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GLOBAL EXACT CONTROLLABILITY 
FOR GENERALIZED WAVE EQUATION 

1. Introduction 
In the paper we will investigate a problem of exact controllability on 

(0, T), T G (0, oo), T finite for the generalized wave system 

' utt + A(x,D) = z, xeSl, te (0 ,T) 
(IBVP) u(x, 0) = $(x) , ut(x, 0) = X e N 

Dßu\r = 0 for \ß\ < m - 1, i G (0 ,T), 
where A(x,D) is a linear elliptic operator of order 2m [4]; ii C Rn, T = 
3 f i , T > 0. The problem is a follows: given T an initial functions find 
a corresponding control function z(.) in a suitable Hilbert space, driving the 
system to a desired state u(.,T) = U'{--,T) = z2(.) at a time T. This 
problem has been studied in [1], [2], [6] for A(x, D) — - A and A(x, D) = A 2 . 
The way we approach the problem consists of three stages: 

First, this system will be set in an abstract form on the Hilbert space 
H™(Q,) x L2($l)- Next, it will be proved that the following operator 

A = 

L2{tt 

O I 
-A 0 generates a strongly continuous unitary group on H™(Q.) X 
and that this operator is a Riesz-spectraJ one. Finally, a sufficient 

condition will be checked out for exact controllability for the state linear 
system E(A,B, -). 

ASSUMPTION 1. Let ii C Rn,n > 1 be a bounded domain with smooth 
boundary T and closure fi . Let functions apq : ii —• R be given, where 
P= (P1,P2,-- -,Pn), q= (qi,Q2, • • -qn), are multiindicies with 

n n 
ipi = iii = 

¿=i ¿-1 
Let Hm(Q) and HS1^) be Sobolov spaces with the norms G R. 

Consider a linear elliptic operator AQ(X,D) for order 2M, M G N , in the 
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divergence form 
TO 

(1) AQ(X,D) = £ (-1 )MDP(APQ(X)D"). 
|p|=|</l=0 

ASSUMPTION 2. We have apq e C ( f i ) » aP9 — apgi bl < rn, < m. 
ASSUMPTION 3. The operator Ao(A;, D) is strongly elliptic in ii, e.i., there 

exists a constant c > 0 such that 

£ " n W t 9 2 c l^ | 2 m ' for all x € H, f € Rn. 
|p|=kl=m 

Denote by a(u, v) a bilinear form 
TO 

(2) a(v, w) = J T \apgDpv(x)Dqw(x)dx, w,v e HmQ. 
|p|=kl=o n 

Assumption 3 implies that the operator AQ(X,D) satisfies Gárding's in-
equality, i.e., there exist constants Ci > 0 and C2 > 0 such that a(v,v) > 
c i l M k » ( n ) " C M l 2 ( n ) for a Qy v € Hpiil). If C2 ¿ 0, the operator 
AQ(X,D) will be replaced by the operator 

(3) A(x,D) = A0(x,D)+XI, 

where I is the identity operator and A > Ci. Then for any v G H™(Q,) 

(4) a M > C i l M & m ( 0 ) . 

With the elliptic operator A{x, D), we associate a linear operator A in L2(Q), 
given by Au = A(x,D)u for u € D(A) = H2m(Q) n H^Ü). 

LEMMA 1. 
i) A is a positive self-adjoint operator, 
ii) 0 G p{A), 
iii) there exists A* and it is self-adjoint, 
iv) 0 G p(A*), 
v) a(v,w) = (A%v,A?w), 
vi) D(A?) = 

P r o o f , i) Due to Assumption 2, the operator A given by (3) can be 
extended to a self-adjoint operator in L2{Vt) [4, p. 126]. ii) The inequality 
(4) implies that 0 G p(a). The properties iii)—vi) have been proved in [4, 
p. 29, p. 109] and in [1, p. 606, p. 609]. 

We set ( IBVP) problem in the form 

(5) ^ = Aw + Bz, 
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(6) Wo = w( 0) 

on the space Ho = H?(Sl) x X2(il) with D{A) = ( # 2 m ( f t ) n #0
m(«)) X 

JTo-'(il), where A , 5 = [}], w = [ « ]. 
Denote by (,) the usual inner product in L2(tl) and let 

( 7 ) (WuW2)MO = (A'v1,A*v2) + {z1,z2), V>I = ^ ^ , v2 = . 

L E M M A 2 . Ho with the inner product given by ( 7 ) is a Hilbert space. 

