

Jacek Dziok

THE ORDER OF STARLIKENESS
 OF THE p -VALENT ALPHA-CONVEX FUNCTIONS
 AND NUNOKAWA'S CONJECTURE

Let $M_p(\alpha, \beta)$, $p \in N$, $\alpha, \beta \in R$, denote the class of functions of the form $f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n$ such that $\frac{f(z)f'(z)}{z^{2p-1}} \neq 0$ and $Re \left[(1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f(z)} \right) \right] > \beta$ for $z \in D = \{z : |z| < 1\}$. In the present paper some relations between the class $M_p(\alpha, \beta)$ and the class $M_1(\frac{\alpha}{p}, \frac{\beta}{p})$ are given. Thus we determine a relation between the class $M_1(\frac{1}{p}, 0)$ and the class $S_p^c = M_p(1, 0)$ of p -valent convex functions. Moreover we determine the order of starlikeness for classes $M_p(\alpha, 0)$ and S_p^c and show that Nunokawa's conjecture about the order of starlikeness for the class S_p^c is false.

1. Introduction

Let p be a positive integer, α, β be real numbers, $0 \leq \beta < p$. Suppose that a function f of the form

$$(1) \quad f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n,$$

is analytic in the unit disc $K = \{z : |z| < 1\}$ with $\frac{f(z)f'(z)}{z^{2p-1}} \neq 0$ for $z \in K$. If

$$(2) \quad J(f) = Re \left[(1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f(z)} \right) \right] > \beta$$

for $z \in K$, then f is said to be a p -valent alpha-convex function of order β . We denote the class of such functions by $M_p(\alpha, \beta)$.

Put $M_p(\alpha) = M_p(\alpha, 0)$, $M(\alpha) = M_1(\alpha)$.

For $\alpha = 0$ and $\alpha = 1$ we have $M_p(0, \beta) = S_p^*(\beta)$, $M_p(1, \beta) = S_p^c(\beta)$, where $S_p^*(\beta)$ is the well-known class of p -valent starlike functions of order β and $S_p^c(\beta)$ is the well-known class of p -valent convex functions of order β . Let us denote: $S_p^* = S_p^*(0)$, $S^* = S_1^*$, $S_p^c = S_p^c(0)$, $S^c = S_1^c$.

The class $M(\alpha)$ of alpha-convex functions was introduced by P. T. Mocanu [5] and it has been intensively investigated by S. S. Miller, P. T. Mocanu and M. O. Reade [3], [4] and others. The class $M_p(\alpha, \beta)$ was studied by M. Nunokawa, S. Owa, H. Saitoh, T. Yaguchi, S. K. Lee, T. Sekine, S. Fukai [7], [8], [9] and others. In paper [4] S. S. Miller, P. T. Mocanu and M. O. Reade determined the order of starlikeness for the class $M(\alpha)$.

In the present paper some relation between the class $M_p(\alpha, \beta)$ and the class $M_1(\frac{\alpha}{p}, \frac{\beta}{p})$ are given. Thus we determine a relation between the class $M_1(\frac{1}{p}, 0)$ and the class $S_p^c = M_p(1, 0)$. Moreover we determine the order of starlikeness for classes $M_p(\alpha)$ and S_p^c .

In paper [8] there is an information about Nunokawa's conjecture, that the order of starlikeness for the class S_p^c is equal to $\frac{\Gamma(p+\frac{1}{2})}{\sqrt{\pi}\Gamma(p)}$, where $\Gamma(\cdot)$ denotes the Gamma function. In paper [6] M. Nunokawa proved this conjecture.

In the present paper we show that Nunokawa's conjecture is false and determine the correct order of starlikeness for the class S_p^c .

2. Preliminaries

We start from listing some lemmas, which will be useful later on.

LEMMA 1 [1]. *Let p be a positive integer, α, β be real numbers, $\alpha \neq 0, 0 \leq \beta < p$. A function f is in the class $M_p(\alpha, \beta)$ if and only if there exists a function $g \in S_p^*$ such that*

$$(3) \quad f(z) = \left\{ \frac{p}{\alpha} \int_0^z \frac{[g(w)]^{\frac{1}{\alpha}}}{w} dw \right\}^\alpha, \quad z \in D.$$

Putting $\beta = 0$ and $g(z) = \frac{z^p}{(1+z)^2 p}$ in Lemma 1 we obtain the function

$$(4) \quad k_{p,\alpha}(z) = \left\{ \frac{1}{\alpha} \int_0^z \frac{w^{\frac{p-\alpha}{\alpha}}}{(1+w)^{\frac{2p}{\alpha}}} dw \right\}^\alpha.$$

Denote $k_\alpha = k_{1,\alpha}$. Thus for $\alpha \geq 0$ we have

$$(5) \quad k_{p,\alpha} \in M_p(\alpha, \beta) \text{ and } k_\alpha \in M(\alpha).$$

It is also known that

$$(6) \quad k(z) = \frac{z}{(1+z)^2} \in M(\alpha) \text{ for } \alpha \in [-2, 0].$$

LEMMA 2 [3]. $M(\alpha) \subset S^*$ for all $\alpha \in R$.

