|rE|\xi_1|. \end{aligned}$$

If $r < 1$, then $|\Psi_r(x, y)| \leq (d_1^2 + 1)\|y\| + 2\|x\| + (d_1^2 + 3)\|u\|E|\xi_1|$ and $|\Phi(x + ur\xi_1, y \pm ur\xi_1)| = |d_1^2\|y \pm ur\xi_1\| - \|x + ur\xi_1\|| \leq d_1^2\|y\| + \|x\| + (d_1^2 + 1)\|u\||\xi_1|$.

Hence from Lebesgue Theorem we obtain

$$\begin{aligned} \tilde{\Psi}(x, y) &= \lim_{r \rightarrow 0} E\Psi(x + ur\xi_1, y \pm ur\xi_1) \\ &\leq \lim_{r \rightarrow 0} E\Phi(x + ur\xi_1, y \pm ur\xi_1) \\ &= E \lim_{r \rightarrow 0} d_1^2\|y \pm ur\xi_1\| - \|x + ur\xi_1\| = d_1^2\|y\| - \|x\| = \Phi(x, y). \end{aligned}$$

Since $r < 1$ then we have

$$|\Psi_r(x + v\xi, y \pm v\xi)| \leq (d_1^2 + 1)\|y\| + 2\|x\| + (d_1^2 + 3)\|v\||\xi| + (d_1^2 + 3)\|u\|E|\xi_1|.$$

Then again from Lebesgue Theorem follows that

$$E\tilde{\Psi}(x + v\xi, y \pm v\xi) = \lim_{r \rightarrow 0} E\Psi_r(x + v\xi, y \pm v\xi) \geq \lim_{r \rightarrow 0} \Psi_r(x, y) = \tilde{\Psi}(x, y).$$

Hence from Fubini Theorem we have

$$\begin{aligned}
 E\Psi_r(x + v\xi, y \pm v\xi) &= EE\Psi_r(x + u\xi_1 + v\xi, y + u\xi_1 \pm v\xi) \\
 &\stackrel{\text{for } \xi, \xi_1 \text{ indep.}}{=} E\Psi_r(x + u\xi_1 + v\xi, y + u\xi_1 \pm v\xi) \\
 &\geq E\Psi_r(x + u\xi_1, y + u\xi_1) = \Psi_r(x, y).
 \end{aligned}$$

So $\tilde{\Psi}$ satisfies the following conditions:

1. $\tilde{\Psi} \leq d_1^2 \|y\| - \|x\|$;
2. $E\tilde{\Psi}(x + v\xi, y \pm v\xi) \geq \tilde{\Psi}(x, y)$;
3. $\tilde{\Psi} \geq \Psi$.

Finally, because Ψ is the maximal function satisfying the above conditions, then $\Psi = \lim_{r \rightarrow 0} \Psi_r = \tilde{\Psi}$.

To show that $z \rightarrow \Psi(x + vz, y \pm vz)$ is subharmonic it suffies to show that $z \rightarrow \Psi_r(x + vz, y \pm vz)$ is subharmonic. Applying again the Lebesgue theorem we obtain for $r < 1$ that

$$|\Psi_r(x + ve^{2\pi i\theta}, y \pm ve^{2\pi i\theta})| \leq (d_1^2 + 1)\|y\| + 2\|x\| + (d_1^2 + 3)(\|v\| + \|u\|E|\xi_1|).$$

Let us notice that in the definition of Ψ_r we have used a fix vector $u \in \mathcal{B}$, but we have showed that $\lim_{r \rightarrow 0} \Psi_r = \Psi$, independently on vector u . If we take $u = v$, in the definition of Ψ_r , then $\Psi_r(x + vz, y \pm vz) = E\Psi(x + v(z + \xi_1), y + v(\pm z + \xi_1))$ will be a smooth function of complex z . From a general theory of subharmonic functions follows that if $z \rightarrow \Psi_r(x + vz, y \pm vz)$ is smooth and $E\Psi_r(x + v\xi, y \pm v\xi) \geq \Psi_r(x, y)$, where ξ is standard 2-dimensional normal random variable, then the function $z \rightarrow \Psi_r(x + vz, y \pm vz)$ is subharmonic. Hence we have a skew-plurisubharmonic function such that

$$\Psi(x, \pm x) \geq \Psi(0, 0) = 0, \quad \Psi(x, y) \leq d_1^2 \|y\| - \|x\|.$$

