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EXTREMES IN MULTIVARIATE MIXING SEQUENCES 

1. Introduction 
The classical results concerning a limit behaviour of extreme order statis-

tics and point processes of exceedances in one-dimensional mixing stationary 
sequences can be found in Leadbetter et al. [6]. The multivariante i.i.d. case 
was discussed by a lot of authors (see for instance Wisniewski [11]). Hsing 
[4] and Hiisler [5] investigated weak convergence of the maximum vectors 
under stationarity and mixing conditions. Extremes and exceedances of high 
boundaries by stationary and nonstationary multivariate random sequences 
in the rare events context were presented by Falk et al. [2]. The purpose 
of this paper is to extend results of Wisniewski [11] and some of results of 
Hsing [4] and Hiisler [5] to the stationary case of multidimensional extreme 
order statistics and multivariate point processes of exceedances. Identical 
with Hiisler's [5] assumptions are used, apart from the condition which 
is a slightly stronger version of the long range dependence condition D^ 
(see Section 3). Especially, the condition D' is assumed which guarantees 
that the clustering of extreme values does not occur. In the second Section 
we set up notation and compiles some basic facts of the theory of Point 
Processes. In Section 3 we provide a detailed exposition of assumptions. 
Section 4 is devoted to the study of the weak convergence of point pro-
cesses. The obtained limit distributions are just the same as in the i.i.d. 
case. Hence the extremal index function (see Nandagopalan [9] or Perfekt 
[10]) is constant and equal to 1. It is worth pointing out that, as opposed to 
the univariate case, the limit distributions do not have to be Poisson type 
(compare with Falk et al. [2], Section 10.6). This eifect result only from an 
allowable dependence between the various components of the multivariate 
observations. On account of Nandagopalan et al. [8] it is obvious that the 
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obtained limit point processes have Compound Poisson distributions. The 
dependence structure among the components of the multivariate distribu-
tions is an important aspect in the multivariate analysis. In this Section 
we will look more closely at independence and complete dependence of the 
components of the limit processes. Also the relation between max-infinite 
divisibility and infinite divisibility of the limit point processes of exceedances 
are established. In Section 5 we deal with the limit extreme order statistics 
and their dependence structure. The last Section contains lemmas. 

2. Notat ion 
Let K(p) denote the set {1 ,2 , . . .,p} for an arbitrary p G K. Fix d G K. Let 

us assume that £ = {Xn : n G N} is a stationary sequence of d-dimensional 
random vectors Xn = (Xn{ : i G N(d)) with a common distribution func-
tion F. For any G C K(d) we use the symbol Fq to denote the distri-
bution function of the vector Xna = ( X n i : i G G). Let Mn denote for 
k G N(n), n G K the vector of k-th extreme order statistic (defined com-

k 
ponentwise). We also define by M n G ( A ) the k-th extreme order statistic in 
the sequence {XjG : j G G A}, where A C (0,1], G C N(d). The 

i-
main question deals with the convergence of the distribution of M n under 
a suitable normalization 
(1) P(Mk

n < un) Hk(x) for k G K 
n—• oo 

where un — un(x) = anx+bn,x G and an,bn are sequences in an with 
positive components. (Arithmetical operations are meant componentwise). 

Let {5'„ : n G K} denote the sequence of the d-variate point processes of 
exceedances obtained on the base £ and previously considered normalization 
(see Wisniewski [11, 12] and the one-dimensional case in Leadbetter et al. 
[6]). This means that 

d d 
sn(A,x) = E E U x ^ b f o r ® e A = x w ) , 

j'-i-eSi i = 1 

where Si are Borel subsets of (0,1] and 1 a denotes the characteristic function 
of the set A. The marginal point processes of the process Sn are defined in 
the following way 

Snitfi) = Sn(Si x {i}), for i G N(d). 
For any point process rj we can define the avoidance function F^ (see Daley 
et al. [1]). We have 

FSn(A) = P[Sni(Si) = 0 : i G N(d)]. 
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The distribution of a simple point process defined on (0,1] is determined 
by values of its avoidance function on the sets A, where Si are finite sums 
of subintervals of (0,1] (see Leadbetter et al. [6]). According to the above 
property, we use avoidance functions for characterization of limit distribu-
tions. For example, in the i.i.d. case the avoidance function of the limit point 
process of exceedances S has the form 

( 2 ) FS(A) = n Hh(xG)m{S°\ 
get 

where m denotes Lebesgue measure on (0,1], 

T = {{¿i ,...,»*}: 1 < »'i <...< *fe < d, k e N(d)} 

and 
S*G = P | 6i\ (J Si (see Wisniewski [11]). 

ieG i$G 

We also need a multivariate version of the Kallenberg theorem on a weak 
convergence of point processes (see Wisniewski [11]). For point processes 
defined on space (0,1] this result can be expressed in the following way. 

