DEMONSTRATIO MATHEMATICA
Vol. XXX No 4 1997

Josef Kalas

STABILITY AND ASYMPTOTIC PROPERTIES
OF A 2n-DIMENSIONAL SYSTEM
OF DIFFERENTIAL EQUATIONS

Abstract. The stability and asymptotic properties of a real 2n-dimensional system
z' = A(t)z + h(t, z) are studied. Here A(?) is a square block-diagonal matrix with blocks
of order two and h(t,z) is a vector function. The method is based on the combination of
the technique of complexification and that of vector Lyapunov functions.

1. Introduction
In [6] the stability and asymptotic behaviour of a two-dimensional system

' = A(t)z + h(t,z)

were studied by means of the method of complexification and the method of
Lyapunov functions. The system was converted to one equation 2z’ = a(t)z +
b(t)z with complex-valued coefficients a, b. The results were obtained on the
assumption lim inf;—, o (Ja(t)| —b(z)|) > 0 (or lim inf;—, o (|Im a(t)| - [b(2)]) >
0) and extend several results of K. Tatarkiewicz [8] and Z. Artstein and E.
F. Infante [1]. The case |b(t)] > |Im a(t)| was investigated in [2] and the
achieved results generalize those of J. Radzikowski [7]. The existence of
bounded solutions in unstable cases was studied in [3].
In the present paper we attempt to weaken the requirement

lim inf(la(t)] - [b(t)]) > 0

from [6]. Instead of a scalar Lyapunov function we shall use a suitable vec-
tor Lyapunov function. The advantage of the use of the vector Lyapunov
function V consists in the fact that each component of V' satisfies less rigid
requirements than the usual scalar vector Lyapunov function. Since the use
of vector Lyapunov functions is natural and typical for multidimensional

This work was supported by grant 201/96/0410 of Czech Grant Agency (Prague)



698 J. Kalas

systems, we shall formulate our results for the 2n-dimensional system of
coupled differential equations. An example of R-linear equation of the form

2 =a(t)z +b(t)z

with complex coefficients a, b is given such that the assumptions for the
asymptotic stability of this equation are fulfilled but the condition |a(t)| >
|b(t)| is violated on any interval of the form [T, 00).

2. Preliminaries
Consider a real 2n-dimensional system

(1) o' = A(t)z + h(t,2),

where A(t) = (a;x(t)), j,k=1,...,2n is a square matrix, z = (z1,...,%2n)
and h(t,z) = (h1(t,21,...,%20),. .., hon(t, Z1,. .., Z2,)) is a vector function.
We suppose that a;i(t) are continuous on J = [tp,0), a2;-1,; = 0 and
ag; =0forj>204+1orj<20-2,(I=1,...,n;5=1,...,2n), i.e. the
matrix A(t) is of a block-diagonal form

A (1) 0 0 ... 0

0 A(t) 0 ... 0
A(t) — 0 0 Ag(t) oo 0 ,
0 0 0 ... A

where

azj-1,2j-1(t) a2j-1,2 '(t)>
A1) = i=1,2j §-1,2 )
a2 ( azj2i-1(t)  a225(?)
Further, h(t,z) is assumed to be continuous on

(2) In=Jx{(z1,.--,%2,) € R™: _max (w%j_l + ng) <7t < o0}
ji=1,...,n

First, we shall perform the complexification of (1). For this purpose put

Zj = Toj-1+ i.’L‘zj (] = 1,...,72,).

