DEMONSTRATIO MATHEMATICA
Vol. XXX No3 1997

Mateusz Wisniewski

EXTREMES IN MULTIVARIATE MIXING SEQUENCES

1. Introduction

The classical results concerning a limit behaviour of extreme order statis-
tics and point processes of exceedances in one-dimensional mixing stationary
sequences can be found in Leadbetter et al. [6]. The multivariante i.i.d. case
was discussed by a lot of authors (see for instance Wisniewski [11]). Hsing
[4] and Hiisler [5] investigated weak convergence of the maximum vectors
under stationarity and mixing conditions. Extremes and exceedances of high
boundaries by stationary and nonstationary multivariate random sequences
in the rare events context were presented by Falk et al. [2]. The purpose
of this paper is to extend results of Wisniewski [11] and some of results of
Hsing [4] and Hiisler [5] to the stationary case of multidimensional extreme
order statistics and multivariate point processes of exceedances. Identical
with Hiisler’s [5] assumptions are used, apart from the condition D$ which
is a slightly stronger version of the long range dependence condition Dy
(see Section 3). Especially, the condition D’ is assumed which guarantees
that the clustering of extreme values does not occur. In the second Section
we set up notation and compiles some basic facts of the theory of Point
Processes. In Section 3 we provide a detailed exposition of assumptions.
Section 4 is devoted to the study of the weak convergence of point pro-
cesses. The obtained limit distributions are just the same as in the i.i.d.
case. Hence the extremal index function (see Nandagopalan [9] or Perfekt
(10]) is constant and equal to 1. It is worth pointing out that, as opposed to
the univariate case, the limit distributions do not have to be Poisson type
(compare with Falk et al. [2], Section 10.6). This effect result only from an
allowable dependence between the various components of the multivariate
observations. On account of Nandagopalan et al. [8] it is obvious that the
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obtained limit point processes have Compound Poisson distributions. The
dependence structure among the components of the multivariate distribu-
tions is an important aspect in the multivariate analysis. In this Section
we will look more closely at independence and complete dependence of the
components of the limit processes. Also the relation between max-infinite
divisibility and infinite divisibility of the limit point processes of exceedances
are established. In Section 5 we deal with the limit extreme order statistics
and their dependence structure. The last Section contains lemmas.

2. Notation

Let X(p) denote theset {1,2,...,p} for an arbitrary p € X. Fix d € X. Let
us assume that f {X,:ne€ N} is a stationary sequence of d-dimensional
random vectors X, = (X,; : ¢ € N(d)) with a common distribution func-
tion F. For any G C N(d) we use the symbol Fiz to denote the distri-

bution function of the vector Xng = (Xni : i € G). Let M: denote for
k € R(n), n € X the vector of k-th extreme order statistic (defined com-
ponentwise). We also define by MEG(A) the k-th extreme order statistic in
the sequence {X ;s : j € N,j/n € A}, where A C (0,1}, G C R(d). The
main question deals with the convergence of the distribution of H: under
a suitable normalization

(1) P(ME <m,) % H*Z) forkeR

where T, = T, (Z) = @nT+bs, T € R? and @y, by, are sequences in R?, @, with
positive components. (Arithmetical operations are meant componentwise).

Let {S, : n € R} denote the sequence of the d-variate point processes of
exceedances obtained on the base £ and previously considered normalization
(see Widniewski [11, 12] and the one-dimensional case in Leadbetter et al.
[6]). This means that

S.(AF) = Z > Tixysuny forze®?, A= U (6; x {i}),

jiles;

where 6; are Borel subsets of (0, 1] and T4 denotes the characteristic function
of the set A. The marginal point processes of the process 5, are defined in
the following way

Sm‘(éi) = Sn(5, X {’L}), for: € N(d)

For any point process 77 we can define the avoidance function F5 (see Daley
et al. [1]). We have

