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STABILITY A N D ASYMPTOTIC PROPERTIES 
OF A 2n-DIMENSIONAL SYSTEM 
OF DIFFERENTIAL EQUATIONS 

Abstract. The stability and asymptotic properties of a real 2n-dimensional system 
x' = A(t)x + h(t, x) are studied. Here A(t) is a square block-diagonal matrix with blocks 
of order two and h(t,x) is a vector function. The method is based on the combination of 
the technique of complexification and that of vector Lyapunov functions. 

1. Introduction 
In [6] the stability and asymptotic behaviour of a two-dimensional system 

x' = A(t) x + h(t,x) 

were studied by means of the method of complexification and the method of 
Lyapunov functions. The system was converted to one equation z' = a(t)z + 
b(t)z with complex-valued coefficients a, b. The results were obtained on the 
assumption liminff_>00(|a(i)| — |i»(i)|) > 0 (or liminfi_,oo(|Ima(i)| — |6(Z)|) > 
0) and extend several results of K. Tatarkiewicz [8] and Z. Artstein and E. 
F. Infante [1]. The case |6(i)| > |Ima(i)| was investigated in [2] and the 
achieved results generalize those of J. Radzikowski [7]. The existence of 
bounded solutions in unstable cases was studied in [3]. 

In the present paper we attempt to weaken the requirement 

liminf(|a(i)| — \b(t)\) > 0 
i—• oo 

from [6]. Instead of a scalar Lyapunov function we shall use a suitable vec-
tor Lyapunov function. The advantage of the use of the vector Lyapunov 
function V consists in the fact that each component of V satisfies less rigid 
requirements than the usual scalar vector Lyapunov function. Since the use 
of vector Lyapunov functions is natural and typical for multidimensional 
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systems, we shall formulate our results for the 2n-dimensional system of 
coupled differential equations. An example of R-linear equation of the form 

z' = a ( t ) z + b ( t ) z 

with complex coefficients a, b is given such that the assumptions for the 
asymptotic stability of this equation are fulfilled but the condition |a(f)| > 
|6(i)| is violated on any interval of the form [T, oo). 

2. Preliminaries 
Consider a real 2n-dimensional system 

( 1 ) x' = A(t)x + h ( t , x ) , 

where A(t) = ( a j k ( t ) ) , j , k = 1 , . . . , 2n is a square matrix, x = {x\,..., X2n) 

and h ( t , x) = ( h i ( t , x l f . . . , x2n), • • •, • • •, %2n)) is a vector function. 
We suppose that a jk ( t ) are continuous on J = [/0,oo), a2/-i,j = 0 and 
o2/,j = 0 for j > 21 + 1 or j < 21 - 2, (/ = 1 , . . . ,n ; j = 1 , . . . ,2n) , i.e. the 
matrix A(t) is of a block-diagonal form 

A(t) = 

/ A i ( i ) 0 0 
0 A2(t) 0 

0 0 

\ 0 0 0 

0 
0 
0 

\ 

. . . A n ( t ) J 

where 

A V a 2 j , 2 j - i ( t ) a 2 j , 2 j ( t ) J ' 

Further, h ( t , x) is assumed to be continuous on 

(2 ) r r = J x { ( ® i , . . . , ® 2 n ) € M 2 n : max ( x h , + xh) < r 2 < oo } . 
J=1 n J J 

First, we shall perform the complexification of (1). For this purpose put 

Zj = X 2 j - 1 + i x 2 j ( j = l , . . . , n ) . 

We have 

x 2J-1 

X2j 

x2j~ 1 
+ 

X2 j 

a 2 j - l , 2 j - l { t ) a 2 j - l , 2 j ( t ) \ 

d 2 j , 2 j - l ( t ) " 2 j , 2 j ( t ) J 

a 2 j - l , 2 j - l { t ) X 2 j - l + a 2 j - i i 2 j ( t ) x 2 j 

a . 2 j , 2 j - l ( t ) X 2 j - l + C ' 2 j , 2 j ( t ) x 2 j 
+ 

f l 2 j - l ( t , X i , . . . , X n ) 

h 2 j ( t , x i , . . . , x „ ) 

h 2 j - i ( t , x i , . . . , x n ) 

h 2 j ( t , x i , . . . , x n ) 
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Hence 

Zj = (a2j-l,2j-lX2j-l + 0-2j-l,2jx2j + h2j-l)+ 

+ »(a2j,2j-l®2i-l + + h 2 j ) = 

= (o2i-i,2j-i + ia2j,2j-i)x2j-i + (a2j-i,2j + ia2jt2j)x2j + f j = 
Z ' ' Z ' Z' Z' 