Finally let us define the following function

$$\Psi_1(x, y) = \frac{1 + \Psi(x, y)}{1 + d_1^2}.$$

We shall show that Ψ_1 satisfies conditions 1,2,3,4 from Theorem 2. Namely, we have

$$\Psi_1(0, 0) = \frac{1}{d_1^2 + 1} > 0, \quad \Psi_1(x, \pm x) = \Psi_1(0, 0) + \frac{\Psi(x, \pm x)}{d_1^2 + 1} \geq \Psi_1(0, 0).$$

For all $x, y \in \mathcal{B}$ we have

$$\Psi_1(x, y) \leq \frac{1 + d_1^2 \|y\| - \|x\|}{d_1^2 + 1} \leq \Psi_1(0, 0) + \|y\|.$$

For $x, y \in \mathcal{B}$ such that $\|x\| + \|y\| \geq 1$ we have

$$\Psi_1(x, y) \leq \frac{1 + d_1^2\|y\| - \|x\|}{d_1^2 + 1} \leq \frac{(d_1^2 + 1)\|y\|}{d_1^2 + 1} = \|y\|.$$

Clearly, Ψ_1 is skew-plurisubharmonic as a linear transform of a skew-pluri-subharmonic function Ψ . Hence \mathcal{B} is a complex $AUMD$ Banach space. This completes the proof.

The following theorems easily follow from the proof of Theorem 3.

THEOREM 4. *A complex separable Banach space \mathcal{B} is $AUMD$ iff there exists $\beta \geq 1$ such that*

$$E\|M_n\| \leq E\beta\|N_n\|$$

for any martingale $M_n = d_0 + \sum_{k=0}^n h_k(\xi_1, \dots, \xi_{k-1})\xi_k$ and its any (ε_i) -transform N_n , where $h_k \in \mathcal{B}$ are measurable and bounded \mathcal{B} -valued functions, $h_1, d_0 \in \mathcal{B}$ and ξ_1, \dots, ξ_n is a sequence of standard, independent complex Gaussian random variables.

THEOREM 5. *A complex separable Banach space \mathcal{B} is $AUMD$ iff there exists $\beta \geq 1$ such that*

$$E\|M_n\| \leq E\beta\|M'_n\|$$

for all martingales

$$M_n = d_0 + \sum_{k=1}^n h_k(\xi_1, \dots, \xi_{k-1})\xi_k,$$

$$M'_n = d_0 + \sum_{k=1}^n h_k(\xi_1, \dots, \xi_{k-1})\xi'_k,$$

where $h_k \in \mathcal{B}$ are measurable and bounded \mathcal{B} -valued functions, $h_1, d_0 \in \mathcal{B}$ and $\xi_1, \dots, \xi_n, \xi'_1, \dots, \xi'_n$ are two independent copies of independent sequence of complex standard Gaussian random variables.

References

- [1] D. J. H. Garling, *On martingales with values in a complex Banach space*, Math. Proc. Camb. Phil. Soc. (1988) 104–399.
- [2] N. J. Kalton, *Plurisubharmonic functions on quasi-Banach spaces*, Studia Math. 84 (1986), 297–324.
- [3] Steven G. Kranz, *Functions theory of several complex variables*, PWN, Warszawa 1991.

- [4] T. R. McConnell, *Decoupling and stochastic integration in UMD Banach spaces*, Probab. Math. Statist. 10 (2) (1989), 283–295.
- [5] M. Piasecki, *A geometrical characterization of AUMD Banach spaces via subharmonic functions*, Demonstratio Math. 30 (1997), 641–654.

INSTITUTE OF APPLIED MATHEMATICS
WARSAW UNIVERSITY
ul. Banacha 2
02-097 WARSZAWA, POLAND
mpjj@hydra.mimuw.edu.pl

Received April 22, 1996.