LEMMA 3 [2]. *If $\alpha \in (0, 1)$, then k_α itself is starlike of order zero. The result is sharp.*

LEMMA 4 [4]. If $f \in M(\alpha)$, $\alpha \geq 1$, then $f \in S^*(\beta(\alpha))$, where

$$\beta(\alpha) = \frac{\Gamma\left(\frac{1}{2} + \frac{1}{\alpha}\right)}{\sqrt{\pi}\Gamma\left(1 + \frac{1}{\alpha}\right)}.$$

The result is sharp.

LEMMA 5. A function f is in the class $S_p^*(\alpha)$ if and only if there exists a function $g \in S_1^*\left(\frac{\alpha}{p}\right)$, such that $f = g^p$.

Proof. Let $f \in S_p^*(\alpha)$. Denote by g that branch of the n -th order root of the function f for which $g'(0) = 1$. Then we have

$$Re \frac{zg'(z)}{g(z)} = Re \frac{zf'(z)}{pf(z)} \geq \frac{\alpha}{p},$$

what means that $g \in S_1^*\left(\frac{\alpha}{p}\right)$.

Now, let $f = g^p$ and $g \in S_1^*\left(\frac{\alpha}{p}\right)$. Then f is p -valent and

$$Re \frac{zf'(z)}{f(z)} = Re p \frac{zg'(z)}{g(z)} > \alpha,$$

that is $f \in S_p^*(\alpha)$.

3. Main results

THEOREM 1. A function f is in the class $M_p(\alpha, \beta)$ if and only if there exists a function $h \in M_1\left(\frac{\alpha}{p}, \frac{\beta}{p}\right)$, such that $f = h^p$.

Proof. By Lemma 1 the function f is in class $M_p(\alpha, \beta)$ if and only if there exists a function $g \in S_p^*(\beta)$, such that the function f satisfies the condition (3). Since by Lemma 5 we have $g = \rho^p$ for some $\rho \in S_1^*\left(\frac{\beta}{p}\right)$, then instead of the condition (3) we can equivalently write:

$$f(z) = \left\{ \frac{p}{\alpha} \int_0^z \frac{[\rho(w)]^{\frac{p}{\alpha}}}{w} dw \right\}^\alpha$$

or

$$f(z) = [h(z)]^p,$$

where

$$h(z) = \left\{ \frac{p}{\alpha} \int_0^z \frac{[\rho(w)]^{\frac{p}{\alpha}}}{w} dw \right\}^{\frac{\alpha}{p}}.$$

It is enough to prove the condition that $h \in M_1\left(\frac{\alpha}{p}, \frac{\beta}{p}\right)$. Since $\rho \in S_1^*\left(\frac{\beta}{p}\right)$, it is an immediate consequence of the definition of h and Lemma 1.

Using Theorem 1 we can write

$$M_p(\alpha, \beta) = \left\{ f^p : f \in M_1 \left(\frac{\alpha}{p}, \frac{\beta}{p} \right) \right\}.$$

Putting $\beta = 0$ in Theorem 1 we have:

COROLLARY 1. *A function f is in the class $M_p(\alpha)$ if and only if there exists a function $h \in M \left(\frac{\alpha}{p} \right)$ such that $f = h^p$.*

Assuming $\alpha = 1$ in Corollary 1 we obtain

COROLLARY 2. *A function f is in the class S_p^c if and only if there exists a function $h \in M \left(\frac{1}{p} \right)$, such that $f = h^p$.*

Thus we can write

$$S_p^c = \left\{ f^p : f \in M \left(\frac{1}{p} \right) \right\}.$$

THEOREM 2. $M_p(\alpha) \subset S_p^*$ for all $p \in \mathbb{N}$, $\alpha \in \mathbb{R}$.

Proof. Let $f \in M_p(\alpha)$. From Theorem 1 we get $f = h^p$, where $h \in M \left(\frac{\alpha}{p} \right)$. From Lemma 2 we obtain that $h \in S^*$. Thus, using Lemma 5, we have $f \in S_p^*$.

THEOREM 3. *Let p be a positive integer, α be a real number, $\alpha \geq -2p$. If $f \in M_p(\alpha)$, then $f \in S_p^*(\beta(p, \alpha))$, where*

$$(7) \quad \beta(p, \alpha) = \begin{cases} 0 & \text{for } -2p \leq \alpha < p \\ \frac{p\Gamma(\frac{1}{2} + \frac{p}{\alpha})}{\sqrt{\pi}\Gamma(1 + \frac{p}{\alpha})} & \text{for } \alpha \geq p. \end{cases}$$

The result is sharp.