We have
[wéj-l]z (021—1.21—1(0 a2j-1,2j(t)> [%’-1] + [hzj—l(taxl,---,a?n)]
y; azj2j-1(t)  a25,2;() T2; hj(t, %1, - Tn)

_ | 2j-1,25-1(t)2j1 + a2j—1,2j(t)-z'2j] [th—l (t,21,.. 'axn)] .
a2j,2j-1(1)T25-1 + a25,25(t)22; haj(t, 2155 Tn)



Stability and asymptotic properties 699

Hence

, . .
z; = (agj-1,2j-1%2j-1 + G2j-1,25%2; + hoj1)+
+ i(agj2j—-1Z25-1 + G2j2i%2; + haj) =
= (@2j-1,2j-1 + 182j,2j-1)%2j-1 + (a2j-1,2; + 1025,2;)T2; + fj =

. J 7 . J J _
= (a2j-1,2j-1 ¥ ia2jj-1) =5 + (@2j-1,25 + 1025,2;) 5 T fi=

1 .
= 5lazj-1,2j-1 + azjz2;) + Haz5,25-1 — a2j-1,25)]2+
1 . )
+ 5[("21—1,23'—1 — @y5,25) + #(azjz25-1 + azj—125)1% + f;

for j =1,...,n, where

_ n+2a z21-2 Zn+Zn 2Zn—Zn
e =it —— =5 T T )

fj = fj(t,Zl,---,Zn) = h2j—1 + ihzj-
Thus, denoting

(k=1,...,2n),

a;(t) = %[(azj—l,zj—l(t) + a2j,2i(1)) + 1(azj,25-1(t) — azj-1,2;(?))],

bi(8) = 51(2j1.25-1(8) = @2325(0)) + iaas252(8) + @231.250)
we have a system
(3) z; = aj(t)z + bj(1)Z; + fi(t,21,--,22) (G =1,...,n),
where
(4) ted, z;eQ, ={2z€C:lzl<r} (G=1...,n)

Throughout the paper C denotes the set of all complex numbers, R
the set of real numbers. Let N, = {1,...,n}. By Re z, Im 2 and Zz we
mean the real part, the imaginary part and the conjugate of a complex
number z, respectively. For z = (21,...,2,) € C* we put |z| = E;;l EAR
ll2ll = (X7, 12j12)%. C(I', I') will denote the class of all continuous func-
tions I' — I', C(I, I") where I is a subinterval of J will denote the class of
all continuously differentiable functions I — I'. For g € C(I,C) where I is
a subinterval of J we define \/ g(t) as any fixed function ¢ € C(Z,C) such
that ¢2(t) = ¢(¢).

Assume a;,b; € C(J,C), f; € C(J xQ},C) (j =1,...,n). Suppose the
uniqueness of any initial value problem for (3). In the future, the following
hypotheses will play a fundamental role:
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(H) There are gx; € C1(J,C) (k=1,2;7=1,...,n) such that
(5) sup [20915(t) + g2;()] = (l915()1* + 1g25(1)|*)] < 2
and
(6) [iTmas(t)+ (~1)F [T (OF — (mayOF | gxs(®) = b0, te
hold for k=1,2and j=1,...,n.

(H1) There are axj, Axj € C(J,R) (k=1,2; j =1,...,n) such that
(7)  Rel(f;+ gwifi + 9k i) (%5 + Grjzs)] <

< akj(t)|zj + griZil* + Mej()]25 + giiZj

is satisfied for (¢,21,...,2,) € J X QP k = 1,2;5 = 1,2,...,n, where

fj = fj(t) 21y '7271)’ 9kj = gk](t)
If the hypothesis (H1) is satisfied with Ag;(1) = 0(k=1,2;5=1,...,n),
i.e. if (7) is replaced by

(7 Rel(fj + 9xi fi + k2 + Gkj2i)] < ak;(t)|z; + giiZil*
in (H1), we shall write (HO) instead of (H1).

Remark 1. 1.If b;(t) # 0 then the condition (6) can be written in the
form

(67 iIma;(t)+ (=D* [ 1501 — (Imay(1))* = ~5;(0) 9w (2).

2. I bj(t) #0for t € J, aj,b; € C*(J,C) and

) | Im a;(t) Im a;(t)
bj(t) bi(t)

for j =1,...,n, then the hypothesis (H) is fulfilled.

