DEMONSTRATIO MATHEMATICA
Vol. XXX No 3 1997

Joanna Szmyd, Stanislaw Szufla

ON THE ARONSZAJN PROPERTY
FOR AN INTEGRO-DIFFERENTIAL EQUATION
IN BANACH SPACES

In this paper we shall present two existence theorems for local solutions
of an initial value problem for a nonlinear integro-differential equation in
Banach space. Moreover, we also shall prove that the set of all these solutions
is an R; in the Aronszajn sense [1],i.e. it is homeomorphic to the intersection
of a decreasing sequence of compact absolute retracts. Let us recall that in
the case of ordinary differential equations this problem was investigated by
many authors. For example see to [10], [11] and [6], [9].

1. Consider a Cauchy problem
t

(1) z'(t) = f(t,z(t)) + Sg(t, s,z(s)) ds,

0
(2) 2(0) =0

in a Banach space E. We assume that D = (0,d), B = {z € E: ||z| < b}
and f: Dx B — E, g: D* x B — E are bounded continuous functions. Let

my = sup{||f(t,2)ll: t € D, z € B},

mgy = sup{||g(t,s,z)|: t,s,€ D, z € B}.
We choose a positive number a such that a < d and
3) mia + mya® < b.

Let J = (0,a). Denote by C = C(J, E) the Banach space of continuous
functions z: J — E with the usual norm ||z|| = max;es|}2(2)|]- Let Q =
{zx €C:||z|lc < b}. Fort € J and z € Q put

3(t,z) =\ g(t,s,2(s)) ds.
0
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Fix 7 € J and z € Q. As the set J X z(J) is compact, from the continuity
of g it follows that for each £ > 0 there exists § > 0 such that

lg(t,s,2(s)) — g(r,s,2(s))| <e fort,s€J with|t—7|<é.
In view of the inequality

Ig(t,z) — g(r, z)|| < ma|t — 7| + S | 9(t,s,2(s)) — g{r,s,2(s)) || ds,
0

this implies the continuity of the function t — g(t, z).

On the other hand, the Lebesgue dominated convergence theorem proves
that for each fixed t € J the function * — §(¢,z) is continuous on Q.
Moreover

(4) lg(t,z)|| < mat fort € Jand z € Q.

2. Assume that h is a Kamke function, i.e. (t,7) — h(t,r) is a non-
negative function defined on D X R, which is Lebesgue measurable in ¢ for
fixed r, and continuous in r for fixed ¢, and

(i) for every bounded subset Z of D x Ry there exists a function ¥,
defined on (0, d) such that h(t,r) < 9,(¢) for (¢,r) € Z and ¢, is Lebesgue
integrable on [c, d] for every ¢ > 0;

(ii) for each ¢, 0 < ¢ < d, the identically zero function is the only
absolutely continuous function on (0,c) which satisfies 2/(t) = h(t,2(t))
almost everywhere on (0, c) and such that D, 2(0) = 2(0) = 0.

THEOREM 1. If
f (2, z) = f(t,9)ll < h(t,llz—yll) fort€ D andz,y€ B,

and the set g(D% x B) is relatively compact in E, then the set § of all
solutions of the problem (1)—(2), defined on J, is an Rj.

Proof. Let us remark that on J the problem (1)—(2) is equivalent to
(1) = f(t,2(%)) + §(t,2), 2(0)=0.
Let W = Upcrcqz ATONV g(D? x B). By (3) and the Mazur Lemma, W is a

compact subset of B. Fixn € N andv € Q. Put t; = ai/nfori=0,1,...,n.
We define a mapping u,(v): J/ — B by

un(v)(0) = 0,
un(0)(t) = wa(0)(ts) + | F(s,un(0)(t)) ds + { (s, v) ds

for t € (ti,tiy1), 1 =0,1,...,2 — 1.

t
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Similarly as in [7] and [8] it can be shown that

(5) lun(v)(t) — up(v)(7)| £ M|t — 7| fort,7€J and v € @,
where M = my 4+ moa;
(6) un(v)(t) €V, forteJandveQ,

where V,, is a compact subset of B defined by

Vo = {0}, Vig1= U xconv f(J x V)4 W fork=0,1,...,n~1;
0<A<a

(1) Dyllua(v)(t) — um(v)(D)]]
< min (pu(t), h(t, [n(0)(t) = m(@)(DI) + 26(t, )
for m > n, t € J and v € @, where €(t,p) = supg<, <, A(2,7),
u(t) = sup{|| F(t,z) = fQ, 9)ll: ll=ll < M2, [lyll < Mi} and gn = Ma/n;

