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THE ESTIMATE OF THE ERROR FOR APPROXIMATION
OF SOME DISCRETE DISTRIBUTION
BY THE GEOMETRIC DISTRIBUTION

We consider discrete distribution from the class (D)NBUE. When we
know the mean (1 < u < oo0) and the variance (02 < oo), then we can
estimate the error of the approximate of such distribution by a geomet-
ric distribution with some parameter p. The estimate is sharp. Moreover
we show that a sequence of distributions from (D)NBUE tends to the ge-
ometric one if and only if the sequence of parameters a,, — 0 when m —
00.

Let (pn) = (pn,n € N) be given discrete probability distribution such
that there exists its finite expected value g > 1. For this distribution we
introduce the following denotations, for all n > 0,

(1) R'n. = Z Dk
k=n+1
— 1
(2) Gn==) Ry,
K k=n
and
(3) An = Rn - En.
Hence we have
(4) ROZI’OSRnSI’Zszy',
k=0
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(5) Go =1,
(6) Ag=0and lim A, =0.
n—o0
Moreover denote
1
(7) p:;andq:l—p.

The assumption about p implies that p,¢ € (0,1).

Ma Becheng [1] defined among others two classes of discrete distribu-
tions:
— (D)HNBUE (discrete harmonic new better than used in expectation class)
if

(8) G <q", n€ Ny,
— (D)NBUE (discrete new better than used in expectation class) if
(9) Gn < Ry, n € No.

In [2] the last class was denoted by (D)S3. It is easy to prove that
(10) (D)NBUE C (D)HNBUE.

First of all we will show that if (p,) € (D)HNBUE, then it has finite
each moment. By inclusion (10) the same is true for distribution (p,) €

(D)NBUE.

LeMMA 1. If the distribution (p,) € (D)NHBUE, then it has finite
all moments and they are bounded by geometric distribution moments with
parameter p, namely

(11) my < ﬂ27v, v=12,...,

where 7, is the v-th moment of the geometric distribution with parameter

p=13

Proof. By inequality (8) we have (v € N)
(0] o0 o0 _
my = Zkvpk < Z k'R < HZ kE'Gro1 <
k=1 k=1 k=1

o0 (e o]
- » k-
<pd kgt =2 k0p(1l - p)* T = il
k=1 k=1
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Because every geometric distribution has finite moments of any order, the
same holds for the distribution (p,) € (D)HNBUE.
For v = 1 the estimation (11) is trivial (m; = p < p®).

Remark 1. Let us note that, if (p,) € (D)NBUE, then A,, > 0,n € Ny.
In {2] it was proved, that

(12) a=) An= —1—(#2 —p—o0?),

where o is the standard deviation of distribution (p,). From (12) it follows
0% < p? —p.
Hence the second moment

(13) my < 2u° — p.

By Lemma 1 we obtain only that

(14) my < p*(2p - 1).
Now we prove the following lemma.

LeMMA 2. If (p,) € (D)NBUE, then

n-1

(16) Ru—q"= 00— 2% Avg™*.
9 k=0
Proof. By (2) and (3) we get
— 15 = — g= 1
Apn=R,—Gn==(Gn-Gny1) -G, = =G, — -G,
p( +1) » pOm+

Hence

then we have

n-1

Ga=q"-p) Axg"*,
k=0

and

n
Grr1 = ¢" = p)_ A"~
k=0
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Therefore,

n-1

(Gn = Gny1) = ¢" --ZAkq" 4 A,

k—O

3 Hﬂ

which implies (16).
LEMMA 3. If (pn) = (D)NBUE, then

n
Ro—q" =) ¢ *(Ak — Ak-1)-
k=1

Proof. According to the well known Abel’s transformation (see {3])

n-1

nimq ZAMI = A Eq_k Z[(AHI Ak)zq ]

k=1 k=0 k=0 k=0 r=0

—n n k-1
= i - S [Ar - M) Yo

k=1 r=0
q 7 w
—2An(1 =g = 2> (Ak— Apoy)(g R - 1)
p p k=1

From this

n-—-1 n
—§ Y Arg"F = An(g" - 1)+ ) (6775 - ") Ak~ Axy)
k=1 k=1

=-Ap+ an—k(Ak - Ag-1).

k=1
Therefore by Lemma 2 we get (17).
THEOREM 1. If (p,) € (D)NBUE, then
(18) |Rn — ¢"| < c.