Remark 2. 1. If |gk;(t)] # 1, then the condition (7) in (H1) may be
replaced by
(9)  Rel[fi(t, 21,5 20) + gri (D) fi(t 21, - 20))(Z5 + 9k(8)23)] <
< Bri()z5 + g (D71 + A (D25 + 915 (1751,

<1 or inf
teJ

teJ

(10)  akj(t) = Bri(t)+
+ (1 = |gki(1))) 7 [~ Re(gr;()gk; (1)) + |gk;(t)] sgn(L — |gw;(t)])],
where Bij, Akj € C(LR) (k=1,2;5=1,...,n).
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Really, if (9), (10) hold then
Re[(f; + gk; fi + 95iZ)(Z5 + Grizi)] <
< Re[(f; + 9xi fi)(Zi + Grizi)] + Relgy;Zi(Z; + Griz;)] <
g;cjfj
Zj + GkjZ;

< (ﬂkj + Re )lzj + gk (051 + Axilzi + gxi(2)Z5] <

1o =Gk (Zi + 9kiZ5) + 9k (25 + gkiZ5)
< Bri + (1= |gri(D)H) T R J J
< |8+ (1= lons ) Re e
X |z + gri(8)Z51% + Mijlzs + griZil
for all (¢,21,...,25) € J X 8.
2. Since

— Re(gxj(t)g1;(1)) + lgi; (1)l sgn(1 — lg;(t)]) <

1= 1gk;(t)[? -
(i1 + Digh; (0 191501
N e 710 | o I LR (/M ]
a;(t) in (10) may be replaced by
|9k ()]
agi(t) = Bt 4
=060 % T g0
If the hypothesis (H) is satisfied we define scalar-valued functions
(11) Vij(t, 25) = |2; + gkj(t)2j|2 (k=1,2; j=1,...,n),
2 n
(12) Volty 21,5 2n) = 3 D |25 + gri (8]
k=1 j=1

and a vector-valued function
(13) V(t7 2y zn) = (‘fll(t7 21, )’ DREE) ‘/ln(ta Zn); V2l(ta 21)7 ey V2n(t’ Zn))°

Notice that, in general, the functions Vj; are not positive definite. How-
ever, the condition (5) implies the positive definiteness of Vj:

2 n
VO(t’ 21y .- -,Zn) = Z Z Izj + gkj(t)zjlz =

k=1 j=1

n 2
=YD (25 + 9k (D)3 + 9x5(D)75) =

7=1 k=1
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= Y (2 + lgus () + lg2s(P)2;1” + 2Re((g1,(2) + 923(£) 2] 2

i=1
> > 2+ 19101 + 1g25 ()P — 2g15(2) + g25(D)]) 121
i=1
(14) %(t7zl)-"7zn) 2 Z”jlzj|27
j=1
where

(15) #j=2- sup [2191;(2) + g23()] = (915 (O + 1g23(O)I*)] > 0.

On the other hand, as we shall see, there are no requirements on the deriva-
tives of Vp with respect to (3); we estimate only the derivatives of the func-
tions Vi; (i.e. only the derivatives of the components of the vector-valued
function V).

3. Main results

THEOREM 1. Let the hypothesis (H) and the hypothesis (H0) be fulfilled.
Assume that
(16) fi(3,0...0)=0 fortelJ.

If
t
(17) 1i§n sup 8 Re[a;(s) + gr;(8)b;(s) + ax;(s)] ds < oo
—00 to
(k=12 5=1,...,n),

then the trivial solution of (3) is stable. If

0

(18) S Re[aj(s)+gkj(s)l)](—s)+akj(s)] ds=-00 (k=12;j=1,...,n),

to
then the trivial solution of (3) is asymptotically stable.
Proof. From (6) it follows that
(19) [b;(t) = 0= gx;(t)Ima;(t) =0] forteJ, k=1,2; j=1,..