The proof of this Lemma is similar to that one from [1], and it is based 
on the results of Lemma 1. 

2. A Co unitary group for the generalized wave equation 
Consider a Co unitary group U on a Hilbert space H. The well-known 

Stone's Theorem [3, p. 41] states that A is the generator of the group U on 
H iff A is skew-adjoint. As a consequence of the above result we shall prove 
the following: 

T H E O R E M 1. If the assumption 1 - 3 are satisfied, then the operator A is 
an infinitesimal generator of a Co unitary group on the space Ho. 

P r o o f . First, it will be shown that iA is a self-adjoint operator on Ho (ft). 
To see this let us observe that 

( ' 

= i(z2,Avi) - i{Azx,v2) = (z2,-iAvi) + {Azuiv2) 

= i(z2,Avi) + (Azi,iv2) = (A$zi,iA$v2) + (z2,-iAvi) 

' o r " V ) =0 
z2 " V 

.Z2. 
> 

y 2. /Ho(n) \ -Az\ ? 
.v2. 

iz2 V 
—iAz\ ? 

. v 2 . ) Ho(O) 

H j ( 0 ) 

= (iA?z2,A?vi) + (~iAz1,v2) 

' 0 n 
- A 0. ,v2. 

It means that (îA)* = iA, i.e., iA is a self-adjoint operator on Ho(iî). But this 
implies that A is a skew-adjoint operator on the space Ho (ft) and therefore, 
by the Stone's Theorem, A generates a Co unitary group on Ho (ft). So, A 
has a dense domain in Ho (ft) and A is a closed operator. 

Let us consider, on the Hilbert space, an abstract nonhomogeneous 
Cauchy problem 

dz(t) 
(8) 

dt 
= Az(t) + f ( t ) , t > 0, ¿(0) = z0, 
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where/ : (0,T)-+H. 

DEFINITION 1. Let A be the infinitesimal generator of a Co semigroup 
T(t), t > 0. For given z0 € H and / € /^((O, T ) ; # ) the function z 6 
C({0,T);H) defined by 

t 

(9) z(t) = T(t)z0 + \T(t- s)f(s)ds, 0 <t<T, 

o 

is called the mild solution of the initial value problem (7) on T. 

LEMMA 3. ([3], p. 106; [1], Lemma 3.1.5, p. 104). If f e Lp((0,T);H) 

for some p > 1 and zq £ H then there exists a unique mild solution z of the 

equation (8) given by the formula (9). 

3. A Riesz-spectral operator for the generalized wave equation 
In this section, it will be presented a convenient representation for linear 

generalized wave equation. A Riesz basis for non-self-adjoint (exactly skew-
adjoint) operators will be constructed. 

DEFINITION 2. A sequence of vectors > 1} in a Hilbert space H 
forms a Riesz basis for H if the following two condition are satisfied: 
a) span {$ „ ,n > 1} = H, 

b) there exist positive constants m and M such that for arbitrary N 6 N 
and arbitrary scalars an,n = 1,.. .iV, we have 

N n 2 AT 

m ^ | a „ | 2 < | ] P a n $ n < M ] T | a n | 2 . 
n=l n—1 n=l 

DEFINITION 3. Suppose that A is a linear, closed operator on a Hilbert 
space H, with simple eigenvalues {/in, n > 1 } and suppose that correspond-
ing eigenvectors { $ n , n > 1} form a Riesz basis in H . If the closure of 

n > 1} is totally disconnected, then we call A a Riesz-spectral oper-
ator. By a totally disconnectedness of a set n > 1} we mean property 
that there are no two points \,/j, g > 1} which can be joint by a 
segment lying entirely in { f i n ,n > 1 } . 

R e m a r k 1. The above definition covers the case when A has a one 
accumulation point. 

LEMMA 4. [4, p. 369] Assume that the operator A defined by (3) satisfies 

Assumptions 1,2,3 and (4). Then the eigenvalue problem 

(EPA) { A J a ~ W = 0 ° n 
V = 0 on T for \a\ < m — 1 
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has countably many eigenvalues /i which are real. All the eigenvalues have 
finite multiplicity. If we count the eigenvalues according to their multiplicity, 
then 0 < Hi < H2 <•• • and fik —• oo as k —• oo. There exists a complete 
orthonormal system of eigenvectors {<fk}, fk 6 //¿"(O), in the space L2 (ii): 

r , f 1 for k = s 

and A<pk = ^Ifk if we denote /i* = 

Now, the eigenvalue problem for a skew-adjoint operator will be consid-
ered: 

(EPA) A U = BU, {/ = 

which is equivalent to the system 
.z2. 

z1=fi~lz2, (3^0 

Az2 = -02z2. 