= (02j-l,2j-l + ia2j,2j-\) 3 3 + (a2j-l,2j + ia,2j,2j) 3 3 + f j = 

= ^[(°2j-l,2j-l + d2j,2j) + Ka2j,2j-1 - 0-2j-l,2j)]Zj + 

+ ^[{^j-iaj-i ~ ®2j,2j) + ¿(a2j,2j-l + a,2j-l,2j)]zj + f j 

for j = 1 , . . . , n, where 
i i /, "4" — Zn Zn Zn — Zn . // , n \ 
hk = nk{t, — - — , ———,..., — , ———) (ft = 1 , . . . , 2n), 

f j = /?'(*> • = h-2j~i + ih2j. 

Thus, denoting 

= |[(o2j-i,2j-i(0 + a2j,2j(t)) + i(a2j,2j-i(t) - a2j-i,2j(t))], 

bj(t) = ^[(°2j-l,2j-l(0 - O2i,2j(0) + l'(a2j,2j-l(0 +
 a2j-l,2j(t))]i 

we have a system 

( 3 ) z'j = aj(t)zj + bj(t)zj + f j ( t , zi,...,zn) ( j = 1 , . . . , n ) , 

where 

(4) t G 7, z,- € fir = G C : \z\ < r} ( j = l , . . . , n ) . 

Throughout the paper C denotes the set of all complex numbers, R 
the set of real numbers. Let Nn = { l , . . . , n } . By Re z, Im z and z we 
mean the real part, the imaginary part and the conjugate of a complex 
number z, respectively. For z = ( z i , . . . , zn) G C™ we put \z\ = ]Cj=i lzjl> 
||z|| = ( S j = i \zj\2)^• C(t,r) will denote the class of all continuous func-
tions P T, Cl(I, r) where I is a subinterval of J will denote the class of 
all continuously differentiable functions I —• r. For g G C(7, C) where I is 
a subinterval of J we define g(t) as any fixed function q G C ( / , C) such 
that q2(i) = g(t). 

Assume aj,bj G C(J,C), f j G C(J x i2",C) ( j = 1 , . . .,ra). Suppose the 
uniqueness of any initial value problem for (3). In the future, the following 
hypotheses will play a fundamental role: 
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( H ) There are gkj e C1 (J, C) (k = l , 2 ; j = l , . . . , n ) such that 

( 5 ) sup [ 2 | g i j ( t ) + g2j(t)| - (\gij(t)\2 + M * ) | 2 ) ] < 2 
tej 

and 

( 6 ) [ilma^t) + ( - l ^ - ^ I ^ P - a m a ^ i ) ) 2 ] gkj(t) = bj(t), t G J 

hold for A; = 1 , 2 and j = 1 , . . . , n. 
( H I ) There are akj, \kj £ C(J, R ) (k = 1 , 2 ; j = 1 , . . . , n) such that 

( 7 ) R e [ ( / j + gkjfj + g'kjzj)(zj + §kjZj)] < 

< akj(t)\zj + gkjZj|2 + Xkj(t)\zj + gkjZj\ 

is satisfied for (t, z\,..., zn) G J x fi™, k = 1 , 2 ; j = 1 , 2 , . . . , n , where 
f j = fjiti zi,--.,zn), gkj = 9kj{t). 

If the hypothesis ( H I ) is satisfied with A kj(t) = 0 (k = 1 , 2 ; j = 1 , . . . , n ) , 
i.e. if ( 7 ) is replaced by 

(7 ' ) R e [ ( f j + gkjfj + g'kjzj)(zj + 9kjZj)] < akj(t)\zj + gkjZj|2 

in ( H I ) , we shall write (HO) instead of ( H I ) . 

R e m a r k 1. 1. If bj(t) ^ 0 then the condition (6 ) can be written in the 
form 

(6 ' ) ilmaj(t) + ( - l ) y c M*)!2 - ( I m O j ( f ) ) 2 = ~W)9kj(t). 

2. If bj(t) ± 0 for t G J , a,j,bj G C\J,C) and 

(8 ) sup 
teJ 

Im aj(t) 

bj(t) 
< 1 or inf 

teJ 

Im a,j(t) 

bj(t) 
> 1 

for j = 1,..., n, then the hypothesis (H) is fulfilled. 