Let € € (0,7) and ¢; > o be arbitrary. Suppose that 2(t) = (21(t),. .., zn(t))
is any solution of (3) defined on [t;,?;), where t3 > t;. Put

(20) O;(t) = Vi;(t, 24(1))-

, .
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Differentiating (20) with respect to t yields
%i(t) = 2Re[(Z; + gk;2i) (2} + 9kiZ; + 9k;7)] =
2Re[(Z; + Grjzi)(aiz; + b;Z + fi + 9xi(@Z + b;z + f3) + 9k;%3)] =
2Re{(Z; + gxjzi)l(a; + grjbj)z; + (9xs8;5 + b5)Z]} + @xjs

where wi; = 2Re{(2; + Gk;2)(fi + 9ifs + 94,2, a5 = a;(2), b; = b;(1),
z; = 2;(t), gkj = gk (1), fi = fi(t,z1(2), ..., za(t)). Using (6) we obtain

xi() = 2Re{(Zj + Gr;z)(a; + grib;) 2+
+ (Reaj + (=1 [1b;]? = (Ima;)2)gi; 21} + .

With respect to (6”) and (19) we have

k(1) = 2Re[(Z; + Gr;jzi)(a; + grib;)(2j + griZi)] + exj =
= 204;(t) Re(a; + gx;b;) + @x;-
In view of (HO) the relation
k(1) < 205;(t) Refa;(t) + gr;(8)b;(1) + ax;(t)]
holds for all ¢t € [t;,t3). Thus

(ij(t) exp { -2 § Re[a;(s) + gx;(8)b;(s) + ax;(s)] ds})’ <0.

[31

By the integration over [t;,t] we get
¢
Oxs(t) < Oui(tr) exp {2 | Relas(s) + gus(9)b3(5) + k()] ds
ty

for t € [t1,t2). Hence

(21) (1) < B(t1) Y Y exp {2 | Re [aj(s) + gx;()b;(s) + ks (s)] ds},
k=1 j=1 iy
where &(t) = Vy(t, 21(2), . . ., 2, (2)).
Let (16) hold and

t

L= Z Z sup exp {2 S Re[a;(s) + gx;(8)bi(s) + ax;i(s)] ds}.

k=1 j=1 t15t<0co t
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Suppose that § > 0 is such that

in (3203 5
(22) §<[ min sx;l%] | g%f»;fg (L+ |gx;(t))7]2(2L) 7
7=1,..,n

where »; is defined by (15). In view of (14), (21) for 2(t) satisfying ||2(t,)|| <
§ we have

;Jnin s l2(OI* < &(2) < L&(tr) < LZ Z(l +lgxi (81’ Z |z;(t))*.

k=1 j=1
Using ||2(t1)|| < 6 and (22) we obtain
jmin ozl < 20L6 max (1+|gs(t)])’
FESTRY
and
(23) IOl <€

for t € [t1,t2). Since € < r the solution z(t) exists for all ¢ > ¢, and satisfies
(23) for all ¢t > t;. Hence the trivial solution of (3) is stable.

Let (17) be fulfilled. With respect to stability, there is a §* > 0 such that
llz(¢1)|| < 6* implies ||2(t)|| < 7. Therefore

2" < [ zpin | #j] 7 9(t1)

X Z Zexp { S Re[a;(s) + gxi(5)b;(s) + ar;(s)] ds}

k=1 j=1
for t > t;. Thus the asymptotic stability is proved. =
In the following statement we shall consider the system
(24) Z; = a;2; + b7 + fi(t, 21, 2)  (G=1,...,n),
where a; € C, b; € C are constants. We suppose the uniqueness of any
initial-value problem for (24).

CoROLLARY 1. Let aj(t) = a; € C, bj(t) = b; € Cand N, = No U
Ny U N;. Assume b; = Ima; = 0 for j € No, |Imaj;| < |bj| for j € Ny
and |Ima;| > |bj| for j € Ny. Suppose there ezist functions g; € C(J,R)
(k=1,2; 7 € Ny) and g; € C(J,R) (7 € N3) such that

(25) Ifj(t,zl, sy zn)] < ij(t)|zj + wkj§j|
for (t,21,...,2,) € J X Q7 (k=1,2;j € Ny),
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(26) |fj(t’zlv'-"zn)l < Qj(t)lzjl
for (t,z1,...,2,) € J X Q7 (§ € NoUN3),

where

—ilma; + (~1)*1/5F — (lmay)?
b; '

