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GLOBAL EXACT CONTROLLABILITY
FOR GENERALIZED WAVE EQUATION

1. Introduction
In the paper we will investigate a problem of exact controllability on
(0,T), T € (0,00), T finite for the generalized wave system

up + A(z,D)=2, 2 €Q, t€ (0,T)
u(2,0) = 8(), u(2,0) = $(2),2 € O
DPylp =0 for [B| <m -1, t€(0,T),

where A(z, D) is a linear elliptic operator of order 2m [4]; @ C R™, T =
09, T > 0. The problem is a follows: given T an initial functions ¢, ®, find
a corresponding control function 2(.) in a suitable Hilbert space, driving the
system to a desired state u(.,T) = 21(.), ¢'(.,T) = 23(.) at a time T. This
problem has been studied in [1], [2], [6] for A(z, D) = —A and A(z, D) = A%
The way we approach the problem consists of three stages:

First, this system will be set in an abstract form on the Hilbert space
HM(2) x Ly(9). Next, it will be proved that the following operator
A= [_OA
L,(Q) and that this operator is a Riesz-spectral one. Finally, a sufficient
condition will be checked out for exact controllability for the state linear

system X(A4, B, —).

AssUMPTION 1. Let  C R™,n > 1 be a bounded domain with smooth
boundary I' and closure 2. Let functions a,q : & — R be given, where

p=(p1,P2,--,Pn), 4 = (¢1,42, - . -qn), are multiindicies with

n n
lp| = Zpi, lql = quw
i=1 i—1

Let H™(Q) and H§*(2) be Sobolov spaces with the norms [|.||};,s € R.
Consider a linear elliptic operator Ag(z, D) for order 2m,m € N, in the

(IBVP)

é ] generates a strongly continuous unitary group on HJ*(2) x
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divergence form
m

(1) Ao(z, D) = Z (‘UIPIDP(AM(‘”)D‘I)-
Ipi=lgl=0

AsSUMPTION 2. We have apq € C(R), apg = @y, |p| < m, lg| < m.

AssuMPTION 3. The operator Ay(z, D) is strongly elliptic in 2, e.i., there
exists a constant ¢ > 0 such that

Z ape(2)EPET > clflzm, for all z € Q,£ € R™.
Ipl=lgl=m
Denote by a(u,v) a bilinear form

m
(2) a(v,w) = Z S apq DPv(z)Dw(z)dz, w,v€ H™Q.
Ipl=lgl=0 €
Assumption 3 implies that the operator Ag(z, D) satisfies Girding’s in-
equality, i.e., there exist constants Cy > 0 and C; > 0 such that a(v,v) >
C’1||v”§{m(m - Cz||v||2Lz(Q) for any v € HJ*(Q). If C, # 0, the operator
Ao(z, D) will be replaced by the operator

(3) A(z, D) = Ao(z, D)+ M,
where I is the identity operator and A > C,. Then for any v € HJ*(Q?)
(4) a(v,v) 2 Cil[ollyym(q)-

With the elliptic operator A(z, D), we associate a linear operator A in Ly(Q),
given by A, = A(z,D)u for u € D(A) = H*™(Q)n HF(Q).

LEMMA 1.

i) A is e positive self-adjoint operator,
ii) 0 € p(4),

ili) there ezists A% and it is self-adjoint,
iv) 0 € p(A}),

v) a(v,w) = (A}v, Abw),

vi) D(A?) = HJ(Q).

Proof. i) Due to Assumption 2, the operator A given by (3) can be
extended to a self-adjoint operator in Ly(R) [4, p. 126]. ii) The inequality
(4) implies that 0 € p(a). The properties iii)~vi) have been proved in [4,
p. 29, p. 109] and in [1, p. 606, p. 609].

We set (I BV P) problem in the form

dw

(5) i Aw + Bz,
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(6) w=(0)= (5 ).

on the space Hy = HJ(Q) x Ly(Q) with D(A) = (H*™(Q) n HF(Q)) x
HF(Q), where A [_OA é], B= [2], w= [:']
Denote by (, ) the usual inner product in Ly(£2) and let
v v
(1) (wi,wa)m = (A¥vr, A¥v3) + (21, 22), wy = (ZI)’ vy = (z:)
LEMMA 2. Hy with the inner product given by (7) is a Hilbert space.

The proof of this Lemma is similar to that one from [1], and it is based
on the results of Lemma 1.

