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ON THE ARONSZAJN PROPERTY 
FOR AN INTEGRO-DIFFERENTIAL EQUATION 

IN BANACH SPACES 

In this paper we shall present two existence theorems for local solutions 
of an initial value problem for a nonlinear integro-differential equation in 
Banach space. Moreover, we also shall prove that the set of all these solutions 
is an Rs in the Aronszajn sense [1], i.e. it is homeomorphic to the intersection 
of a decreasing sequence of compact absolute retracts. Let us recall that in 
the case of ordinary differential equations this problem was investigated by 
many authors. For example see to [10], [11] and [6], [9]. 

1. Consider a Cauchy problem 
t 

(1) x'(t) = f(t,x(t)) + \g{t,s,x(s)) ds, 
0 

(2) x(0) = 0 
in a Banach space E. We assume that D — (0 ,d), B = {x £ E: ||x|| < 6} 
and f:DxB—>E, g: D2 x B E are bounded continuous functions. Let 

mi = sup{||/(i,®)||: t € D, x e B}, 
m2 = sup{||jf(i,s,x)||: t,s,€ D, x 6 B). 

We choose a positive number a such that a < d and 
(3) mi a + TO2<z2 < 6. 

Let J = (0, a). Denote by C = C(J,E) the Banach space of continuous 
functions z: J —• E with the usual norm ||z||c = m a x i g j ||-?(t)ll- Q = 

{x € C: ||x||c < 6}. For t € J and x e Q put 
t 

g(t,x) = \g(t,s,x(s))ds. 
o 
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Fix r e J and x 6 Q. As the set J x x( J ) is compact, from the continuity 
of g it follows that for each e > 0 there exists 6 > 0 such that 

||<7(i, s,x(s)) - g(r,5,x(5))|| < £ f o r f , s e « 7 with |i - r | < 6. 

In view of the inequality 
T 

\\g(t,x)-g(T,x)\\<m2\t-T\ + \ || g(t,s,x(s)) -g(r,s,x(s)) || ds, 
o 

this implies the continuity of the function t —> g(t,x). 
On the other hand, the Lebesgue dominated convergence theorem proves 

that for each fixed t € J the function x —> g(t, x) is continuous on Q. 
Moreover 

(4) < for t € J and x e Q. 

2. Assume that h is a Kamke function, i.e. (t, r) —> h(t,r) is a non-
negative function defined on D x R+ which is Lebesgue measurable in t for 
fixed r, and continuous in r for fixed t, and 

(i) for every bounded subset Z of D x R+ there exists a function ipz 
defined on (0,d) such that h(t,r) < tpz(t) for (t, r) € Z and ij)z is Lebesgue 
integrable on [c, d] for every c > 0; 

(ii) for each c, 0 < c < d, the identically zero function is the only 
absolutely continuous function on (0,c) which satisfies z'(t) = h(t,z(t)) 
almost everywhere on (0, c) and such that .D+z(0) = 2(0) = 0. 

T H E O R E M 1 . I f 

|| f ( t , x) - f ( t , y)|| < h{t, ||z - y||) forte D and x,y e B, 

and the set g(D2 X B) is relatively compact in E, then the set S of all 
solutions of the problem ( l ) - ( 2 ) , defined on J , is an R,5. 

P r o o f . Let us remark that on J the problem (l)-(2) is equivalent to 

x'(t) = f(t,x(t))+g(t,x), x (0 ) = 0. 

Let W = U o < A < A 2 ^convg(D 2 x B). By (3) and the Mazur Lemma, W is a 
compact subset of B. Fix n £ N and v € Q. Put ti = ai/n for i = 0 ,1 , . . . , n. 
We define a mapping un(v): J —• B by 

" n ( t O ( 0 ) = 0 , 

t t 
un(v)(t) = u , un(v)(ti)) ds + \ g(s, v) ds 

t, ti 
for t € (ti,ti+1), i = 0 ,1 , . . . ,n - 1. 
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Similarly as in [7] and [8] it can be shown that 

(5) | M » ) ( 0 - «n(»)(r) | | < M\t - T\ for f, r € J and v G Q, 

where M = mi + m^a; 

(6 ) un(v)(t) 6 Vn for t £ J a n d v G Q, 

where Vn is a compact subset of B defined by 

Vb = {0}, Vk+1= ( J A e o n v f ( J x V k ) + W for k = 0,1, . . . , n - 1; 
0 < A < a 

(7) Z>+ | |«n( t ; )( i)- t tm(t;)( i) | | 

< min(ji{t),h(t, ||«„(r>)(i) - «m(w)(<)||) + 2e(t,qnfj 

for m > n, t G J and v G Q, where e(t,p) = s u p 0 < r < p h(t,r), 

H(t) = s u p { | | / ( f , a O - f(t,y)\\: ||a;|| < Mt, \\y\\ < Mt} and qn = Ma/n; 
t t 