Wej =

If the conditions

t
(27) limsup S[Re a; + (=1)%1 \/ijl2 — (Ima;)? + 20x;(s)] ds < 0
t—00

to

(k=1,2;j € Ny),
t
(28) lim sup S[Reaj + ¢j(s)lds < o0 (j € No)
t—o00

to
and

| Im a;| — |b;|

t
29 lim sup [Rea-
(29) t—00 }0 TV 1 Ima] + 15

+ QJ(S)] ds < o (] € NQ)

are fulfilled then the trivial solution of the system (24) is stable. If

(30)  J[Rea;+(=1)""1y/lbjl? — (Ima;)? + 20;(s)] ds = o0
o C(k=1,2; € ),
(31) [[Rea; + 0j(s)]ds = —c0  (j € No)

and

o0
CImayl - 6] _ .
(32) t‘ [Rea_, [T, £ [o5] +0j(s){ds=—-00 (j€Ny),
0

then the trivial solution of (24) is asymptotically stable.
Proof. Put

705

9ki(t) = gkj =
Wk for k=1,2, € N
_Jo for k=1,2, j€ NoUNy, b; =0

b _ ; .
(mar (O ama T or k=12, 7€ Nayb; #£0.
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In view of Remark 1 the hypothesis (H) is fulfilled with the function gx;(t).
Clearly g;;(t) = 0. The conditions (25), (26) imply that (24) has the trivial
solution. It is easy to verify that
Re[a; + gi;b;] =
_ J Rea; whenever j € No U N,
~ | Rea; + (-1)¥1/]b;]? — (Ima;)? whenever j € N;.
For 7 € Ny U N1 we have

Re[(fj(t’ Zlyeeny zn) + gkjfj(t, Zlyeeey Zn))(‘?j + gkaj)] <
< A+ lgrDIf( 21, -5 20)ll25 + gkiZ5] <
< (14 sgn b))k (D)2 + griz5]
for (t,21,...,2n) € J X QF, where
. (1) ifje N,
ois(t) = { fot()) i€ N,
Hence, for j € Ny, the condition (7’) is satisfied with ay;(t) = ¢;(t), and,
for j € Ny, with ag;(t) = 20k;(2).
For j € N, we get |gx;] # 1 and
Re[(£i(t, 21, ., 2n) + gk fi(t 215 - - 20)) (25 + 98%)] <
< (14 1griDIfits 21, - -5 20)llz5 + g8 Z5] <
< (14 lgrilei()z5llz; + griZs)-

Since
Vii(t, z3) = |z + giZil* > (1= |grs))?lz5]7,
we have
Re((fi(t, 21,y 2n) + ki fi(t 21,5+ - oy 20))(25 + 9k5Z5)] <
1+ |gx;] o2
< ——mei(tlz; + gx;%].
|1_lgkj” J() 7 ¥ iadv ]
Further,
1+|ges| _ 1Imag|+(=1)*"' sgn(ima;) /(Im a;)* — [b;[* + [b;} _
1—1lgxill || Imaj] + (=1)¥2 sgn(Im a;)/(Im a;)Z — [5;]% — |b;]|

_ [IImay| +]bj]  y/ITma;]+[bj] + (=1)*~" sgn(Im ¢;) /[ Im a;] — [b;] _
|Imaj| =651 |/[Im aj[ - [b;[ + (=1)¥~ sgn(Im a;) /[ Im a;] + [b5]

[1Im a;] + |b;]
=4 — whenever b; # 0.
| Im a;| — {bj] ’
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However, for b; = 0, we have g;; = 0 and

Lol _ _ [Timagl+ o]
T~ lows [Tm ;] — b

too. Hence (7°) is, for j € N, satisfied with

| Ima;| + |b;
oj(t) = m 2;(1)-

As

z ar _ (|Ima] + [bj] - [{Imaj| - b
Relos + gnibs + k() = 4 g, 10,1 | % | Ty 1550 * %0

for j € N,, the statement follows from Theorem 1. m

Remark 3. 1. Corollary 1 generalizes Corollary 6 of [6].
2. Corollary 1 is easily applicable to the system

z; = (a; + pj()z; + (b; + ¢;(1))z; (7 =1,...,n),

where a;,b; € C, Re a; < 0, |Imaj| > |bj], p,qg € C(J,C). Here f; =
p;zj + q;Z; and (26) is satisfied with g;(t) = |p;(t)| + |g;(2)].