By Lemma 4, it is clear that fik = k 6 N. So, we obtain eigenvectors 
in the space Ho (f t) = HSl(Sl)xL2(Sl) 

l Va J l Vit J 
THEOREM 2. The eigenvectors $±k, k £ N form a Riesz basis and A is 

a Riesz-spectral operator. 

P r o o f . First we shall prove that {$±*}, k € N, is complete in Ho(ft). 
Suppose that 2 = ^ j is orthogonal to every Then 

= -i*k(zi,<Pk)L 2 { t t ) + (¿2, V*)l2(0 = Vk)L 2 { n ) + (*2,¥>fc)z,29fi) 

= i\k(zi, Vfc)z,2(0) + (*2,Vfc)L2(iî), 

and similarly 

° = ( O 2 ) ' { n ) ) = -iXk{2u<pk)W + ( ^ W 

Adding and substracting above equalities, we have 0 = (z2,<pk) and 
= 0. Since the system {cpk ,k > 1} is complete in L2(U) and 
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Afc > 0 we conclude that z\ = 0 and Z2 = 0. Thus the system {$±k,k Ç N} 
is complete in Ho (ft). A has only one accumulation point. 

Now we want to check that the condition b) from Definition 2 holds. To 
do that , let us observe that 

N 2 1 N 2 

n=-N,n?0 j ^ ) n=—N 
N N 

= Y! + ^2an$T 

71=1 Bo(n) 

n=l n= 1 Bo(iî) 

L 2 ( n ) 

N N 
+ 1 ^ a-.nipn + a n f n 

n=l n=l L2(Q) 
N 

- E n=l 

•O-n , 
AT 

n=l 
N 

L2(fi) 
+ || + Otn)<Pn 

n= 1 
N

 / _ _ \
 00 

= ( - 0 ( 0 ( a ~ \ n
 a ~ An

 A " ) + ~ a n ) ( a - n + an) 
n=1 ' n=l 

JV N 
= - a n ) ( a - n + an) + ^ la-™ + a " | 2 

n=l n=l 
N N N 

= ^ | a _ n - a n \ 2 + \ a - n + OLn|2 = 2 ^ ( | a _ n | 2 + | a n | 2 ) . 
n=l n=l n=l 

Therefore condition b) is satisfied for n = M = 2. By Theorem 1, A is a 
generator of Co unitary group on the space Ho (ft), so A is a closed operator 
with dense domain in Ho (ft). Hence A is a Riesz-spectral operator. 

R e m a r k 2. It can be checked that G N} is an orthogonal basis 
in Ho (ft) and | |$± f c | | ^ ( i i ) = 2. 

Later on, the following orthonormal basis will be used 

[ k J I 75Vk J 
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4. Controllability 
Generally, we shall consider the following class of infinite-dimensional 

systems with input 2 and output y: 

D E F I N I T I O N 4 . Let H(A,B,C,D) denote the state linear system, where 
A is the infinitesimal generator of the strongly continuous semigroup S(t) 
on a Hilbert space H, B is a bounded linear operator from a Hilbert space 
U into H, C is a bounded linear operator from H into a Hilbert space Y, 
and D is a bounded operator from U into Y. The system E(A, B, C, D) will 
be considered for all initials states uq G H and all inputs 2 6 L2((0,T), U). 
The state function u(.) is the mild solution of (10) and it is given by 

If A is a Riesz-spectral operator, we shall call B, C, D) a Riesz spectral 
system. If C = D = 0 we use the notation B, C, —). For the state linear 
system £(A, B, —), we need the following: 

D E F I N I T I O N 5 . 

a) The controllability map of E (A, B, - ) on (0, T) (for some finite T > 0) 
is the bounded linear map BT : ¿2( (0 ,T) ,u) —• H defined by BTz = 
Jo S{t - s)Bz(s)ds. 

b) E(A, B, - ) is exactly controllable on (0, T) (for some finite T > 0) iff 
all points in H can be reached from the origin at time T, i.e., iff the range 
Bt = H. 

For the state linear system S(A,5 ,—) , we have the following sufficient 
and necessary conditions for exact controllability. 