R e m a r k 2. 1. If \gkj(t)\ / 1, then the condition (7 ) in ( H I ) may be 
replaced by 

(9 ) Re[fj{t,zi,...,zn) + gkj(t)fj(t , Z\,..., zn ))(zj + 9kj(t)zj)] < 

< Pkj(t)\zj + gkj(t)zj\2 + Xkj{t)\zj + gkj{t)zjI, 

( 1 0 ) akj{t) = f3kj(t)+ 

+ (1 - l 5 f c j ( i ) | 2 ) _ 1 [ - R e G M g ' k j W ) + M y ( 0 l Bgn(l - If lyWI)] , 

where /3kj, Xkj G C{J, R ) (k = 1 , 2 ; j = 1 , . . . , n) . 



Stability and asymptotic properties 701 

Really, if (9), (10) hold then 

Re[(/j + g k j f j + 9 ' k j z j ) ( z j + 9kjZj)} < 

< Re[(/j + g k j f j ) { z j + QkjZj)] + R + 9kjZj)} < 

^ ( f o i + R e 7 I 7 t ) \*i + Skj(t)zj|2 + \ k j \ z j + 9ki{t)zj\ < 
\ z j + 9 k j Z j J 

Pkj + i l - l g k M 2 ) - 1 ^ < 2,_i D - 9 k j 9 k j ( z j + 9kjZj) + g'kj{zj + ghjZj) 
z j + 9kjZj 

x ¡Zj + 9kj(t)zjI2 + ^kj\zj + gkjZj\ 

f o r a l l ( t , z \ , . . . , z n ) G J x f l r . 

2. Since 

- R e ( g k j ( t ) g ' k j ( t ) ) + |g^-(0|sgn(l - |gfc j(Q|) 

1 - lfly(0l3 

( 1 ^ ( 0 1 + 1)1^(01 1 ^ ( 0 1 
| i - W ) I 2 I - l i - M O I I ' 

&kj(t) in (10) may be replaced by 

«iy(0 = M t ) + 
i i - M o i r 

If the hypothesis (H) is satisfied we define scalar-valued functions 

( 1 1 ) V k j ( t , Z j ) = \zj + gkjWzjl2 ( k = 1 , 2 ; j = l , . . . , n ) , 

2 n 

( 1 2 ) Vo(t,z1,...,zn) = ] T J 2 \ z j + 9kj(t)zj\2 

fc=1 j=l 

and a vector-valued function 

(13) V(t, z ! , . . . , z n ) = (Vu(t, Z!,),..., F l n ( i , zn); F 2 i ( * , • • •, V2n(t, zn)). 

Notice that, in general, the functions Vkj are not positive definite. How-
ever, the condition (5) implies the positive definiteness of Vo: 

2 n 

Vo (t, z 1 , . . . , z n ) = Y^'52\zj + 9kj{t)zj\2 = 
k= 1 j=1 

n 2 
= 2 + 9 k j ( t ) z j ) ( z j + g k j ( t ) z j ) = 

j= 1 k= 1 
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= ¿ [ ( 2 + IfliiWI2 + M O | 2 ) M 2 + 2Re(( i ? l j( / ) + g ^ t ) ) * ] ) ] > 
i 

n 
> £ ( 2 + Ifl'liWI2 + M O I 2 - 2 M * ) + 

j=i 
n 

(14) > 
i=i 

where 

(15) = 2 - sup [ 2 1 ^ ( 0 + " ( M O I 2 + M O I 2 ) ] > 0. 
tej 

On the other hand, as we shall see, there are no requirements on the deriva-
tives of Vo with respect to (3); we estimate only the derivatives of the func-
tions Vkj (i.e. only the derivatives of the components of the vector-valued 
function V). 

3. Main results 

T H E O R E M 1. Let the hypothesis (H) and the hypothesis (HO) be fulfilled. 
Assume that 

(16) / i ( i , 0 . . . 0 ) = 0 forte J. 

If 
t 

(17) limsup \ Re[aj(s) + gkj(s)bj(s) + afcj(s)] ds < oo 
t—KX> ,J 

to 

(k= 1,2; j = l,...,n), 

then the trivial solution of (3) is stable. If 
oo 

(18) \Re[aj(s)+gkj(s)bj(s) + akj(s)]ds=-oo (k = 1,2; j = 1,...,n), 
to 

then the trivial solution of (3) is asymptotically stable. 

P r o o f . From (6) it follows that 

(19) [bj(t) = 0 gkj(t)Imaj(t) = 0] for t <= J, k = 1,2; j = 1 , . . . , n. 