FS"(A) = P[Sm-(éz-) =0:2¢€ N(d)]
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The distribution of a simple point process defined on (0,1] is determined
by values of its avoidance function on the sets A, where §; are finite sums
of subintervals of (0, 1] (see Leadbetter et al. [6]). According to the above
property, we use avoidance functions for characterization of limit distribu-
tions. For example, in the i.i.d. case the avoidance function of the limit point
process of exceedances S has the form

2 Fs(A) = [] Hy(z6)"),
Ger
where m denotes Lebesgue measure on (0, 1],

F:{{il,...,ik}llgil <...<ip <d, kEN(d)}

and
6 = ﬂ 6:\ U §; (see Wiéniewski [11]).
i€G  igG
We also need a multivariate version of the Kallenberg theorem on a weak
convergence of point processes (see Wisniewski [11]). For point processes
defined on space (0, 1] this result can be expressed in the following way.

ProposITION 2.1. If a sequence of d-variate point processes 7, satisfies
the conditions:
(i) i — ni, © € R(d), where 1; are simple point processes,
n=—00
(ii)  there ezist limits
lim Fy (A),
for all A = UL 6; x {i}, &; are finite sums of subintervals of (0,1), then

— wo
M 27
n—0o0

where 7 is simple and possesses the marginals 7;.

3. Assumptions
It is well-known that in the i.i.d. case (1) is equivalent to

(3) n{l — F[u,(%)]} - In HY(Z), forall T € Dy,

where
Dy ={TeR*: H'(Z) > 0}.
From now on we make Assumption (3).

Subsets I and J of R are called m-separated if min(J) — max(J) > m or
min(J) — max(J) > m. Let us set By(I) = Nker Nien(q) By, where

(4) Bi; = {Xki < uni}.
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Additionally we need the following assumptions : (the notation is adapted
from Hiisler {5]).

Condition Dgy(%,) holds if a sequence ay, n, exists such that for all n
and m

|PLBa(T U )] = P[Ba(D)]P[Bal)]| € Gnms
for all I,J C R(n) which are m-separated and such that apm« — 0, for
some sequence m,, = o(n).
Condition D)(%@,) holds if
limsup n Z P[Xy £ Tn, X; £ U] — 0.

700
n—00o .
1<i<e

Condition D}(u,) holds if
n Z P[le > unj,le' > ’unjl]n:ZoO.

1<j<j'<d
Condition D}*(4,(%)) holds if
n {P[X1p > unp(zp), X1g > tng(zq)] = P[X1p > "np("’p)]}njo’o 0,

for all 1 < p # ¢ < d and 7 such that H}(z,) > H)(z,).

In order to get asymptotic results, it is necessary to strengthen the con-
dition Dy in the following way:

Condition D$(@,) holds if condition D4(T,) holds with (3) replaced
by

Bii = {Xki < uni} or Bg; =Q,

where Q denotes the sure event.

Although DY is stronger than D, it is easily seen that strong mixing

condition implies D}. Furthermore DY is still weaker than mixing conditions
defined as the A-condition (see Hsing et al. [3]).

4. On weak convergence of multivariate point processes of ex-
ceedances

THEOREM 4.1. Let a stationary sequence & satisfy (8) and D (w,(%)),
D!(@,(T)), for allT € Dy. Then

Sn(T) = 8(%), for allZ € Dy,

S(T) is a simple point process with Poisson marginals and the avoidance
function of the form (2).
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Proof. The main idea of the proof is adopted from the proof of Theorem
5.2.1 in Leadbetter et al. [6]. This theorem shows that

Sni(zi) = Si(z;) for all z;,
n—o0
where S;(z;) are simple Poisson point processes. Thanks to the above and
Proposition 2.1 it is sufficient to show that
d
nliqmq) Fs,z)(A) exist forall A = L__Jléi x {i},

where §; are finite sums of subintervals of (0, 1]. Since

|J 66 x G =24 and 65 nés, =0 for Gi # Gy

Ger
we see that

Fia(8) = P| () {8uir20 = 03 € 6)]
Ger

It is easy to check that for any A C (0,1},7 € R(d), k € ®
(5) {Sni(A) < k} = {My;(A) < uni}.
Thus we get

— . _ _
Fou(9(8) = P| () (Maa(63) < Tna(za)} .
Ger

The sets 67, are disjoint and consist of finite sums of disjoint subintervals
of (0,1]. Therefore, we can use Lemma 6.2. (see Section 6) to obtain the
convergence:

lim Fs,z)(8)= [] #&@e)™%),

n—00 Ge[‘
which proves the theorem.

