

Ewa Ignaczak

WEYL–VON NEUMANN TYPE THEOREMS
WITH THE PERTURBATION VANISHING
ON A GIVEN SUBSPACE, I

1. Introduction

The theory of approximation of operators in a Hilbert space by diagonal (and block-diagonal) operators was widely developed. One says that any normal operator F is diagonal if $F = \sum_i \lambda_i \hat{e}_i$, $\lambda_i \in C$, for some orthonormal basis (e_i) . We denote

$$\hat{e} \cdot = \langle \cdot, e \rangle e \text{ for } e \in H, \|e\| = 1.$$

Many problems in differential equations and dynamically systems described by Hamiltonians are connected with such approximations (see, for example, [7]). Let us mention (as the most interesting results in that direction) the following classical results. The Weyl–von Neumann theorem states that, for any selfadjoint operator A , a perturbation Y for which $A + Y$ is diagonal can be found with the arbitrarily small Hilbert–Schmidt norm $\|Y\|_2$ ([7], [8] compare also [1], [4], [5], [6]). Voiculescu in his theorem states the same for any normal operator A . His proof is more algebraic (and more complicated). Both those results have a number of extensions and applications [9]. Some other aspects of compact perturbations can be found in [2].

In that note we show, by an extension of the method of von Neumann, that his classical result can be improved in the following way. One can require that the perturbation Y of a selfadjoint operator A (with $\|Y\|_2$ arbitrarily small and $A + Y$ diagonal) can additionally satisfy $YP = 0$ for any given finite-dimensional orthogonal projection O (Theorem 2.3).

We also show that the classical von Neumann theorem gives an analogous approximation for any projection I (not necessarily selfadjoint). Namely,

there exists an operator Y such that $\|Y\|_2$ is arbitrarily small and

$$I + Y = \sum_i \langle \cdot, e_i \rangle (e_i + \lambda_i f_i), \lambda_i \in C$$

for some orthogonal system $\{e_i\} \cup \{f_i\}$, i.e., $I + Y$ is a block-diagonal projection, as simple as possible (Theorem 3.1).

It seems interesting to obtain the perturbation Y in the Voiculescu theorem (and in our Theorem 3.1 for projections) with the additional requirement that $YP = 0$ for a given finite-dimensional orthogonal projection P . This will be done in the next part of the paper.

2. Extension of the Weyl–von Neumann theorem

Let H be a separable Hilbert space.

2.1. **THEOREM (Weyl–von Neumann [6], [7], [8]).** *If A be a selfadjoint (possibly unbounded) operator on H and if $\varepsilon > 0$, then there exists a selfadjoint operator Y with the Hilbert–Schmidt norm $\|Y\|_2 < \varepsilon$, such that $A + Y$ is a diagonal (selfadjoint) operator.*

The following lemma is just an extension of the classical technical proposition, crucial in the von Neumann reasoning ([7], X §2, Lemma 2.2).

2.2. **LEMMA.** *Let A be a selfadjoint operator in H . For any $\mu > 0$ and an orthonormal system f_1, \dots, f_n , there exist an operator Y and a finite-dimensional orthogonal projection T , such that:*

- (i) $\dim Y \leq 4\frac{n}{\mu}$, $\|Y\| < \mu$,
- (ii) $T^\perp f_i = 0$, $i = 1, \dots, n$,
- (iii) $A + Y$ is reduced by TH ,
- (iv) $Yf_i = 0$, $i = 1, \dots, n$.

P r o o f. Assume that $A = \int_0^1 \lambda dE(\lambda)$ is the spectral representation of A . This is a harmless assumption involving no loss of generality. Let m be a positive integer (to be determined later).

Write $g_i = Af_i$, $i = 1, \dots, n$. Let E_j be the projection $E([\frac{j-1}{m}, \frac{j}{m}])$, $1 \leq j < m$ and $E_m = E([\frac{m-1}{m}, 1])$ and let $f_{ij} = E_j f_i$, $g_{ij} = E_j g_i$, $j = 1, \dots, m$, $i = 1, \dots, n$. Let T_j , $j = 1, \dots, m$, be the orthogonal projection whose range is the span of the vectors f_{1j}, \dots, f_{nj} , g_{1j}, \dots, g_{nj} . For any $j = 1, \dots, m$ we have $E_j T_j = T_j$, that is,

$$\left\| AT_j - \frac{j}{m} T_j \right\| \leq \frac{1}{m}.$$

We shall denote $T = T_1 + T_2 + \dots + T_n$. Observe that T is the orthogonal projection in the subspace spanned by f_{ij} , g_{ij} , $i = 1, \dots, n$, $j = 1, \dots, m$.