Let e € (0, r) and t\ > tQ be arbitrary. Suppose that z(t) = ( ^ i ( / ) , . . . , zn(t)) 
is any solution of (3) defined on [ii, ¿2)? where ¿2 > ¿1- Put 

(20) &kj(t) = Vkj(t,zj(t)). 
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Differentiating ( 2 0 ) wi th respect t o t yields 

0'kj(t) = 2 R e [ ( f j + gkjZjKz- + gkjz'j + g'kjZj)] = 

2 R e [ ( z j + gkjZj){(ijZj + bjzj + f j + gkj(ajZj + bjZj + f j ) + gkjZj)} = 

2 R e { ( z j + gkjZj)[(aj + gkjbj)zj + (gkja3 + bj)z3]} + y k j , 

where <pkj = 2 R e [ ( % + gkjZj)(fj + g k j f j + g'kjZj)], aj = dj(t), bj = bj(t), 
z j = zj(t)i 9kj = 9kj(t), f j = fj(t,zi(t), • ..,zn(t)). Using ( 6 ) we o b t a i n 

0'kj{t) = 2 R e{(zj + gkjZ^Kaj + gkjbj)zj+ 

+ (Reaj + ( - l ) * " 1 ^ \bj\2 — 0-maj)2)SkjZj]} + <pkj. 

W i t h respec t t o ( 6 ' ) and ( 1 9 ) we have 

0'kj(t) = 2 R e [ ( ^ + gkjZj)(a,j + gkjbj)(zj + gkjZj)] + <pkj = 

= 20kj(t) Re(a.j + gkjbj) + ipkj. 

In view o f (HO) t h e relat ion 

G'kj(t) < 20kj(t) Re[aj(t) + gkj(t)bj(t) + akj(t)} 

holds for all t 6 [h,t2)- T h u s 

(@kj{t) e x p | - 2 ^ R e [ a , - ( s ) + gkj(s)bj(s) + afc j (s ) ] ds j^) < 0 . 
<1 

B y t h e i n t e g r a t i o n over [ i i , i] we get 

t 

&kj{t) < 0 f c j ( i i ) e x p 1 2 \ R e [ a , ( s ) + gkj(s)bj(s) + a f c j ( s ) ] t i s j 

for t G [<1,¿2)- H e n c e 

2 71 t 

( 2 1 ) # ( i ) < i > ( i i ) £ £ e x p { 2 S R e 
k=1 j=l ii 

where $(t) = V0(t,Zl(t),..zn{t)). 

L e t ( 1 6 ) hold a n d 

2 n t 
L = ^ ^ sup e x p | 2 J R e [ a 7 ( s 

k=ij=\t^t<0° t l 

Oils) + Qki\s)bi[s) + akds 
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Suppose that S > 0 is such that 

(22) ¿ < [ m i n maa:(1 + \gk j{h)\)2)^{2L)-1-
2=\,...,n k=1,2 y/Tl 

where x, is defined by (15). In view of (14), (21) for z(t) satisfying ||^(ii)|| < 
6 we have 

. min xi \ \ z ( t ) f < *(f) < M ( h ) < £ £ £ ( 1 + |fffcj(ii)|)2
 £ |^( i i ) | 2 . 

7=1,. ...n • 1 

k=l j=1 j=1 

Using ||.z(ii)|| < 6 and (22) we obtain 

. min X j |K*)||2 < 2 n L 6 2 max (1 + \ g k j ( t i ) \ ) 2  

j = l ,...,n k=1,2 
j=l,...,n 

and 

(23) ||z(i)|| < e 

for t G [ii, )• Since e < r the solution z(t) exists for all t > and satisfies 
(23) for all t > t\. Hence the trivial solution of (3) is stable. 

Let (17) be fulfilled. With respect to stability, there is a 6* > 0 such that 
||z(ii)|| < S* implies ||z(i)|| < r. Therefore 

| K / ) | | 2 < [ . m i n x , - ] - 1 * ^ ) 
J = 1 

2 n 

x 1 

k=1 j=1 " ii 

l n t 

X i e x p { 2 \
 R e [ a i ( 5 ) + 9 k j ( s ) b j ( s ) + ajy(a)] da} 

for t > t\. Thus the asymptotic stability is proved. • 

In the following statement we shall consider the system 

( 2 4 ) z'j = a j z j + b j Z j + f j ( t , , . . . , z n ) ( j = 1 , . . . , n ) , 

where aj G C, bj G C are constants. We suppose the uniqueness of any 
initial-value problem for (24). 