P R O P O S I T I O N 2 . 1 . If a sequence of d-variate point processes rjn satisfies 
the conditions: 

(i) Vni — ' i G K(c/), where rji are simple point processes, n—i-oo 
(ii) there exist limits 

Km F-Vn(A), 

for all A = UF=1ij X {¿}, Si are finite sums of subintervals of (0,1], then 
w _ 

Vn —* V n—*oo 

where rj is simple and possesses the marginals i 

3. Assumptions It is well-known that in the i.i.d. case (1) is equivalent to 
(3) n{ 1 - F[tt„(s)]} —> - \rH\x), for all x £ DH, n—*oo 
where 

DH = {x £ : H\x) > 0}. 
From now on we make Assumption (3). 

Subsets I and J of N are called m-separated if min( J) — max(/) > m or 
min(7) - max(7) > m. Let us set Bn(I) = n i € / njen(d) Bwhere 

(4) B& = { X k i < uni}. 
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Additionally we need the following assumptions : (the notation is adapted 
from Hiisler [5]). 

C o n d i t i o n Dd(un) holds if a sequence an ,m exists such that for all n 

and m 

\P[Bn(I D J)] - P[Bn(I)]P[Bn(J))\ < antm, 

for all I,JC N(n) which are m-separated and such that otn,m^ 0, for 
some sequence m* = o{n). 

C o n d i t i o n D'd(un) holds if 

limsup n ^ P[Xi un,Xi % un] —> 0. 
n-oo r-foo 

C o n d i t i o n D^(un) holds if 

n V P[Xij > unj,XXj< > unj-] — • 0. 
—' n—• oo 

i<j<j '<d 

C o n d i t i o n Dj*(un(x)) holds if 

n {P[Xlp > unp(xp),Xiq > unq(xq)] - P[Xip > u„p(a;p)]} —»• 0, 
n—* oo 

for all 1 < p ^ q < d and x such that H^{xp) > H^{xq). 

In order to get asymptotic results, it is necessary to strengthen the con-
dition Dd in the following way: 

C o n d i t i o n D^(un) holds if condition Dd(un) holds with (3) replaced 
by 

Bli = {Xki < uni} or Bli = Q, 

where fl denotes the sure event. 
Although is stronger than Dd it is easily seen that strong mixing 

condition implies D J. Furthermore Dj is still weaker than mixing conditions 
defined as the A-condition (see Hsing et al. [3]). 

4. On weak convergence of multivariate point processes of ex-
ceedances 

THEOREM 4.1. Let a stationary sequence £ satisfy (3) and D%(un(x)), 

D'd{un{x)), for all x € Djj. Then 

Sn{%) S(x), for all x £ Dhi n—•co 

S(x) is a simple point process with Poisson marginals and the avoidance 

function of the form (2). 



Extremes in multivariate mixing sequences 665 

P r o o f . The main idea of the proof is adopted from the proof of Theorem 
5.2.1 in Leadbetter et al. [6]. This theorem shows that 

Sni(xi) Sj(xi) for all Xi, n—>oo 

where Si(xi) are simple Poisson point processes. Thanks to the above and 
Proposition 2.1 it is sufficient to show that 

d 

lim Fs„(i)(A) exist for all A = ( J x {z}, 
n-> oo t = 1 

where SI are finite sums of subintervals of (0,1]. Since 

( J 6*g x G = A and 6*Gl n 8*G2 = 0 for Gx ± G2 

Ge r 

we see that 

Fs,m(A) = p \ f ] {Sni(t*G,Xi) = 0 : i e G} 
••Ger 

It is easy to check that for any A C (0,1], i € k G N 

(5) {Sni(A) <k} = {M^i(A) < uni}. 

Thus we get 

FS m ( 5 )(A) = p \ f ] {M^(¿Z) < unG(xG)} . 
•-Ger 

The sets 6G are disjoint and consist of finite sums of disjoint subintervals 
of (0,1]. Therefore, we can use Lemma 6.2. (see Section 6) to obtain the 
convergence: 

Mm f s . m i A ) = I I H h(xG) m { S h ) , 
n °° Ger 

which proves the theorem. 
COROLLARY 4.2 . Under the assumptions of Theorem 4 .1 , if moreover 

D^(UN(Z)) holds for some Z with 0 < H}(ZI) < 1 for each i 6 then for 
allx € DJJ S(x) have independent components SI(XI). 

The proof is completed by using Corollaries 2 and 6 of Wisniewski [11] 
and Theorem 2.4 of Hiisler [5]. 