Remark 4. The autonomous equation z' = az + bz, where a,b € C
are constants such that |a| # |b|, has the unique equilibrium z = 0, which
is a focus (Jb] < |Imal|,Rea # 0), centre (Jb] < [Ima|,Rea = 0), node
(JIma| < |b| < |a]) or saddle point (|b] > |a|). If || = |Ima| = 0, we have
a dicritical node (proper node), if |b| = |Ima| # 0, we have a degenerated
node. For |a| > |b] and Rea < 0 the equilibrium is stable, for |a| > [b]
and Rea > 0 unstable. (The eigenvalues of the considered equation are
M2 = Rea £ £ [b]? — (Ima)?.) The following example shows an R-linear
equation 2’ = a(t)z + b(t)z, where a,b € C(J,C), such that the equation is
stable or asymptotically stable, however the condition |a(t)] > |5(¢)| may be
violated on any interval of the type [T, 00).

ExAMPLE 1. Consider a real system

(33) z1 = (at) + 7B(2))z1 + (6 - 9)B(t)z,
zh = (6 + 9)B(t)z1 + (a(t) — 78(2))z2,

where o, 8 € C(J,R),7,6,9 € R, 9% < 42 + 2. The complexification yields
(34) z' = a(t)z + b(1)z,
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where a(t) = a(t)+196(t), b(t) = ¢B(t), c = y+1, |9] < |c|. The hypothesis
(H) is satisfied with g13 = (=19++/|¢|? — 92)/E, ga1 = (—i9—+/|c|? — ¥?)/c.
Indeed, |g11| = |g21] = 1, [g11 + 921] = 2|9]/|¢| < 2 and hence (5) holds. Since

ilma(t) + (1) 1\/ 1B(1)]2 — (Im a(t))? = B()(i9 + (=1)*"14/|c[? — 92),
the condition (6) is satisfied too. The hypothesis (HO) is fulfilled obviously

with @11 = a1 = 0. Moreover, b(t) = 0 implies Im a(¢) = 0. Now, using
Theorem 1 we have the stability of (34) and (33) if

t

(35) ]jirisogp S[a(s + (=D 1le|2 = 928(s)lds < 00 (k=1,2),

to

and the asymptotic stability if
(36) fla(s) + (—1)F1/[e2 = 928(s)lds = o0 (k=1,2).
to

Notice that the euclidean measure (logarithmic norm) p; of a matrix of
the system (33) is u2(t) = Re a(t) + |b(¢)] = a(t) + |¢||8(t)| (the equality
p2(t) = Re a(t) + |b(t)| holds generally for any equation (34)). The well-
known conditions for stability and asymptotic stability are

t

(37) lim sup S pa(s)ds < 00
t—00 to
and
(38) S pa(8)ds = ~o0
to

respectively. In our case, the conditions (35), (36) are clearly better. Namely,
taking to = 7, a(t) = 0, f(t) = t™Vsint, where 0 < v < 1, we have
the stability in view of (35), however (37) is not satisfied. Taking t, = T,
a(t) = —|e|/7, B(t) = sint, we have the asymptotic stability in view of (36),
however (38) is not fulfilled. Notice that also logarithmic norms p,(t) =
max[Re(a(t) + b(t)) + | Im(a(t) + b(2))|, Re(a(?) — b(2)) + | Im(a(2) — b(2))]],
Boo(t) = max[Re(a(t) +b(t)) + | Im(a(t) — b(t))|, Re(a(t) — b(t)) + | Im(a(t) +
b(t))|] do not satisfy (37), (38), in general, on our assumptions.