COROLLARY 1. Let a j ( t ) = aj e € , b j ( t ) = bj G C and N N = N0 U 

I V J U N 2 . Assume bj = I M a j = 0 f o r j G No, | I M a j | < | 6 J | f o r j G Ni 

and | I m aj \ > | 6 j | f o r j G N 2 - Suppose there exist f u n c t i o n s Qkj G C ( < 7 , R ) 

{k = 1 , 2 ; j G N i ) and ej € C ( J , R ) ( j € N 2 ) such that 

( 2 5 ) | f j ( t , 2 l , . . . , Zn)| < Q k j { t ) \ Z j + U k j Z j | 

f o r ( t , z u . . . , z ) e J x n ? (k =  1 , 2 ; j G N i ) , 
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(26) \fj(t,z1,...,zn)\ < gj(t)\zjI 
for (t,z\,..zn) e J x f i ? (JE N0UN2), 

where 

Ukj 

If the conditions 

( 2 7 ) 11m s u p j [ R e a j + ( - 1 ^ J l b j l 2 - ( I m ajf + 2gkj(s)] ds < oo 
t—too . v 

to 
(fc = l , 2 ; j e JVO, 

t 
( 2 8 ) l i m s u p ^ [Re a j + gj(s)] ds < oo ( j G iV 0 ) 

<—> oo , 
to 

and 

\ r 11 Tm n I - I/.-I 
ds < oo ( j 6 iV 2 ) ( 2 9 ) l i m s u p J 

i—>oo to 
y | I m a j | + |£>j | ^ ^ 

are fulfilled then the trivial solution of the system (24) zs stable. If 

-oo ( 3 0 ) J [ R e a j + ( - l ) f c _ 1 - ( I m a , ) 2 + 2gkj(s)]ds = - c 
to 

(*r = 1 , 2 ; j e i V x ) , 
oo 

(31) J [Re aj + gj(s)] ds = - o o ( j e N0) 
to 

and 

f 11 Tm nA - IA,I 
= -OO (J <= N2), ( 3 2 ) J 

to 
| I m aj| + \bj\ 

then the trivial solution of (24) is asymptotically stable. 

P r o o f . P u t 

9kj(t) = 9k j = 
"kj 
0 

„ . . . . „ - „ ^ • • „ • - I M - ) for 

for k = 1 , 2 , j G Ni 
for ¿ = 1,2, jeN0UN2, bj = 0 
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In view of Remark 1 the hypothesis (H) is fulfilled with the function gkj(t). 
Clearly g'kj(t) = 0. The conditions (25), (26) imply that (24) has the trivial 
solution. It is easy to verify that 

Re[aj + gkjbj] = 
J Re dj whenever j 6 N0 U iV2, 

- \ Re dj + ( - l ) f c _ 1 y/\bj\2 - (Imaj)2 whenever j £ 

For j £ No U Ni we have 

M W > Z\ i • • • •> zn ) + 9kjfj(t , Z\,..., zn 

< (1 + \9kj\)\fj(t, zi,..., zn)Hzj + gkjzjl < 

< (1 -f sgn \bj\)elj(t)\zj + gkjZj\2 

for (t, z1}..., zn) £ J x , where 

(t\ - j eM if j e N u 
M \ e i ( t ) if J 6 No. 

Hence, for j £ No, the condition (7') is satisfied with akj(t) = Qj(t), and, 
for j £ N l t with akj(t) = 2gkj(t). 

For j £ N2 we get \gkj\ ^ 1 and 

R e[(fj(t, z1,...,zn) + g k j f j ( t , Z\,..., zn )){zj + gkjZj)] < 

> ,..., zn 

)llz3 + 9kjZj\ < 
< (1 + \9kj\)Qj(t)\zj\\zj + gkjZj\. Since 

Vkjfazj) = |Zj + gkfzj|2 > (1 - |fiffcj|)2|^|2, 
we have 

5 Z\1 • • • , Zn ) + 9kjfj(t, Z\, • • •, zn ))(zj + gkjZj)] < 

Further, 

l + \gkj\ = |ImQ j | + ( - l ) f e - 1 s g n ( I m a J ) v / ( I m a J ) ^ - | 6 J f + 16,1 = 

|1 - Ifffcjll Hlma.l + ( - l ) * - i s g n ( I m a , ) v T G ^ W - N l 

= /| Imajl + \bj\ y/\ Imajl + \bj]+ ( - 1 ) * - 1 sg^Imaj ) ^jlrnajl - \bj\ 

V | I m a i | - j & i | ' | Imaj-| - \bj\ + ( - l ) * " 1 sgn(Im a j ) VI Imajl + folf 

= l / ! ! m a i + IM whenever 6, ± 0. 



Stability and asymptotic properties 707 

However, for bj = 0, we have g^j = 0 and 

too. Hence (7') is, for j G iV2, satisfied with 

a k j ( t ) = Qj(t). 

