

Barbara Glanc, Antoni Jakubowicz, Halina Kleczewska

THE GENERALIZED REISSNER-NORDSTRÖM
SPACE-TIME

1. Introduction

The following 1-parameter family of Robertson-Walker space-times with metric tensor

$$(1) \quad \text{diag}\left(-1, \frac{R^2}{1-kr^2}, R^2r^2, R^2r^2\sin^2\theta\right),$$

where $R = R(t)$, $k \in \{-1, 1\}$ is a parameter and $(x^1, x^2, x^3, x^4) = (t, r, \theta, \varphi)$, is well-known. Such family of space-times was applied in the general relativity theory for parameter values $k = -1, 0, 1$. Resolving the Einstein equation, Friedman has obtained three models of Universe: the open model for $k = -1$, the flat model for $k = 0$ and the closed one for $k = 1$. The space-times for other values of parameter $k \in \{-1, 1\}$ were not applied in physics.

The Reissner-Nordström space-time (denoted shortly by R-N.) has the following metric tensor [1], [2]:

$$(2) \quad \text{diag}(-E, E^{-1}, r^2, r^2\sin^2\theta),$$

where

$$(3) \quad E = 1 - \frac{r_0}{r} + \frac{K r_0^2}{r^2},$$

$K = \text{const}$, $r_0 = \text{const} \geq 0$, $(x^1, x^2, x^3, x^4) = (t, r, \theta, \varphi)$.

The R-N space-time with metric tensor (2) has the scalar curvature equal to zero. The purpose of the present paper is to generalize the R-N space-time to one with nonvanishing scalar curvature.

2. The family of generalized Reissner-Nordström space-times

We introduce the generalized R-N space-times by means of the following

metric tensor

$$(4) \quad \text{diag}(-E^{a+1}, E^{a-1}, r^2, r^2 \sin^2 \theta)$$

where a is a parameter, $a \in \langle -1, 1 \rangle$, E has the form (3) and K is also a parameter, $K \in (\frac{1}{4}, \frac{9}{32})$. Therefore we obtain the 2-parameter family of space-times with respect to parameters a and K . Then the scalar curvature T takes the form [3]:

$$(5) \quad T = \frac{ar^2 E'' - 2E^a + 2}{r^2 E^a} \quad \left(:= \frac{ar^2 E'' + 2}{r^2 E^a} - \frac{2}{r^2} \right).$$

For $a = 0$ the generalized R-N space-times with metric tensor (4) reduces to the space with metric tensor (2), i.e. to the ordinary R-N space-times. In this case the scalar curvature T of (5) vanishes.

We investigate the properties of the family (4) for $K = \frac{1+\varepsilon}{4}$ (then in (2) $E > 0$ and for $\varepsilon = 0$, $K = \frac{1}{4}$, $E = 0$ at the point $\frac{r_0}{2}$).

3. The special cases of values of the scalar curvature

In the case $a = 1$, the metric tensor (4) takes the form

$$(6) \quad \text{diag}(-E^2, 1, r^2, r^2 \sin^2 \theta).$$

The formula (5) for $K = \frac{1+\varepsilon}{4}$ takes the form

$$(7) \quad T = \frac{4(1+\varepsilon)r_0^2}{r^2[4(r - \frac{r_0}{2})^2 + \varepsilon r_0^2]}$$

and its derivative

$$(8) \quad T' = \frac{-8(1+\varepsilon)r_0^2[8r^2 - 6r_0r + (1+\varepsilon)r_0^2]}{r^3[4(r - \frac{r_0}{2})^2 + \varepsilon r_0^2]^2}.$$