(8) un{v)(t) - Sf(s, un(v)(s)) ds — Sﬁ(s, v) dsH < m(qn)

for t € J and v € Q, where m(p) = |, min(u(t),e(t,p))dt for p > 0;
moroever, lim,_,o, m(p) = 0;

(9) for any € > 0 and vy € @ there exists § > 0 such that

t

VlI3(s,v) = G(s,m)llds <& for teJ, veQ, |lv—ule <,

0
and consequently [[un(v)(t) — un(v0)(?)|] < mn(e), where mo(p) = 0,
me+1(p) = m(mk(p)) +p for ¥ = 0,1,2,... and p > 0; obviously
lim,o, ma(p) = 0.

Let u, denote the mapping v — u,(v) for v € Q. From (5) and (6)

it follows that u,(Q) is a relatively compact set in C. Since, by (9), u,
is continuous, it is completely continuous mapping @ — @. Furthermore,
analogously as in [5], the inequality (7) implies

(10) |en(v)(t) — um(v)()| < wa(t) for m>n, tel, veQ,

where w, is the maximal solution of 2'(t) = min (u(t), h(t, z(t)) + 2¢(t, qn))
issuing from (0, 0). Since w,, uniformly converges to 0 as n — oo, from (10)
we conclude that the sequence (uy) converges uniformly on @ to a limit u.
By passing to the limit in (8), we obtain

t t
(11) u(v)(t) = Sf(s,u(v)(s)) ds+ S'j(s,v) ds (teJ, veQ).

0 0
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Since u is the uniform limit of the sequence of completely continuous map-
pings u,, u is a completely continuous mapping ¢ — ¢. Remark that
u(v)'(t) = f(t, u(v)(t)) +g(t,v) forte JandveQ.
Now we shall show that for each ¢ > 0
(12) ]| {0,e) =z | (0,€) = u(v) | (0,¢) = u(2) | (0,¢)  (v,2€ Q).
Indeed, if v,z € Q and v(t) = 2(¢) for t € (0,¢), then g(t,v) = g(¢, 2) for
t € (0,¢), and hence
D flu(v)(t)~u(z)OI < llu(v)'(2) — u(z) @)

= [| £t u(v)(®)) = £(t, u(z)(D)]

< min (u(t), h(¢, ||u(v)(t) — u(z)(¥)|])) for t € (0,¢).
Since u(v)(0) = u(2)(0) = 0 and h is a Kamke function, by Olech’s Lemma
[5, Lemma 1] this implies ||u(v)(t) — u(2)(¢)|| = 0 for t € (0,¢). This proves
(12). We see that the mapping v — u(v) satisfies all assumptions of a Vi-
dossich theorem [11; Corollary 1.2]. By applying this theorem, we conclude
that the set Fix u is an Rs. From (11) it is clear that Fix v C S. Conversely,
let v € S. Since f satisfies the Kamke condition, the Cauchy problem
(13) Z(t) = f(t,2(1)) +§(t,v), 2(0)=0
has a unique solution z = u(v). As v satisfies (13), we get v = u(v), so that
v € Fixu. Thus § = Fixu which ends our proof.

3. Let a be the Kuratowski measure of noncompactness in F.

THEOREM 2. If there ezist Lebesgue integrable functions h: D — R, and
k: D? — R, such that
(14) a(f(t, X)) < Mt)a(X) and ag(t,s, X)) < k(t, s)e(X)

for t,s € D and for each subset X of B, then the set S of all solutions of
the problem (1)—(2), defined on J, is an Rs.

Proof. Put
{a: forz € B
r(z) =

I—l%ﬁ forz € E\ B.

Then r is a continuous function £ — B and
r(X)c |J AX for X CE,
0<x<1
so that a(r(X)) < a(X) for each bounded subset X of E. Consequently,
putting

T(t, z) = f(t, r(m)),
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g(t,s,z) = g(t,s,7(z)) (t,s€ D, z € E),

we obtain bounded continuous functions f: DX E — E and g: D*x E — E,
satisfying (14) for bounded subsets X of E, such that on J the problem
(1)-(2) is equivalent to

-~

2'(t) = F(t, 2(t)) + |g(t, s,2(s)) ds, =(0) =

For simplicity, we shall write f and g instead of f and g, respectively. We
define a mapping F by

F(z)(t) = f(s,2(s)) ds+ {G(s,x)ds (t€J, z€C).
0 0

By the Lebesgue dominated convergence theorem, from the considerations
of Section 1 we deduce that F is a continuous mapping C' — C. Moreover,
F(C) is an equiuniformly continuous subset of C, F(z)(0) = 0 for z € C
and for each ¢ > 0

z|(0,6) =y | (0,¢) = F(z) | (0,¢) = F(y) | (0,¢) (z,y€C).
From (3) and (4) it follows that
|F(z)()| < b forzeC.