As 

Re ay + e j ( t ) 

for j G iV2, the statement follows from Theorem 1. • 

R e m a r k 3. 1. Corollary 1 generalizes Corollary 6 of [6]. 
2. Corollary 1 is easily applicable to the system 

z'j = (aj + Pj{t))zj + (bj + qj(t))zj ( j = 1,..., n), 

where aj,bj G C, Re a,j < 0, |Imaj| > |6j|, p,q G C(J,C). Here f j = 
PjZj + qjZj and (26) is satisfied with Qj(t) = |pj(i)l + 1-

R e m a r k 4. The autonomous equation z' = az + bz, where a, b G C 
are constants such that |a| / |6|, has the unique equilibrium z — 0, which 
is a focus (\b\ < | Ima | ,Rea ^ 0), centre (|6| < | Ima | ,Rea = 0), node 
( | Ima | < |6| < |a|) or saddle point (|6| > |o|). If |6| = | Ima | = 0, we have 
a dicritical node (proper node), if |6| = | Ima | ^ 0, we have a degenerated 
node. For |a| > |6| and Re a < 0 the equilibrium is stable, for |a| > |6| 
and Re a > 0 unstable. (The eigenvalues of the considered equation are 
AI)2 = Re a ± \b\2 — (Im a)2.) The following example shows an R-linear 
equation z' = a(t)z + b(t)z, where a, b G C(J,C), such that the equation is 
stable or asymptotically stable, however the condition |a(f)| > |6(i)| may be 
violated on any interval of the type [T, oo). 

E X A M P L E 1. Consider a real system 

= (a(t)+7m>i+V- 2, 

x'2 = (S + ti)(3(t)x! + (a(t) - 7(3(t))x2, 

where a, ¡3 G C(J,M), G R, i?2 < 72 + 62. The complexification yields 

(34) z' = a(t)z + b(t)z, 
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where a(t) = a(t) + iti(3(t), b(t) = c(3(t), c = i + i6, |t?| < |c|. The hypothesis 
(H) is satisfied with gu = - i?2)/c, g21 = ( - n ? - ^ c l 2 - tf2)/c. 
Indeed, |<7n| = \g2i \ = 1, |<7ii + <72i| = 2|i?|/|c| < 2 and hence (5) holds. Since 

i Im a(t) + ( - l ) * " 1 ^ ! 6 ( i ) l 2 - ( Ima(i ) )2 = /?(<)(*'* + ( - l ) f c " V H 2 - 1?2), 

the condition (6) is satisfied too. The hypothesis (HO) is fulfilled obviously 
with an = «21 : 0. Moreover, b(t) = 0 imphes Im a(t) = 0. Now, using 
Theorem 1 we have the stability of (34) and (33) if 

t 

(35) limsup \ [a(a) + ( - 1 ) * ~ V M 2 - #2P(s)]ds < 00 (¿ = 1,2), 
I-FOO . io 

and the asymptotic stability if 

00 

(36) J [a(s) + ( - l ) f c _ 1 V > | 2 - ti2i3{s)]ds = - 0 0 (k = 1 , 2 ) . 
to 

Notice that the euclidean measure (logarithmic norm) //2 of a matrix of 
the system (33) is //2(i) = Re a(t) + |6(i)| = a(t) + |c||/3(f)| (the equality 
¡j-2{t) — Re a(t) + |6(i)| holds generally for any equation (34)). The well-
known conditions for stability and asymptotic stability are 

t 

(37) limsup J ^2(5)ds < 00 
t—yoo . 

to 

and 
00 

(38) J ̂ 2(5) ds = -00, 
io 

respectively. In our case, the conditions (35), (36) are clearly better. Namely, 
taking to = 7r, a(t ) = 0, fl(t) = t~u sin/, where 0 < u < 1, we have 
the stability in view of (35), however (37) is not satisfied. Taking to = 7r, 
a(t) = —\c\/ir, /3(f) = sin t, we have the asymptotic stability in view of (36), 
however (38) is not fulfilled. Notice that also logarithmic norms ¡JL\ (t) = 

max[Re(a(f) + b(t)) + | Im(a(i) + b(t))\, Re(o(i ) - 6(f) ) + | Im(a(i) - b(t))\], 

^oo(i) = max[Re(o(i) + 6 ( i ) ) + |Im(a(/)-6(i))|, Re(o(i) - 6 ( f ) ) + \ lm(a(t) + 

6(i))|] satisfy (37), (38), in general, on our assumptions. 

T H E O R E M 2. Assume that the hypotheses (H) and (HI) are fulfilled. Let 

z(t) = (z\(t), be any solution o/(3) defined fort > ti (> io)-
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Then there exist f i j > 0 such that 

t 

+ (39) f X j \ z j ( t ) \ < ^ n j ( i 1 , z j ( i 1 ) ) e x p [ J < p k j ( s ) d s 

k=1 ii 
2 t t 

+ E S A f c i ( r ) e x p \ ,pi>i(8)d s 

f o r t > t \ , j — 1 , . . . , n, where 

(40) < p k j ( t ) = Re[ a j ( / ) + flfW(i)6i(i) + a k j ( t ) } . 