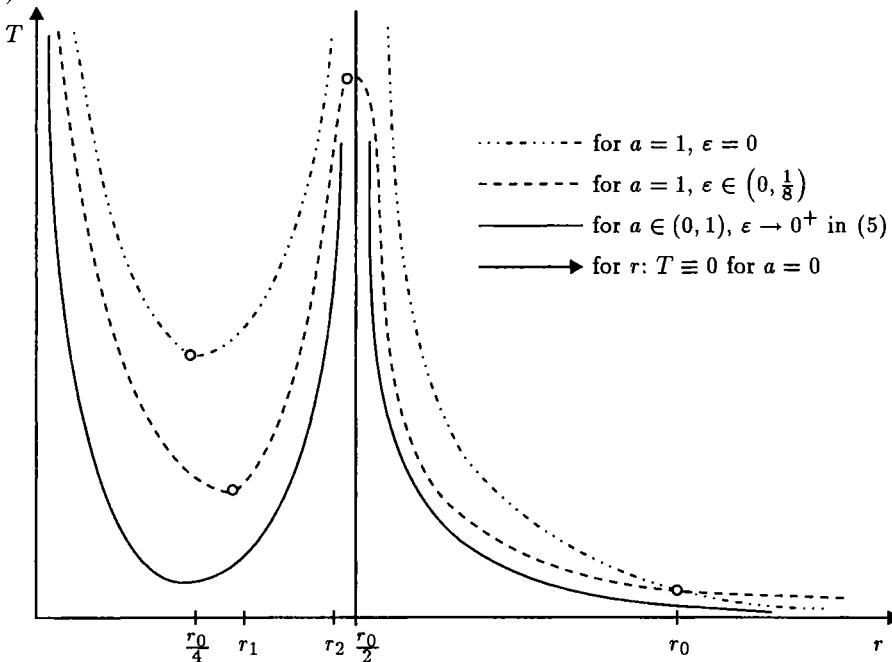
The zeros of the derivative T' are given by

$$r_1 = \frac{3 - \sqrt{1 - 8\varepsilon}}{8}r_0, \quad r_2 = \frac{3 + \sqrt{1 - 8\varepsilon}}{8}r_0.$$

The graphs of the scalar curvature T given by (7) with $\varepsilon \in (0, \frac{1}{8})$ as well

as for the other cases are illustrated below:

(9)



In the case $a = -1$ the metric tensor (4) takes the form

$$(10) \quad \text{diag}(-1, E^{-2} r^2, r^2 \sin^2 \theta).$$

Using (5) we find that the scalar curvature is

$$(11) \quad T = \frac{2}{r^2} [E(E + 2E'r) - 1].$$

In the case $K = \frac{1+\varepsilon}{4}$, $\varepsilon \in (0, \frac{1}{8})$ the scalar curvature (11) has the form

$$(12) \quad T = \frac{-r_0^2}{8r^6} [8r^2(3 + \varepsilon) - 16r(1 + \varepsilon)r_0 + 3(1 + \varepsilon)^2r_0^2]$$

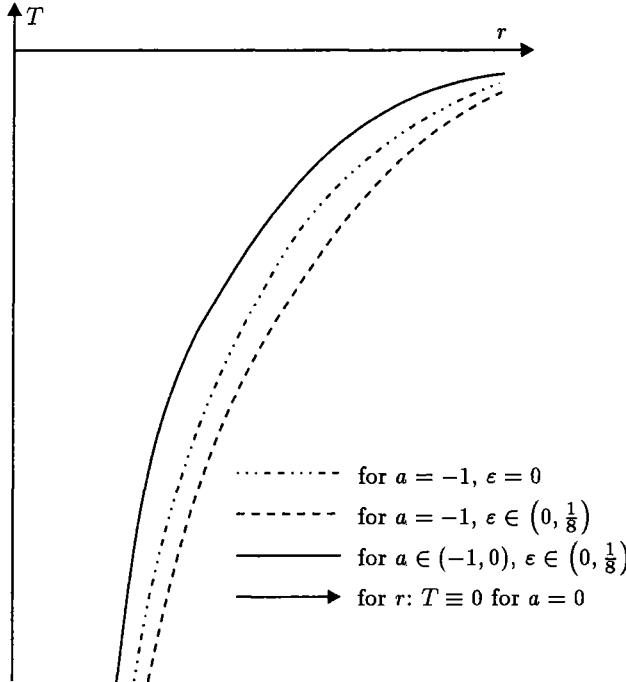
and its derivative T' is equal to

$$(13) \quad T' = \frac{1}{4r^7} [16r^2(3 + \varepsilon)r_0^2 - 40r(1 + \varepsilon)r_0^3 + 9(1 + \varepsilon)^2r_0^4],$$

where $\Delta = -64(1 + \varepsilon)^2(2 + 9\varepsilon)r_0^6 < 0$ and the function T in (12) has no local extremum. The graphs of the scalar curvature T given by (5) with $a \in (-1, 0)$, $K = \frac{1+\varepsilon}{4}$, $\varepsilon \in (0, \frac{1}{8})$ and curvature (12) for $\varepsilon = 0$ and $\varepsilon \in (0, \frac{1}{8})$

and for $a = 0$ are as follow

(14)