Proof. By Lemma 3 we get

n

B <3 A <3 Ac< S Ap = a
k=1 k=1 k=0
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By the other hand

n n n—1 [e]
~Ru+q" 2 _an_kAk—l > _ZAk—l =~ ZAk > ‘“ZAk = —a.
k=1 k=0 k=0 k=0

The theorem is proved.

Remark 2. Theorem 1 gives better estimation of the error of the ap-
proximation |R,, — ¢™| for unknown distribution (p,) € (D)N BUE than the
results got in 2], where this error was estimated by v2a and 2«, respec-
tively.

Remark 3. The estimation given in Theorem 1 is sharp, in the sense
that it is the best for whole class. The following example shows this fact.

ExaMPLE 1. Consider two points distribution (p,): p1 =7, (0 < 7 < 1),
pp=1—-r,and pr, =0,if k£ > 2. Then, Ry =1, By =1—-7, Ry = Ry =

=0, p=2-7>1,Gp =1, Gl— 1= Gy = G5 =...= 0. Hence, the
dlstrlbutlon belongs to the class (D)NBUE and

1 - )2
Ao=0, A =077 A A= .0
2—7r
Moreover my = 4 — 3r, a_(12 ’22,
RO—QOZO,
Since
1-7r
Rl—qzl—r—2_r: ,
and
n 1-r\".
|Rpn—¢"|={—) ifn>1.
2-r1r
We obtain
2
supIRn_an:u_z
n>0 2—1r

Hence the estimation is sharp.

THEOREM 2. Let ((pn)m;n, m € N) be a sequence of discrete distribution
from the class (D)NBUE. The limit of the sequence ((pn)m) is @ geometric
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distribution if and only if
(19) lim an, =0,

m—00
where

(20) Om =} — Z(—én)m

n=0

Proof. *
(i) According to Theorem 1 if a,,, — 0 for every n > 0, then

mﬁfloo l(Ba)m — @l =0,

i.e.

lim (Rp)m = lim g, =:4q".
m—00 m—0oo

It means that

00
mlj_inoo E (pn)m = qn-
k=n+1

Because the series are convergent (by assumption)
(e o]
> lim (pk)m = q"
m-—+oQ0
k=n+1

Now denote

ﬁk = lim (pk)m,k = 1,2,...
m—00

Since
o0
fogd n
2{: Pk =4q,
k=n+1
we have

o0 [o
Po=) Pr— Y Br=¢""-¢"=(1-9)¢" "
k=n k=n+1

So the distribution is geometric.

*The problems of convergence of distribution are considered e.g. in [4].
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(ii) Let the sequence ((ps)m) of distributions tends to geometric distri-
bution with parameter p = % Then for arbitrary n € Ny

Im (Ry)m =¢",q=1-p.

m—0o0

As ((pn)m) € (D)NBUE

mh—I»nooum - mh—Ianoo Z(Rn)m - Z hm (R")m - an = K
n=0 n=0
Because of the property of the class (D)NBUE
(Gu)m < (Rn)myn 2 0.
The serie Y (Gn)m has a convergent majorant
n=0
i(Rn) = itf‘ S
" ™ 1- am ™
n=0 n=0
Hence
o0 o0
lim > (Ga)m = Y lim (Cu)m
meee n=0 n=0 m
= hm m hm R)m = __‘ -
;( p )Z 1 (Rn) p;:% T =
Therefore

lim a,, = hm [T hm Z(G’ Jm = 0.

m—+00

The proof is completed.

ExAMPLE 2. Consider the sequence of two-points distribution for m =
1,2,...

_m_ 1
- ’ m y k
(P1)m = et (P2)m T » (Pk)m =0,k > 2
belonging to the class (D)NBUE. We have
_m+2 _m+4
/‘l'm—m+1>17(m2)m"’m+1
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Therefore
1

Qm = m2+3m+1

If m - oo then a,, — 0.
On the other hand in this case (p;)m — 1, and (p2)m — 0. So we obtain
(degenerate) geometric distribution with the parameter p = 1.
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