Proof. From the Theorem 2 we get $\beta(p, \alpha) \geq 0$ for $\alpha \in \mathbb{R}$. Using condition (6) we obtain

$$(8) \quad \beta(1, \alpha) = 0 \quad \text{for } -2 \leq \alpha \leq 0.$$

By Lemma 3 we have

$$(9) \quad \beta(1, \alpha) = 0 \quad \text{for } 0 < \alpha < 1.$$

and by Lemma 4 we obtain

$$(10) \quad \beta(1, \alpha) = \frac{\Gamma(\frac{1}{2} + \frac{1}{\alpha})}{\sqrt{\pi}\Gamma(1 + \frac{1}{\alpha})} \quad \text{for } \alpha \geq 1.$$

Now, let $f \in M_p(\alpha)$. From Theorem 1 we have $f = h^p$, where $h \in M\left(\frac{\alpha}{p}\right)$. Thus

$$\frac{zf'(z)}{f(z)} = p \frac{zh'(z)}{h(z)},$$

which yields

$$(11) \quad \beta(p, \alpha) = p \beta\left(1, \frac{\alpha}{p}\right).$$

The conditions (8)-(11) give (7).

The extremal functions are the functions $k(z) = \frac{z^p}{(1+z)^{2p}}$ for $-2p \leq \alpha \leq 0$ and $k_{p,\alpha}$ defined by (4) for $\alpha > 0$.

Remark. For $\alpha \geq p$ Theorem 3 was proved in a different way in [1] by the author and J. Stankiewicz.

Putting $\alpha = 1$ in Theorem 3 we obtain:

COROLLARY 3. If $f \in S_p^c$, $p \leq 2$, then $f \in S_p^*$.

The result is sharp. It means that the order of starlikeness for the class S_p^c is equal to zero.

The Corollary 3 implies, that Nunokawa's conjecture, which states that the order of starlikeness for the class S_p^c is equal to $\alpha(p) = \frac{\Gamma(p+\frac{1}{2})}{\sqrt{\pi}\Gamma(p)} > 0$, is false. In the proof of this conjecture there is an error. Namely, M. Nunokawa maintains, that the extremal function f_1 in his conjecture satisfies the condition

$$\frac{zf'_1(z)}{f_1(z)} = (p - \alpha(p)) \frac{1+z}{1-z} + \alpha(p),$$

where $\alpha(p)$ denotes the order of starlikeness for the class S_p^c . Thus the function f_1 has to be the p -valent Koebe function of order α , $f_1(z) = \frac{z^p}{(1+z)^{2(p-\alpha)}}$, $z \in K$. But this function for $p \geq 2$ isn't an extremal function.

References

- [1] J. Dziok, J. Stankiewicz, *Starlikeness of functions p -valent alpha-convex*, Folia Sci. Univ. Techn. Resoviensis. 19 (1996), 5-10.
- [2] P. Einenburg and D. Nelson, *On the order of starlikeness for alpha-convex functions*, Mathematica (Cluj) 18 (41), 2 (1976), 143-146.
- [3] S. S. Miller, P. T. Mocanu and M. O. Reade, *All alpha-convex function are univalent and starlike*, Proc. Amer. Math. Soc. 37 (1973), 553-554.
- [4] S. S. Miller, P. T. Mocanu and M. O. Reade, *On the order of starlikeness of alpha convex functions*, Mathematica (Cluj) 20 (1978), 25-30.
- [5] P. T. Mocanu, *Une propriété de convexité généralisée dans la théorie de la représentation conforme*, Mathematica (Cluj) 11 (1969), 127-133.

- [6] M. Nunokawa, *On the p -valently starlike and convex functions, Univalent functions, fractional calculus, and their applications* (Koriyama, 1988), 187–198, Ellis Horwood Ser. Math. Appl. Horwood, Chichester, 1989.
- [7] M. Nunokawa, *On the theory of multivalent functions*, Tsukuba J. Math. 11 (2) (1987), 37–50.
- [8] M. Nunokawa, S. Owa, H. Saitoh, T. Yaguchi, S. K. Lee, *On certain subclass of analytic functions II*, Sci. Rep. Fac. Ed., Gunma University, 36 (1988), 1–6.
- [9] S. H. Saitoh, M. Nunokawa, S. Owa, T. Sekine, S. Fukai, *A remark on multivalent functions*, Bull. Soc. Roy. Sci. Liège (1988).

INSTITUTE OF MATHEMATICS
PEDAGOGICAL UNIVERSITY OF RZESZÓW
ul. Rejtana 16A
35-310 RZESZÓW, POLAND

Received May 13, 1996.