COROLLARY 4.2. Under the assumptions of Theorem 4.1, if moreover
1(Ta(Z)) holds for some Z with 0 < H}(z) < 1 for each i € R(d), then for
all T € Dy S(Z) have independent components S;(z;).
The proof is completed by using Corollaries 2 and 6 of Wisniewski [11]
and Theorem 2.4 of Hiisler [5].

COROLLARY 4.3. Under the assumptions of Theorem 4.1, if moreover
D3*(Tn(Z)) holds for some Z, then for allT € Dy S(T) have almost surely
equal components (i.e. 51(z) = ... = Sq(2) a.s. for all z € R).

It is sufficient to use Corollaries 3 and 6 of Wiéniewski [11] together with
Theorem 3.6 of Hiisler [5].
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Since a multivariate simple point process is Poisson process if and only
if its marginals are independent Poisson point processes (see Corollary 1.
of Wiéniewski [11}), Corollary 5.3 asserts that limit point processes of ex-
ceedances are not always those of Poisson.

COROLLARY 4.4. Under the assumptions of Theorem 4.1, if moreover F
is maz-infinitly divisible (i.e. for all n € X Fl/n §s a distribution function
- see Falk et al. [2]), then for all T € Dy the distributions of S(T) are
infinitely divisible (see the definition in Matthes [7]).

It results from Corollaries 5 and 6 of Wisniewski [11].

5. On weak convergence of multivariate extreme order statistics

A weak convergence of point processes implies a weak convergence of
their finite dimensional distributions (see Lemma 9.1.IV in Daley et al. [1]).
According to the above remark and (5) we can use the results of the last
section to obtain the similar ones for extreme order statistics.

THEOREM 5.1. Under the assumptions of Theorem 4.1,

P[M: <w,(7)) 2% H*®), forallkeXr.

It is important point to note here that H* are the same as suitable limit
distributions in the i.i.d. case. Indeed, the obtained avoidance function of
the limit point process of exceedances is identical to the suitable one in the
ii.d. case.

COROLLARY 5.2. Under the assumptions of Corollary 4.2, for all k € X,
H* have independent components.

COROLLARY 5.3. Under the assumptions of Corollary 4.3, for all k € R,
H* have almost surely equal components.

6. Lemmas

LEMMA 6.1. Let A be a subinterval of (0,1] and G C R(d). If a stationary
sequence § satisfies the conditions (3) and Dy(un(Z)), D)(Tn(T)) for all
T € Dy, then

P[M,(A) < Tng(ze)] — HY(@6)™ ™), for all 7 € R°.
=00
The proof is slightly different from the proof of Corollary 3.6.4 of Leadbetter
et al. [6].

LEMMA 6.2. Let Ay, ..., A, be disjoint subintervals of (0,1} and Gy, . ..
..., Gp C R(d) (not necessarily different). If a stationary sequence £ satisfies
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the conditions (8) and D (Tn(T)), DYy(Tn(T)), for all T € Dy, then
—1 _ — —1 — —
P[MnG1 (Al) < UnG, (mGl )7 Ty MnG,,(AP) < UnG, (zG,, )]

P
N H Hé‘(fci)m(A.-)’ forall 7 e R,
i=1

n—r00

Proof. To shorten notation we write
1

_1 — _ —_—
gn(Bl’ R BP) = P[MnGl(Bl) < unG:(xGl )’ . "MnG,,(BP)
< Ung, (Tq, )]
Without loss of generality we can assume that a; < ... < g, for a; € A;.