4. Distributions of scalar curvatures in the family of generalized Reissner-Nordström space-times and their semi-groups

Let us consider the formula (5) with $a \in (0, 1)$, $K = \frac{1+\varepsilon}{4}$, $\varepsilon \in (0, \frac{1}{8})$ at $r = \frac{r_0}{2}$ and at $r \neq \frac{r_0}{2}$. Then one has

$$(15) \quad \lim_{a \rightarrow 0^+} \left(\lim_{\varepsilon \rightarrow 0^+, r \neq \frac{r_0}{2}} T \right) = 0, \quad \lim_{a \rightarrow 0^+} \left(\lim_{\varepsilon \rightarrow 0^+, r = \frac{r_0}{2}} T \right) = +\infty.$$

We see that the scalar curvature (5) of the family of generalized R-N space-times gives rise for $\varepsilon \rightarrow 0^+$, $a \rightarrow 0^+$ to the special Schwarz distribution, namely the Dirac delta at $\frac{r_0}{2}$ [4]

$$(16) \quad \delta(r) = \begin{cases} 0 & \text{for } r \neq \frac{r_0}{2}, \\ +\infty & \text{for } r = \frac{r_0}{2}. \end{cases}$$

For the scalar curvature T of the form (5) with $a \in (-1, 0)$, $K = \frac{1+\varepsilon}{4}$, $r \neq 0$ or $r = 0^+$ one has

$$(17) \quad \lim_{a \rightarrow 0^-} \left(\lim_{\varepsilon \rightarrow 0^+, r \neq 0} T \right) = 0, \quad \lim_{a \rightarrow 0^-} \left(\lim_{\varepsilon \rightarrow 0^+, r = 0^+} T \right) = -\infty.$$

We see that similarly as in (16)

$$(18) \quad \delta(r) = \begin{cases} 0 & \text{for } r \neq 0, \\ -\infty & \text{for } r = 0^+. \end{cases}$$

Hence the family of scalar curvatures (5) gives rise for $\varepsilon \rightarrow 0^+$, $a \rightarrow 0^-$ to the special Schwarz distribution, the Dirac delta at 0^+ .

We define the multiplication $*$ in families of all curvatures (5) for $a \in (0, 1)$ and for $a \in (-1, 1)$ by the formula

$$(19) \quad T_1 * T_2 = \frac{a_1 a_2 r^2 E'' + 2}{r^2 E^{a_1 a_2}} - \frac{2}{r^2}.$$

For $a \in (0, 1)$ as well as for $a \in (-1, 1)$ the pair $(T, *)$ is the abelian semi-group. The unity of this semi-group is the curvature T given by (5) for $a = 1$ and the zero is the scalar curvature of the classical R-N space-time, i.e. the curvature T for $a = 0$. The set of curvatures T for $a \in (0, 1)$ forms the ideal of this semi-group which is also an abelian group.

Similarly, for $a \in (-1, 1)$ one obtain the ideal and abelian semi-group.

We hope that the above family of generalized R-N space-times and the scalar curvature (5) with the structure (19) can be applied in cosmology.

References

- [1] G. Nordström, *Zur Theorie der Gravitation von Standpunkt des Relativitätsprinzip*, Ann. Phys., 42 (1913).
- [2] G. Nordström, *On the energy of gravitational field in Einstein's theory*. Proc. K. Akad. Wet. Amsterdam, 20 (1938).
- [3] A. Jakubowicz, *Application of the space time in the theory of the photon arising*, Technical University of Szczecin, Preprint 1993.
- [4] A. Jakubowicz, *The Schwarz distribution Dirac delta in a family of space-times*, Technical University of Szczecin, Preprint 1994.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF SZCZECIN
Al Piastów 17
71-310 SZCZECIN, POLAND

Received April 19, 1996.