(8) u n ( v ) ( t ) - \ f ( s , u n ( v ) ( s ) ) d s - \ g ( s , v ) d s < m(qn) 
o o 

for t G J and v G Q, where m(p) = Jg min(/i(i) ,£(/ ,p)) dt for p > 0; 
moroever, limp_>o+ m{p) = 0; 

(9) for any s > 0 and vq G Q there exists 6 > 0 such that 
t 

J | |<7(s ,v) -5(s , i ;o) | | c i s<£ for t G J, v G Q, ||u - v0 | |c < 6, 
o 

and consequently — «n^oXOII ^ m n(£) , where mo(p) = 0, 
TOfc+1(p) = m(rrik(p)) + p fo r k = 0 , 1 , 2 , . . . a n d p > 0; obv ious ly 

limp_t0+ mn(p) - 0. 
Let un denote the mapping v un(v) for v G Q. From (5) and (6) 

it follows that un(Q) is a relatively compact set in C. Since, by (9), un 

is continuous, it is completely continuous mapping Q Q. Furthermore, 
analogously as in [5], the inequality (7) implies 

(10) | |«n(t;)(i) - um(u)(i) | | < wn(t) for m > n, t G J, v G Q, 

where wn is the maximal solution of z'(t) = m i n ( f i ( t ) , h(t, z(t)) + 2e(t, g„)) 
issuing from (0,0). Since wn uniformly converges to 0 as n —• oo, from (10) 
we conclude that the sequence (u n ) converges uniformly on Q to a limit u. 
By passing to the limit in (8), we obtain 

t t 
( 1 1 ) u(v)(t)=\f(s,u(v)(s))ds + \g(s,v)ds (t e J, v e Q). 
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Since u is the uniform limit of the sequence of completely continuous map-
pings un, u is a completely continuous mapping Q Q. Remark that 

u(v)'(t) = f(t, u(v)(t)) + g(t, v) for t e J and vdQ. 

Now we shall show that for each e > 0 

(12) t, | <0,£) = z | (0,e) u(v) | <0,£) = u(z) | (0,e) (v,zeQ). 

Indeed, if v, z 6 Q and v(t) = z(t) for t e (0,£), then g(t, v) = g(t,z) for 
t 6 (0,s), and hence 

Z M K * ) ( < ) - U ( z ) ( i ) l l < l l « ( f ) ' ( 0 - « ( ^ ' ( 011 

= ||/(i, « ( » ) ( < ) ) - / ( < , « W ( í ) ) || 

Since u(u)(0) = u(z ) (0) = 0 and h is a Kamke function, by Olech's Lemma 
[5, Lemma 1] this implies ||«(w)(í) — u(z)(i)|| = 0 for t € (0,e). This proves 
(12). We see that the mapping v —• u(v) satisfies ail assumptions of a Vi-
dossich theorem [11; Corollary 1.2]. By applying this theorem, we conclude 
that the set Fix u is an Rs- From (11) it is clear that Fix u C S. Conversely, 
let » g S 1 . Since / satisfies the Kamke condition, the Cauchy problem 

(13) z'(t) = /(<, z(t)) + g(t, v), 2(0) = 0 

has a unique solution z = u(v). As v satisfies (13), we get v = u(v), so that 
v € Fix u. Thus S = Fix u which ends our proof. 

3. Let a be the Kuratowski measure of noncompactness in E. 

THEOREM 2. If there exist Lebesgue integrable functions h: D R+ and 

k: D2 —> R+ such that 

(14) a(f(t, X)) < h(t)a(X) and a(g(t,s,X)) < k(t,s)a(X) 

for t,s e D and for each subset X of B, then the set S of all solutions of 

the problem ( l ) - ( 2 ) , defined on J, is an R¡. 

P r o o f . Put 
fx for x £ B 

far*€2i\*. 

Then r is a continuous function E B and 

r(X) C ( J AX for X C E, 

0<A<1 

so that a ( r ( X ) ) < a(X) for each bounded subset X of E. Consequently, 
putting 

f(t,x) = f{t,r(x)), 
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g(t, s, x) = g(t, s, r(x)) (t,s G D, x G E), 

we obtain bounded continuous functions f:DxE-+E and g: D2 xE —»• E, 
satisfying (14) for bounded subsets X of E, such that on J the problem 
(l)-(2) is equivalent to 

t 
x'(t) = f(t, x(t)) + \ g(t, s, x(s)) ds, x(0) = 0. 

o 

For simplicity, we shall write / and g instead of / and g, respectively. We 
define a mapping F by 

t t 
F(x)(t) = \f{s,x(s))ds + \g(s,x)ds (t e J, x e C). 

o o 
By the Lebesgue dominated convergence theorem, from the considerations 
of Section 1 we deduce that F is a continuous mapping C —• C. Moreover, 
F{C) is an equiuniformly continuous subset of C, F{x){0) = 0 for x 6 C 
and for each £ > 0 

x | <0,e) = y | <0,£) => F(x) | (0, s) = F(y) \ (0,e) (x, y G C). 