For i € N(p), n € N, let the intervals Z?, A? be given by:
A UAT=A;, A, NA?=0,a<b for a4, be AV

: J o gn .
and #{]GN:EGA,-}zmn,

where m}, originates from D$. We can write

P
gn(Ah cevy Ap) - Hgn(Al)
i=1

< lgn(Alv"'7Ap) _gn(’—‘{?,---,_A’;)l +

P
gn(4y,-. ,ler:) - Hgn(zﬂ:)’
i=1

+

[T (A5) - T 9n(49)] = S1() + 5200 + S5(r).

Thanks to Lemma 6.1 it is sufficient to show that S1(n) = o(n), S3(n) =
o(n), S3(n) = o(n) as n — oo. The sets

N:>~€A4,},..., R:=~cA
ieR:2ed},... . jeR: = €4}
are m}, — separated. Thus we can use DY and deduce that

52 (n) S pan,m;

(compare to Lemma 3.2.2 of Leadbetter et al. [6]), and so S3(n) = o(n) as
n — oo. For all sufficiently large n the sets

o C_w.d  an
{]GN.;GA?},...,{]EN.;GAP}
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are also m), - separated. Hence

p
gn(Aila LR A;) - H g'n(A?)

=1

< Pon,my .

According to the above remark and from the inequality

S1(n) <1~ ga(A7,...,A})

it follows that the condition

(6)

Si1(n) =o(n) as n — oo

holds if for all ¢ € N(p) gn(A}) — 1 as n — oo. But for any ¢ > 0 and
¢ € R(p) we have

Hé‘ (Zg, ) <liminf g,(A7) < limsup g,(A7) < 1

n—0o0

and so (6) holds. According to

Sa(n) < Zlgn(A?) ~ gn(4s))]

the analysis similar to that in the proof of (6) shows that S3(n) = o(n) as
n — o0, which completes the proof.

(1]

[9]

(10]

References

D. J. Daley, D. Vere-Jones, An introdution to the theory of point processes,
Springer-Verlag, New York (1988).

M. Falk, R. D. Reiss, J. Hiisler, Laws of small numbers: extremes and rare events,
DMV-Seminar Series 23, Birkhauser, Basel and Boston, (1994).

T. Hsing, J. Hiisler, M. R. Leadbetter, On the exceedance point process for a
stationary sequence, Probab. Theory Related Fields 78 (1988), 97-112.

T. Hsing, Eztreme value theory for multivariate stationary sequances, J. Multivari-
ate Anal., 29 (1989), 274-291.

J. Hisler, Multivariate extreme values in stationary random sequences, Stochastic
Processes Appl., 35 (1990), 99-108.

M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties
of random sequences and processes, Springer-Verlag, New York, (1983).

K. Matthes, Infinitely divisible point processes, Stochastic Point Processes,
(P.A.W. Lewis, ed.), Wiley, New York, [188] (1972), 384-404.

S. Nandagopalan, M. R. Leadbetter, J. Hiisler, Limit theorems for non-
stationary multi-dimensional strongly mizing random measures, Technical Report
92/14, Department of Statistics, Colorado State University, November (1992).

S. Nandagopalan, On the multivariate eztremal indez, J. Res. Natl. Inst. Stand.
Technol. 99 (1994), 543-550.

R. Perfekt, Extreme value theory for a class of Markov chains with values in §Rd,
Submitted to Stochastic Processes and their Applications.



Extremes in multivariate mizing sequences 669

[11] M. Wisniewski, Multidimensional point processes of eztreme order statistics, De-
monstratio Math. 27 (1994), 475-485.

[12] M. Wiéniewski, On extreme order statistics and point processes of ezceedances
in multivariate stationary Gaussian sequences, Statistics & Probability Letters 29
(1996), 55-59.

DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY OF KIELCE
Al. Tysiaclecia PP 7

25-314 KIELCE, POLAND

E-mail: ztpmw@eden.tu.kielce.pl

Received June 12, 1996.