COROLLARY 4.3 . Under the assumptions of Theorem 4 .1 , if moreover 
Dj*(un(z)) holds for some z, then for all x £ DH S(x) have almost surely 
equal components (i.e. S\(z) = ... = Sd(z) a.s. for all z € R). 

It is sufficient to use Corollaries 3 and 6 of Wisniewski [11] together with 
Theorem 3.6 of Hiisler [5]. 
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Since a multivariate simple point process is Poisson process if and only 
if its marginals are independent Poisson point processes (see Corollary 1. 
of Wisniewski [11]), Corollary 5.3 asserts that limit point processes of ex-
ceedances are not always those of Poisson. 

COROLLARY 4 . 4 . Under the assumptions of Theorem 4 . 1 , if moreover F 
is max-infinitly divisible (i.e. for all n £ K Fl/n is a distribution function 
- see Falk et al. [2]), then for all x € Du the distributions of S(x) are 
infinitely divisible (see the definition in Matthes [7]). 

It results from Corollaries 5 and 6 of Wisniewski [11]. 

5. On weak convergence of multivariate extreme order statistics 
A weak convergence of point processes implies a weak convergence of 

their finite dimensional distributions (see Lemma 9.1.IV in Daley et al. [1]). 
According to the above remark and (5) we can use the results of the last 
section to obtain the similar ones for extreme order statistics. 

THEOREM 5 .1 . Under the assumptions of Theorem 4 . 1 , 

P[Mk
n < un(x)} Hk(x), for all k € K. n—<-oo 

It is important point to note here that H k are the same as suitable limit 
distributions in the i.i.d. case. Indeed, the obtained avoidance function of 
the limit point process of exceedances is identical to the suitable one in the 
i.i.d. case. 

COROLLARY 5 .2 . Under the assumptions of Corollary 4 . 2 , for all k € N, 
Hk have independent components. 

COROLLARY 5 . 3 . Under the assumptions of Corollary 4 . 3 , for all k € N, 
Hk have almost surely equal components. 

6. Lemmas 

LEMMA 6 .1 . Let A be a subinterval of (0,1] and G C K(d). If a stationary 
sequence £ satisfies the conditions (3) and Dd(un(x)), D'd(un{J£)) for all 
x G Dh, then 

PiMl^A) < unG(xG)] —> Hh(xG)m{A\ for all x 6 Xd. 
71—i-OO 

The proof is slightly different from the proof of Corollary 3.6.4 of Leadbetter 
et al. [6]. 

LEMMA 6 .2 . Let Ai,...,Ap be disjoint subintervals OF ( 0 , 1 ] andGi,... 
• • •, Gp C K(CZ) (not necessarily different). If a stationary sequence £ satisfies 
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the conditions (3) and, D%(ïîn(x)), D'd(ûn(x)), for all x G Du, then 

P\M\Gl{Ax) < unGl{xGl),...,M\Gr{Ap) < unGp(xGp)} 

T l H l G . ( * c , r ^ \ for all âf G 
i= 1 

P r o o f . To shorten notation we write 

g n ( B u . . . , Bp) = P[Ml
nGl [Bx) < unGl ( x G l ) , . . . , Ml

nGp (Bp) 

< unGp(xGp)]. 

Without loss of generality we can assume that ai < . . . < ap for Oj G . 
For i G n G N, let the intervals A{ , A? be given by: 

T i U A? = Ai, X n An
{ = 0, a < b for a G A?, b G A? 

and # { j G K : J- G A?) = m*n, 
n 

where m* originates from D^. We can write 

9n(Ai,..., 
i=l 

< \gn{A\,..., Ap) - g n ( I . . . , T p ) | + gn(Ai,..., T p ) - J ] gn(A?) 
t=i 

+ 
i=l »=1 

Thanks to Lemma 6.1 it is sufficient to show that Si(n) = o(n), Siin) 
o(n), S3(n) = o(n) as n —oo. The sets 

n n F n 

are m* - separated. Thus we can use D d and deduce that 

S2(n) < pa„tm-

(compare to Lemma 3.2.2 of Leadbetter et al. [6]), and so Si(n) = o(n) 
n oo. For all sufficiently large n the sets 
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are also m* - separated. Hence 

gn(A?,...,A;)-f[gn(At) 
i=1 

< P<Xn,mZ • 

According to the above remark and from the inequality 

it follows that the condition 

(6) Si(n) = o(n) as n oo 

holds if for all i £ jfn(A") —• 1 as n —• oo. But for any e > 0 and 
i G N(p) we have 

H h ^ G i Y < liminf gn(Af) < l i m s u p ^ A ? ) < 1 n->oo n—oo 

and so (6) holds. According to 

S3(n) < ¿¡gn(A?) - g ^ 
i = i 

the analysis similar to that in the proof of (6) shows that £3(71) = o(n) as 
n —>• 00, which completes the proof. 
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