2. A Cp unitary group for the generalized wave equation

Consider a Cy unitary group U on a Hilbert space H. The well-known
Stone’s Theorem [3, p. 41] states that A is the generator of the group U on
H iff A is skew-adjoint. As a consequence of the above result we shall prove
the following:

THEOREM 1. If the assumption 1-3 are satisfied, then the operator A is
an infinitesimal generator of a Cy unitary group on the space Hy.

P roof. First, it will be shown that A is a self-adjoint operator on Hy (£2).
To see this let us observe that

s L N [ 1 N

iZg 7m ..l 1 .
= . ) =(1A%2,AZ0) + (—tA2,v
([—zAzl] [”2]>}ro(o) (iA%z, 1) + ( 1, V2)

= i(Zz, A'Ul) e i(AZl, ’Ug) = (22, —iA’Dl) + (AZ], i’vg)
= i(2g, Avy) + (A2, tv2) = (A%zl,iA% v2) + (22, —iAv1)

_(I:Zl] [ i'l)g ])_ 21 . 0 I m

L]’ [-iAn ]/ ([Zz] ! [—A 0] [”2]) '

It means that (iA)" = iA, i.e., iA is a self-adjoint operator on Hy (). But this
implies that A is a skew-adjoint operator on the space Hy({2) and therefore,
by the Stone’s Theorem, A generates a Cp unitary group on Hp(f2). So, A
has a dense domain in Hy(2) and A is a closed operator.

Let us consider, on the Hilbert space, an abstract nonhomogeneous
Cauchy problem

®) 20— 4e0) + 10, 120, 2(0) = 20,
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where f :(0,T) — H.

DEFINITION 1. Let A be the infinitesimal generator of a Cy semigroup
T(t), t > 0. For given 20 € H and f € L'({0,T); H) the function z €
C((0,T); H) defined by

(9) 2(t) = T(H)zo + | T(t — 5)f(s)ds, 0<t<T,

is called the mild solution of the initial value problem (7) on T'.

LEmMA 3. ([3], p. 106; [1], Lemma 3.1.5, p. 104). If f € L,((0,T); H)
for some p > 1 and 29 € H then there ezists a unique mild solution z of the
equation (8) given by the formula (9).

3. A Riesz-spectral operator for the generalized wave equation

In this section, it will be presented a convenient representation for linear
generalized wave equation. A Riesz basis for non-self-adjoint (exactly skew-
adjoint) operators will be constructed.

DEFINITION 2. A sequence of vectors {®,,n > 1} in a Hilbert space H
forms a Riesz basis for H if the following two condition are satisfied:
a) span{®,,n > 1} = H,
b) there exist positive constants m and M such that for arbitrary N € N
and arbitrary scalars a,,n =1,...N, we have

N n 2 N
mz Ian|2 < H Zanqén < MZ Ian|2.
n=1 n=1 n=1

DEFINITION 3. Suppose that A is a linear, closed operator on a Hilbert
space H, with simple eigenvalues {n,n > 1} and suppose that correspond-
ing eigenvectors {®,,n > 1} form a Riesz basis in H. If the closure of
{ttn,n > 1} is totally disconnected, then we call A a Riesz-spectral oper-
ator. By a totally disconnectedness of a set {sn,n > 1} we mean property
that there are no two points A, u € {g,,n > 1} which can be joint by a
segment lying entirely in {g,,n > 1}.

Remark 1. The above definition covers the case when A has a one
accumulation point.

LEMMA 4. [4, p. 369] Assume that the operator A defined by (3) satisfies
Assumptions 1,2,3 and (4). Then the eigenvalue problem

Ap — up =0 on Q,
(EPA) {D"‘go::OonI’for lef <m -1
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has countably many eigenvalues p which are real. All the eigenvalues have
finite multiplicity. If we count the eigenvalues according to their multiplicity,
then 0 < gy < p2 < ... and gy — 0o as k — oo. There exists a complete
orthonormal system of eigenvectors {¢r}, o € H§*(Q), in the space L2(Q):

{1 fork=s

S(pkcpsda: “10 fork#s

Q
and Ap = Mgy if we denote py = AL,
Now, the eigenvalue problem for a skew-adjoint operator will be consid-
ered:

(EPA) AU=BU, U= [;‘] ,
2
which is equivalent to the system
21=0""2,0+£0
AZ2 = —,B222.