P r o o f . Following the proof of Theorem 1 we get 

6>jy(t) < 2 < p k j ( t ) G k j ( t ) + 2 & l j ( t ) X k j ( t ) , 

where 

= V k j ( t , Z j ( t ) ) = \ Z j { t ) + g k j ( t j ^ t ) \ 2 . 

Putting 

* k j ( t ) = e l ( t ) , 

we obtain 
9 ' k j ( t ) < < p k j { t ) . 9 k j ( t ) + A k j ( t ) 

for all t > ti for which 9 k j ( t ) ± 0. If t* > h is such that 9 k j ( t * ) = 0, then 

9 h j ( t ) - * k j { t * ) _ 

= lim 

y t-*tv- t - t * 

l * j ( * ) + 9kj(tteU)I - \zj(t*) + gkj(t*)W)I 
<-<•- t -1* 

= _ U m - + 9ki(t)zi(t) - < 

< - I 4 ( r ) + \gkj{t)7tf)Vt=A < 0 < 

Hence 

9 k j - ( t ) < < P k j ( t ) 9 k j ( t ) + A k j ( t ) 

for all i > ii and 

( 4 1 ) 9 k j ( t ) < V k j ( h ) e ^ { s ) d s + j A k j ( r ) e i > * ^ d s d r , 

ti 

where the right-hand side of the last inequality is the maximal solution of 

u' = <pkj(t)u + A k j ( t ) , u(t i ) = 9 k j ( t i ) . 
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F r o m ( 4 1 ) w e o b t a i n 

£ 9kj(t) = £ *kj(h)e^ + £ | A w ( r ) e J * o « « * dr 
k-1 fc=l fc=lii 

f o r / > i i . A s 

2 2 i i 

! > « ( * ) > [ E i ^ w + ^ w ^ w i 2 ] 2 > > xfyMU 
k=1 fc=l 

i t is c l e a r t h a t t h e r e a r e ¡ ¿ j > 0 s u c h t h a t 

2 

fc=i 

f o r t > ¿x- T h e p r o o f is c o m p l e t e . • 

C O R O L L A R Y 2 . L e i the assumptions of Theorem 2 be fulfilled. Let 
2 t i i 

( 4 2 ) l i m s u p E $ A f e j ( r ) e x p [ J ^ ( s ) d s 
i—>oo , , . K=1 <i 

dr < oo , 

being defined by (40). If z(t) = (^ i ( i ) , . . . , zn(t)) is any solution o/(3) 
defined for t > t\ (> ¿o) then 

2 

( 4 3 ) = 0 ^ E e x p j </>fc?(.s) dsj a s / oo . 

fc=i i i 

T h e s t a t e m e n t f o l l o w s i m m e d i a t e l y f r o m ( 3 9 ) . 

C O R O L L A R Y 3 . Let the assumptions of Theorem 2 be fulfilled and let 
(44) lim sup (fikj(t) < rjj < oo, 

t—» oo 

(45) A k j(t) = Oie71**) as t oo 

for k = 1 , 2 , w/iere ¿s defined by ( 4 0 ) . If z{t) = ( ^ i ( i ) , . . .,zn(t)) is any 
solution of (3) defined for t > t\ (> /o) = 0(en't) as t —> oo. 

P r o o f . I n v i e w o f ( 4 4 ) a n d ( 4 5 ) t h e r e e x i s t L > 0 , 77? < r]j a n d T > t\ 

s u c h t h a t ipkj(t) < 17? a n d Afc , - ( i ) c ~' ? y < < £ f o r i > 2 \ fc = 1 , 2 . F r o m ( 3 9 ) i t 

f o l l o w s t h a t 

2 t 
( 4 6 ) < V0(T,zi(T),.. . , z n ( T ) ) c " 7 < t - r > + £ j L e ^ e ^ ' ^ d r < 

k=1 T 

< ( T , Z ! ( T ) , . . , , z n ( r ) ) e < ( < - T ) + 2 I e " > «(17,- - - e ( " ' - » * > T ] < 
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< V0(T,z1(T),...,zn(T))e"nt-T) + L*evit < 

< [ v b ( r , z 1 ( r ) , . . . , z n ( r ) ) c - " 7 T + x ; ] e ^ = 

where L) = - i / J ) - 1 . • 

R e m a r k 5. If Ak j ( t ) = 0 for k = 1,2, then we can take L = L* = 0 
in the proof of Corollary 3 and the inequalities (46) yield the following 
statement: there exists an f j j < i]j such that z j ( t ) = o(ef,>t) as / —> oo. 