T H E O R E M 3 [1, p. 147]. The system E(A,B, -) is exactly controllable on 
(0, T) if and only if one of the following equivalent conditions hold for some 
7 > 0 and all u € H: 

(10) 
(11) 

ù(t) = Au(t) + Bz(t),t> 0, u(0) = uo, 
y(t) = Cu(t) + Dz(t). 

u(t) = S(t)u0 + J S(t - s)Bz(s)ds, 0 < t < T. 
0 

R e m a r k 3. In our case H = Hb(fi), B= [ } ] , A = A, U = L2(Sl). 
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T H E O R E M 4. [1, p. 41, c]. Suppose that A is a Riesz-spectral opera-
tor with simple eigenvalues {/i„, n > 1 } and corresponding eigenvectors 

> 1}. Let {i>n,n > 1} are the eigenvectors of A* such that ($n,i>n) 
= . Then A is the infinitesimal generator of Co semigroup if and 
only if sup n > 1 Re iin < oo. Additionaly, S(t) is given by S(t) = 

T H E O R E M 5 . In our case A = o I 
-A O ,A* = o -I 

A 0 . Both operators 
A and A* have the same set of eigenvalues fin = ±iAn , n 6 N and the 
eigenvectors { $ ± „ , n 6 N}. It is clear that Re fin and sup n > 1 Re fin = 0 < 
oo. By Theorem 1 the operator A is a Riesz-spectral one. From Theorem 4, 
we see that S(t) has a representation 

S(t) = X>-tAnÌ<-' + eÌAn<(-' t > 0. 
n-1 

After a tedious calculation it can be found that 

(12) S(t) 

1 
( $ , <pn) COS Xnt + —(V», Vn) An 

<Pn E 
n-1 oo 

<Pn) sin \nt + COS A ni(V>, <?„)] fn-
n = l 

In the paragraph 2, it has been proved that A is a generator of strongly 
continuous semigroup S(t), t > 0 on Ho (ft) (exactly a group for t 6 R). By 
Theorem 4, S(t) has the representation given by (12). Applying Theorem 
3, iii), we see that for z € -^((O,T); ¿2(0)), our system will be exactly 
controllable on (0, T) iff there exists 7 > 0 such that 
(13) 

l|5*S*(.Wli2(<0,T>;L2(i))) ^ Tlkll^(fi), for any v € Ho (ft), v = . 

The proof of this inequality is like that one in [1, p. 150], [2,p. 10]. From 
the group property of S(t) and Remark 1, we conclude that S*(t) = S(—t) 
for t £ R. It is clear that B* = [0, /], so 

B*S*(t) = [~A„($, <Pn) sin(-A„i) + (tp, <pn) cos(—Ani)]2 

¿2(0) n=\ 
00 

= V")2 sin2 ^ + <Pn){4>, <Pn) sin 2A nt + {if}, l f n f COS2 A nt 
n= 1 
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Thus 

B*S* 

oo 

= ï E 
n = l 

L2((0,T),L2(fi)) 

2 tx. I \2 I m sin2A„T\ , ^ cos2AnT 
2An 

+ 2An($,y>n)(^,y>n) 1 -

+ (V>,¥>nf T + 

2A„ 

sin 2AnT 
2An 

After routine calculation we obtain 
oo 

M k ( o ) = E + (^>vv)2 

n = l 

So, the inequality (13) is equivalent to the following one 
1 oo 

2 ^ n= 1 
\l(*,<PnY [ T -

j / m sin 2A n r 
2A„ 

sin 2A„T 
2A„ 

+ 2 A n ( $ , < ^ n ) ( V ' , ¥ , n ) 

> 72 E + 

1 — cos 2Ani 
2ÄI 

2 

n = l 

Putting P — T — 272 we see that the above inequality holds iff for any 
n £ N 

„ sin 2A„T „ sin 2AnT 
P " > 0, P+ _ " > 0 

and 

P 2 -

2\nT 

sin2 2A„T 

2A„T 

( \ - cos2A„T\ 2 

( 2 Ä 7 / 2An y 2An 

But the last inequality is equivalent to T - 2~/2 = P > 1S"\A"T |, while the 
first two to T - 2 T

2 = P > lsi"2
2
A

A
n"T| = | 5 i 2 ^ | | c o s A n T | . Since An +oc, 

therefore supn |S'"A
A"T| < T for any T > 0 what, in turn, guarantees the 

existence of a required 7 > 0. 
This results shows that for all T > 0 system is exactly controllable. 
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