By Lemma 4, it is clear that 8y = +iA,, k € N. So, we obtain eigenvectors
in the space Hp () = HJ*()zLy(R)

i L
Q_k={ '\"(pk},ka{)"‘sok},kGN.
Pk Pk

THEOREM 2. The eigenvectors ®4i, k € N form a Riesz basis and A is
a Riesz-spectral operator.

Proof. First we shall prove that {®4x}, ¥ € N, is complete in Hy(Q).
Suppose that z = ( 2) is orthogonal to every ®;. Then

_i<p )
0= ((Zl),(_x,,k)) = (A%zl,A% (—igok)) +(22,05) L)
29 2 ) ) Ak Lx() ?

—1
={z,—A4 + (29, = (2z9,—1A ,
( 1 A 99k)L2(m (22 ‘Pk)L.‘,(Q) (21,1 k9°k)L2(Q) + (22 <Pk)L2(9)

= —ik(21, k) 00) + (22, P0) 0 = —(=D)A(21,08) L) + (220 9) 00y
= 1Ak(21, Pk) L, (0) T (225 PK) (@)
and similarly

2 L7 )
0= (Z > ) Ak = _zAk(zl, ‘Pk)LQ(ﬂ) + (22, ‘Pk)Lz(Q)'
27N ) wa)

Adding and substracting above equalities, we have 0 = (z,¢%) and
iAk(21, %) = 0. Since the system {pi,k > 1} is complete in Ly(£2) and
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Ak > 0 we conclude that z; = 0 and z; = 0. Thus the system {®44,k € N}
is complete in Hg(€2). A has only one accumulation point.

Now we want to check that the condition b) from Definition 2 holds. To
do that, let us observe that

N 2 2
| > e
n

1 N
n = “ Z an¢n+zan¢n
=—~N,n#0 Ho () n=—N n=1
N N
= [ acnn+ Y andn
n=1 n=1

5 e (o) renl e

n=1

o (Q)

Ho (Q)

o, zan N L o
- (X [5 Relee X  S2e)
n=1 n=1 N )
+ “ Z(a—n + an)ﬁan
n=1 L2(Q)

n

N 00
N7 N a—n - an a_n - an ——
= (I Y (2570, 29 ) 1 Y e - an o F a0)
n=1 n n=1
N N
= Z(a—-n - an)(a—n + an) + Z |a—n + anl2
n=1 n=1

N N N
= Z lo—n — an]2 + Z lo_n + C"n|2 = 22(|a—n|2 + |anl2)-
n=1 n=1 n=1

Therefore condition b) is satisfied for n = M = 2. By Theorem 1, A is a
generator of Cy unitary group on the space Hp(£2), so A is a closed operator
with dense domain in Hy(£2). Hence A is a Riesz-spectral operator.

Remark 2. It can be checked that {®4,,k € N} is an orthogonal basis
in Ho(R) and || ®kllg q) = 2-

Later on, the following orthonormal basis will be used

o, = {\“k“’"},@k:{ﬂkw } ke N.
\/-(Pk ‘/‘Sok
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4. Controllability
Generally, we shall consider the following class of infinite-dimensional
systems with input 2 and output y:

(10) u(t) = Au(t) + Bz(t), t >0, u(0) = uo,
(11) y(t) = Cu(t) + Dz(1).

DEFINITION 4. Let ¥(A, B,C, D) denote the state linear system, where
A is the infinitesimal generator of the strongly continuous semigroup S(¢)
on a Hilbert space H, B is a bounded linear operator from a Hilbert space
U into H, C is a bounded linear operator from H into a Hilbert space Y,
and D is a bounded operator from U into Y. The system ¥(A, B,C, D) will
be considered for all initials states ug € H and all inputs z € Ly((0,T),U).
The state function u(.) is the mild solution of (10) and it is given by

u(t) = S(tyuo + | S(t — 5)Bz(s)ds, 0<t<T.
0

If A is a Riesz-spectral operator, we shall call £(A, B,C, D) a Riesz spectral
system. If C = D = 0 we use the notation ¥(A, B,C, —). For the state linear
system X(A, B, —), we need the following:

DEFINITION 5.

a) The controllability map of £(A, B, —) on (0, T') (for some finite T’ > 0)
is the bounded linear map BT : L,({0,T),u) — H defined by BTz =
Sg S(t — s)Bz(s)ds.

b) X(A4, B, —) is exactly controllable on (0,T) (for some finite T > 0) iff

all points in H can be reached from the origin at time T, i.e., iff the range
BT = H.