THEOREM 3. Let the assumptions of Theorem 2 be fulfilled. Let 

(47 ) <pkj(t) < 0 fort>T (>t0), 
oo 

(48) lim \ <pkj(t) dt = - o o f.—fOO J 

and 

(49) Akj(t) = o(ifkj(t)) ast-> oo 

for k = 1,2, where ipkj are defined by (40). Then for any solution z(t) = 
(zi(t),.. .,zn(t)) of (3) the relation 

lim Zj(t) = 0 i—• oo 

holds. 

P r o o f . Let e > 0. In view of (49) and (47) there exists a a > T such 
that Afcj(i) < —£<fikj(t) for t > a, k = 1,2 and 

2 i 

< 

Y , \ A f c j ( r ) e x p ( \ d s ) d T ^ 
K= 1 A T 

2 t t 
£ S \ [ ~ Vkj i r ) exp ( \ ykj{s) ds ) ] dr < 

fc=l <R T 
2 t 

< e [l - exp ( J ¥>jy(r)dr)] < 2e 
i=i 

for t > a. Since 

exp 
t 

[ \ <Pkj{s) ds 0 as t —> oo, 

we get from (39) 
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fij\zj(t)\ < 3e 

for large t. Thus limi-xx, \zj(t)\ = 0. • 

EXAMPLE 2. Consider a real system 

x\ = (a(t) + 7/?(i))a;1 + (6 - •d)(3(t)x2 + g(t,x1,x2)xi + h1(t,x1,x2), 
(50) 

4 = (6 + ti^tyxi + (a(t) - lP{t))x2 + e(t, Xi,x2)x2 + h2(t, xx,x2), 

where a,/? G C(J,R),g, hj e C(JxR2,R),f,6,tf g R,i?2 < -y2+S2. Suppose 
there is a a 6 C ( J , R ) such that g(t,xi,x2) < a{t) for (t,x\,x2) € J x M2. 
The complexification yields 

(51) z' = a{t)z + b(t)z + f{t,z), 

where a(t) = a(t) + ¿0/3(t), b(t) = c/3(t), c = 7 + |0| < |c| and 

/ ( i , *) = z) + + 

Put 
= + _ i?^)/c, g2 = (-¿0 - VkP-^Vc. 

Let G C ( J , R ) (A; = 1 , 2 ) be such that 

\f(t,z) + gkf(t,z)\ < Xk(t) (k = 1,2). 

The hypothesis (H) is fulfilled with 511 = 51, </2i = 52, similarly as in 
Example 1. Since 

Re{[(V>z + / ) + gk{i)z + f))(z + 5fcz)} = 
= tl>\z + gkz\2 + |/ + gkf\\z + gkz\ < 

< i>\z + gkz\2 + Xk\z + gkz\ < 
< cr\z + gkz\2 + Xk\z + gkz\, 

the hypothesis (HI) is satisfied with ak\(t) = cr(t), Xki(t) = Xk(t) (k = 1,2). 
Assuming that (xi(t),x2(t)) is a solution of (50) defined for t > t\ (> to) 
and applying Corollary 2, Corollary 3 and Theorem 3, we obtain following 
statements: 

1° If 
2 t «1 

lim sup V \ Afc(r) exp { J [a(s) + a{s) + ( - l ) f c _ 1 ^\c\2-&2f3(s)} ds\dT<00, 
k=iti r J 
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then 

,(t) = 0 ( £ exp { J [a(a) + a(s) + (-1)*"1 <fa}) 
k= 1 11 

as t —• oo for j = 1,2. 
2° If 

limsup[a(i) + a{t) + ( - l ) f c _ 1 >/kl2 - #2ß(t)} = x < oo 
t—f oo 

and 

for A = 1,2, then 
= OCe"') as t oo 

^•(i) = 0(e ) as t -»• oo (j = 1,2). 

3° If 

a(t) + <r(<) + (-1)*"1 v/|c|2 - i?2/?(i) < 0 for i > T (> t„), 
t 

Hm \ [a(a) + a(s) + ( - l ) f c _ 1 V l̂̂ l2 - #2ß(s)] ds = -oo 
t—>oo J 

and 

A k ( t ) = o(a(t) + o(t) + ( - l ) f c _ 1 v/|c|2 - #2ß(t)) as t - oo 

for k = 1,2, then 
(xi(i), X2(i)) —>• 0 as t —• oo. 
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