From (3) and (4) it follows that 

||F(x)(i)|| < b fovxeC. 

Consequently, a function x £ C is a solution of (l)-(2) iff x = F(x). Now 
we shall show that 

(15) Each sequence (x n ) in C such that 
lim ||a;n - F(xn)||c = 0 has a limit point. 

n— 0̂0 

Let (a;n) be a sequence in C such that 

(16) lim ||x„ - F(x„)||c = 0. 
n—>oo 

Put V = {xn: n G N} and V(i) = (ar„(i): » G N}. As V C {xn -
F(xn): n G N} + F(V), from (16) it follows that the set V is equicontinuous. 
Thus the function t —>• v(t) = a(V(t)) is continuous on J. By (14) and 
Heinz's theorem [4, Th. 2.1] we have 

T 

a({<7(r,zn): x G iV}) = a({5^(r,a,®B(a)) ds: n G iv}) 
o 

r r 
< 2$a({.9(r,5,a ; r i(s)): n G N}) ds = 2 \a(g(r,s,V{s))) ds 

o o 
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T T 

< 2 J fc(r, 5)a(y(s)) ds = 2\ k(r, s)v(s) ds for r e J, 
o o 

and further 
t 

«({Sfif(r,a;n)t/r: n € tf}) < 2 $ a ( { 5 ( r , x n ) : n € iV})<ir 
o o 
t T 

< 4 5 [J Ar(r, <¿r for t € J. 
0 0 

Similarly 
t t 

a({\f(s,xn(s))ds: n£ j v j ) < 2\a{{f(s,xn(s)): n <= N}) ds 
0 0 
t 

< 2 j h(s)v(s) ds for t € J. 
o 

Since V(i) C {xn(t)-F(xn)(t): n e N} + F(V)(t) and a{{xn(t)-F(xn)(t): 
n € iV}) = 0, we have a(V(t)) < a(F(V)(t)). This implies that 

v(t) < a(F(V)(t)) 
t t 

< a[{\f(s,xn(s))ds: n 6 jv}) + «({\g(r,xn)dr: n € iv}) 
o o 

t t T 

s)v(s) dsj dr for t G J. 
o o o 

Consequently 
t t 

(17) v(t) <2\h(s)v(s)ds + 4\q(t,s)v(s)ds for t € J, 
o o 

where 
t 

q(t, s) = J k(r, s)dr for 0 < s < t < a. 
3 

The function t —» q(t, s) is continuous and the function s q(t, s) is inte-
grable, because 

t t t t T 

«)dr] ds = dr. 
0 0 s 0 0 

As the function v is continuous, from (17) we deduce that a(V(t)) = v(t) — 0 
for t G J. Therefore the set V{t) is relatively compact in E. Hence, by 
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Ascoli's theorem, V is a relatively compact subset of C. This proves (15). 
Applying now Th. 5 of [9], we conclude that the set S = FixF is an R¿. 

4. The continuity of the functions / and g guaranted that a solution of 
( l ) - (2 ) was of class C1. Clearly the integrals in (1) make sense for many 
functions / and g which are not continuous. In this case we must replace 
classical solutions by solutions in the Caratheodory sense (cf. [12], p. 42). 
In this section we assume that 

Io (t,x) —• f(t,x) is a function from D x E into E which is strongly 
measurable in t and continuous in x, and there exists an integrable function 
m\\ D —• R+ such that | | / ( f ,x ) | | < mi( i ) for t £ D and x £ B] 

2° (t, s, x) -> g(t, s, x) is a function from D2 x B into E which is strongly 
measurable in (t, s) and continuous in x, and there exists an integrable 
function m: D2 —• R+ such that ||<7(i, s, i ) | | < m(t, s) for t,s G D and x £ B. 
It is clear that the function m2 : D —• R+ defined by m 2 ( i ) = m(t,s)ds 
is integrable. Choose a positive number a in such a way that a < d and 
5o(m1(i) + m 2( i ) ) dt < b. Let J = (0,o). 

THEOREM 3. If the functions f and g satisfy (14), then the set S of all 
Caratheodory solutions of the problem ( l ) - (2) , defined on J , is an R¿. 

P r o o f . It follows from 2° that for each fixed x 6 C the function t —> 
g(t,x) is strongly measurable and ||5(í,a:)|| < m 2 ( i ) for t £ J, x £ C. 

Moreover, by the Lebesgue dominated convergence theorem for each 
fixed t € J the function x g(t,x) is continuous on C. Hence we may 
repeat the proof of Theorem 2. 
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