THEOREM 2. Assume that the hypotheses (H) and (H1) are fulfilled. Let
2(t) = (z1(t)y .o . ,2n(1)) be any solution of (3) defined fort > t1 (> to).
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Then there exist u; > 0 such that

(39) pilzi (O] < 3 Vst 23(t)) exp | | oni(s) ds]+
k=1 t1

+ 22: § Ak (T)exp Hsokj(s) ds] dr

k=1t
fort>ty,j=1,...,n, where
(40) pri(t) = Rela;(t) + gr;j(1)b;(t) + s (1)].
Proof. Following the proof of Theorem 1 we get

(1) < 20k5(0)Ok;(8) + 208D Aks (1),

where
O;(t) = Vij(t, 2i(1)) = 12i(t) + gri(t)z;(1)].
Putting
Uy;(t) = OF,(1),
we obtain

D (2) < 0 (8)- Wi (8) + Ars (D)
for all ¢ > t; for which W;(t) # 0. If t* > ¢; is such that ¥,;(¢*) = 0, then

W}/c]_(t*) — lim Wk](t) — Wk](t*) —

toth - t—t*
~ lim 12 (1) + gk ()2 ()] = 25 (#") + 9w (#7)2:(#*)| _
T - t—t* -
— o ) = #() + gri(8)25(8) — 9k (872 (8]
ot — |t — t*] -

< =125(t) + [gki 1)z (B)]imie] < 0 < Ags(£7).

Hence
Ui (1) < @ui(O)Wh;(2) + Ai(2)
forallt > ¢; and

t
(41) Wei(2) < ij(ta)els 9 g [ (r)el o) g,

t1

where the right-hand side of the last inequality is the maximal solution of

v = @ri(t)u+ A1), u(tr) = Wr;(t1)-
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From (41) we obtain
2t

2 2
IRZOEDY Gyi(ty)eb P (% S | Ag(r)elr on (s g
k=1 k=1

k=1t

for ¢t > t1. As
2 2 1 .
> i) 2 [ Y0 12i(8) + 0k (0ZOF] > [l 2 #f 12(2),
k=1 k=1
it is clear that there are u; > 0 such that
2
D Wi(t) > njlzi(t)
k=1

for ¢t > t;. The proof is complete. =
COROLLARY 2. Let the assumptions of Theorem 2 be fulfilled. Let

(42) hm 0 Sup Z S Akj(T)exp [ S r;(8) ds] dr < o0,
k=11,

¢r; being defined by (40). If 2(t) = (21(¢),...,2.(t)) is any solution of (3)
defined for t > t; (> ty) then

(43) zi(t) = O(Zexp S Pri(s) ds) as t — oo.
k=1 1y

The statement follows immediately from (39).

COROLLARY 3. Let the assumptions of Theorem 2 be fulfilled and let

(44) lim sup ¢k (t) < 7; < 00,
t—o0
(45) Aej(t) = O(eM?) ast— o0

Jor k = 1,2, where pi; is defined by (40). If 2(t) = (21(2),. .., 2,(1)) is any
solution of (3) defined for t > t1 (> to) then z;(t) = O(e™*) as t — oco.

Proof. In view of (44) and (45) there exist L > 0, nf < n; and T > t;
such that ¢k;(t) < 7} and Ag;(t)e " < L fort > T, k = 1,2. From (39) it
follows that

2t
(46) pjlzi(t)] < Vo(T,21(T), - .., 2a(T))em =D + 3 | Lemem =" dr <
J k=1T

<Vo(T, 21(T), - -+ 2a(T))eW =) + 2LeH(m; — ) ~H el ~m5) — L1707 <
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< V(T z1(T), . . o 2a(T))e =T 4 L;.‘e”i‘ <
< [VO(T, 2(T),.. .,zn(T))e—n;T + L;‘] oMt = O(e"it),

where L} = 2L(n; —7n7)"". =

Remark 5. If A;(2) = 0 for k = 1,2, then we can take L = L} =
in the proof of Corollary 3 and the inequalities (46) yield the following
statement: there exists an #j; < 7; such that z;(t) = o(e%i?) as t — oo.