For the state linear system X(A, B,—), we have the following sufficient
and necessary conditions for exact controllability.

THEOREM 3 (1, p. 147]. The system (A, B, —) is ezactly controllable on
(0,T) if and only if one of the following equivalent conditions hold for some
y>0andallu e H:

i) (LLu,u) > 7llullf

.. - T - 2

i) [|BT ) = §; 1(BT w)(s)llpds > vllully,
con T () v o

i) {2 ||1B*S*(s)ullbds > vllull%,,

iv) ker BT" — {0} and ranBT" is closed.

Remark 3. In our case H = Ho(Q), B = [$], A= A, U = Ly(Q).
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THEOREM 4. [1, p. 41, c]. Suppose that A is a Riesz-spectral opera-
tor with simple eigenvalues {un,n > 1} and corresponding eigenvectors
{®,,n > 1}. Let {tp,,n > 1} are the eigenvectors of A* such that (®,,v,)
= 6. Then A is the infinitesimal generator of Cy semigroup if and
only if sup,s; Rep, < 0o. Additionaly, S(t) is given by S(t) =
Yome1 €474 )@yt 2 0.

THEOREM 5. In our case A = [_OA g] , A* = [g _OI]. Both operators
A and A* have the same set of eigenvalues p, = *id,, n € N and the
eigenvectors {®4n,n € N}. It is clear that Re p, and sup,~, Rep, = 0 <
00. By Theorem 1 the operator A is a Riesz-spectral one. From Theorem 4,
we see that S(t) has a representation

S(t) =D (e, @ n)B_p + (., )0, 1 2 0.
n=1

After a tedious calculation it can be found that

o0

> [@n)cosrut+ -]

o
(¢) Z [=An(®, n) sin Ant + cos Ant(, )] @n.

n=1

In the paragraph 2, it has been proved that A is a generator of strongly
continuous semigroup S(¢), ¢ > 0 on Hp(2) (exactly a group for t € R). By
Theorem 4, S(t) has the representation given by (12). Applying Theorem
3, iii), we see that for z € Ly((0,T); L2(£2)), our system will be exactly
controllable on (0, T) iff there exists ¥ > 0 such that
(13)

* vk @
15570l 0t 2 oy Tor any 0 € Ba(@), 0 = (7).
The proof of this inequality is like that one in [1, p. 150], [2,p. 10]. From

the group property of 5(t) and Remark 1, we conclude that S*(t) = S(-t)
for t € R. It is clear that B* = [0, ], so

|50 )

= Z [)\n(@, @n)? sin® At 4+ An(®, 02)(¥, ©n) 5in 220t + (¥, 0n )’ cos® /\nt] .

n=1

2 [>5]
= > [-An(®, @n) sin(=Ant) + (¥, n) cos(=Ant)]*
L1(Q) n=1
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2

Thus
| B*s* (@)
¥/ lLa(0,7),La()
sin 22, T cos 2/\nT>

_ %Z [ 2(8, ) (T - T:) +22n(@, @0 )(¥, ¢n) (1 T Ton,

2 sin 22, T
+(%,¢n) (T+ . )]
After routine calculation we obtain

vl 02 = Z [)‘i(‘l’,son)z + (10,%)2] -

n=1

So, the inequality (13) is equivalent to the following one

/\ T - /\n
Y Z I:’\2 (Q Son) (T - EmQ/\—n) + 2/\71((1)’ @n)(d’v@n) : (}—E;'Xsn_?—l)

Hpn? (74 2220) ] > 9257 @00+ (9007
n n=1

Putting P = T — 29? we see that the above inequality holds iff for any

neN

sin 2\, T sin 2\, T
P - W >0, P+ W >0

and

p2_ sin? 22, T 3 1 - cos2A,T 2 >0
2Xn 2\, =

But the last inequality is equivalent to T' — 292 = P > ]%IL while the

first twoto T —2y%2 = P > ]“"2}‘ = |Si")"\n"T|| cos A\, T|. Since A, — 400,

therefore sup,, |§%an| < T for any T > 0 what, in turn, guarantees the

existence of a required vy > 0.
This results shows that for all T > 0 system is exactly controllable.
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