Consequently, a function z € C is a solution of (1)-(2) iff z = F(z). Now
we shall show that

(15)  Each sequence (z,) in C such that
Jim [jz, — F(25)||lc = 0 has a limit point.
Let (z,) be a sequence in C such that
(16) lim ||z, — F(z,)}lc = 0.
n—00
Put V. = {z,:n € N} and V(t) = {zn(t):m € N}. As V C {z, —
F(z,):n € N}+F(V), from (16) it follows that the set V is equicontinuous.

Thus the function ¢ — v(t) = a(V(t)) is continuous on J. By (14) and
Heinz’s theorem [4, Th. 2.1] we have

a({fj(‘r,xn): T € N}) = a({gg(r,s,wn(s)) ds: n € N})

< 2Sa({g(r,s,$n(s)): n e N}) ds = ZSa(g(T,s,V(s))) ds

0 0
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<

Sk(‘r s)a(V(s)) ds =2 S k(t,s)v(s)ds for 1€ J,

o

and further
t

a({iﬁ(r,xn)dﬂ n € N}) < 2Sa({§(r,zn): n€N})dr

0
< 4§[ k(r,s)v(s)ds} dr for teJ.

(=X Y

Similarly

({Sf(s 2n(s)) ds: n € N}) § ({f(s,2n(s)): n € N}) ds

0

-

< 2§h(3)v(s) ds for teJ.
0

Since V(t) C {zn(t)=F(z4)(): n € N}+F(V)(t) and a({z,(t)— F(z.)(?):
n € N}) =0, we have a(V(t)) < a(F(V)(t)). This implies that

v(t) < a(F(V)(1))
< a({Sf(s,a:n(s)) ds:n € N}) + a({Sﬁ(‘r,zn)d‘r: n € N})
0 0

<2 S h(s)v(s)ds + 4 S [g k(r,s)v(s) ds] dr for te J.
0 00

Consequently
t t

(17) v(t) <2 S h(s)v(s)ds + 4 S q(t,s)v(s)ds forte J,
0 0

where

t
g(t,s) = Sk('r,s)dr for0<s<t<La.
L]
The function ¢ — ¢(t, s) is continuous and the function s — g(¢,s) is inte-

grable, because
t tt t T
Sq(t, s)ds = S[S k(r,s) dr] ds = 8“ k(r,s) d.s] dr
0 0s 00

As the function v is continuous, from (17) we deduce that a(V(t)) = v(t) = 0
for t € J. Therefore the set V(t) is relatively compact in E. Hence, by
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Ascoli’s theorem, V is a relatively compact subset of C. This proves (15).
Applying now Th. 5 of [9], we conclude that the set S = Fix F'is an Rs.

4. The continuity of the functions f and g guaranted that a solution of
(1)~(2) was of class C!. Clearly the integrals in (1) make sense for many
functions f and g which are not continuous. In this case we must replace
classical solutions by solutions in the Caratheodory sense (cf. [12], p. 42).
In this section we assume that

1% (t,2) — f(t,z) is a function from D x E into E which is strongly
measurable in ¢ and continuous in z, and there exists an integrable function
my: D — R, such that ||f(¢,2)|| < mi(t) for t € D and « € B;

20 (t,s,2) — g(t,s,z) is a function from D? x B into E which is strongly
measurable in (t,s) and continuous in z, and there exists an integrable
function m: D? — R, such that ||g(¢,s,z)|| < m(t,s)fort,s € Dand z € B.
It is clear that the function my: D — Ry defined by ms(t) = S; m(t,s)ds
is integrable. Choose a positive number a in such a way that ¢ < d and
{6 (m1(t) + ma(2)) dt < b. Let J = (0, a).

THEOREM 3. If the functions f and g satisfy (14), then the set S of all
Caratheodory solutions of the problem (1)—(2), defined on J, is an R;.

Proof. It follows from 2° that for each fixed z € C the function t —
g(t,z) is strongly measurable and |[g(¢,z)|| < ma(t) fort € J, z € C.

Moreover, by the Lebesgue dominated convergence theorem for each
fixed t € J the function 2 — g(¢,z) is continuous on C. Hence we may
repeat the proof of Theorem 2.
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