THEOREM 3. Let the assumptions of Theorem 2 be fulfilled. Let

(47 @rj(t) <0 fort > T (> o),
(48) Iim { @u;(t) dt = —co
and

(49) Aej(t) = o(pk;i(t)) as t — oo

Jor k = 1,2, where @y; are defined by (40). Then for any solution z(t) =
(z1(2), ..., 2a(2)) of (3) the relation

g, 75(1) =0
holds.

Proof. Let ¢ > 0. In view of (49) and (47) there exists a ¢ > T such
that Ag;(t) < —epg;(t) fort > o,k = 1,2 and

22: § /\kj(T) exp (Iigakj(s) ds)dT <

k=10
<e 2 i [— Pk;j(T) exp (§<ij(3) dS)]dT <
k=10 T
< '8 i [1 — exp (ggokj(‘r)dr)] < 2

for t > o. Since

t
exp [ s ©k;(s) ds] -0 ast-— oo,
t

we get from (39)
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pilzi(t)] < 3e
for large t. Thus lim; o |2;(¢)] = 0. =
EXAMPLE 2. Consider a real system
2y = (aft) +7B())z1 + (6 = 9)B(H)z2 + ot 1, 22)71 + M (2, 21, 22),
= (6 +9)8(t)z1 + (a(t) — vB(t))z2 + o(t, T1,22)zs + ha(t, 21, 72),

where o, 8 € C(J,R),0,h; € C(JxR?% R),7,6,9 € R,9? < v2+62%. Suppose
there is a o € C(J,R) such that o(t,z1,z2) < o(t) for (¢,z1,2;) € J x R2
The complexification yields

(51) 7 = a(t)z + b(1)7 + £(t,2),

where a(t) = a(t) + t9B(t), b(t) = ¢B(t), c = v + 16, |9| < |c| and

z2+zZ z—2
2 7 %

(50)

z+z 2z —

f(t Z) ’l,[)(t Z)+h1(t )+lh2(
z+z z—

(t Z)—g(t ’

),

23 ) )
Put

g1 = (—id+ /e —=9%) /e, g2 = (=19 — V/]|c]? - 9?)/c.

Let A, € C(J,R) (k =1,2) be such that

|f(t,2) + gif(E,2) < M) (k= 1,2).

The hypothesis (H) is fulfilled with g1; = g1, g21 = ¢gq, similarly as in
Example 1. Since

Re{[(¥z + f) + ge(¥z + f)I(Z + §2)} =
= Ylz+guz* +1f + gefllz + gr2] <
< Plz+ gz’ + Aklz + gr2] <
< olz+ gx 2 + Aklz + giZl,
the hypothesis (H1) is satisfied with ax1 () = o(t), A (t) = Ae(t) (k = 1,2).
Assuming that (z1(t),z2(¢)) is a solution of (50) defined for t > #; (> tp)
and applying Corollary 2, Corollary 3 and Theorem 3, we obtain following
statements:
1° If
t

hirisup Z S Ak(T) exp { S[a(s) 4 o(s) 4+ (=1)F1y/|e|2=928(s)] ds}d7'<oo

k=113
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then
zi(t)=0( S e { fla(s) + o(6) + () V= T26(6)] ds})
k=1 t;

ast—ooforj=1,2.

2° If
ligrisup[a(t) +a(t)+ (-1 1/e]2 = 928(t)] = » <

and
Ae(t) = O(e*') ast— oo
for k = 1,2, then

zi(t)=0(e*) ast w00 (j=1,2).
3°If
at)y +o(t)+ (=) 1 /|c2 = 928() <0 fort > T (> tp),
Jim {{a(s) + o(s) + (=12 y/elf = 2(s)] ds = —o0

ty

and
M(t) = o(a(t) + o(t) + (-1)F 1/ = B(1))  ast— oo

for k= 1,2, then
(z1(t),22(t)) = 0 ast— oo.
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