Let $-Y = TAT^\perp + T^\perp AT$. We have

$$(1) \quad \dim Y \leq 2 \dim T \leq 4nm.$$

By the definition of Y , the perturbed operator $A + Y$ is reduced by TH .

As $Af_{ij} = g_{ij}$, $j = 1, \dots, m$, $i = 1, \dots, n$ we have $Yf_{ij} = 0$, thus $Yf_i = \sum_j Yf_{ij} = 0$.

It remains to prove (i). Observe that $YE_j = (-TAT^\perp - T^\perp AT)E_j = E_jY$, hence $Y = \sum_j^m E_jY = \sum_j E_jYE_j$ and $\|Y\| = \max_j \|E_jYE_j\| \leq 2 \max_j \|E_j(A - 1)E_j\| \leq 2\frac{1}{m}$.

If $m > \frac{2}{\mu}$, then, by (1), we have (i).

2.3. THEOREM. *Let A be a selfadjoint bounded operator in H . For any $\varepsilon > 0$ and a finite-dimensional orthogonal projection P , there exists a selfadjoint operator Y in H with the Hilbert-Schmidt norm $\|Y\|_2 < \varepsilon$, such that $A + Y$ is a diagonal operator (i.e., the operator $A + Y$ has a pure point spectrum), and $YP = 0$.*

Proof. One may assume that $A = \int_0^1 \lambda dE(\lambda)$ is the spectral representation of A . Let P be an orthogonal projection, $\dim P = n$ and f_1, \dots, f_n an orthonormal system in PH . Suppose that $\varepsilon > 0$.

Step 1. Apply Lemma 2.2 to μ such that $\sqrt{n\mu} < \varepsilon$. The result is the finite-dimensional orthogonal projection T_0 and the operator Y_0 , such that $A + Y_0$ is reduced by T_0H ,

$$\begin{aligned} \|Y_0\| < \mu; \quad \dim Y_0 \leq 8\frac{n}{\mu}, \quad T_0^\perp f_i = 0, i = 1, \dots, n; \\ \|Y_0\|_2 &\leq \|Y_0\| \sqrt{\dim Y_0} < \frac{\varepsilon}{2}. \end{aligned}$$

Step 2. Apply the Weyl-von Neumann theorem to the part of the bounded operator $A + Y_0$, acting in the subspace $(1 - T_0)H$. The result is the selfadjoint operator Y_1 in $(1 - T_0)H$ with the Hilbert-Schmidt norm $\|Y_1\|_2 < \varepsilon/2$ and the diagonal operator $A + Y_0 + Y_1$ in $(1 - P_0)H$. Define $Y = Y_0 + Y_1$ to finish the proof.

2.4. Remark. The perturbation Y in Theorem 2.3 can satisfy $\|Y\|_p < \varepsilon$ for any Schatten norm $\|\cdot\|_p$, $p > 1$, (instead of $\|Y\|_2 < \varepsilon$). As usual $\|Y\|_p$ denotes $(\sum_n |\lambda_n|^p)^{1/p}$ according to the representation of a compact operator $Y \cdot = \sum_n \lambda_n \langle \cdot, e_n \rangle \sigma_n$ for some orthonormal sets $\{e_n\}$ and $\{\sigma_n\}$ in H [11]. For details (and other extensions) see [7, X §2.2]. In consequence, it is obvious that, in our Theorem 2.3, any Schatten norm $\|\cdot\|_p$, $p > 1$ can be used instead of the Hilbert-Schmidt norm $\|\cdot\|_2$.

3. Approximation of a projection

In a Hilbert space H , projections which are not necessarily selfadjoint play an important role. It is enough to remark that an operator A similar to a selfadjoint one ($A = TBT^{-1}$ with $B = B^*$; $T, T^{-1} \in B(H)$) has the form $\int_{-\infty}^{\infty} \lambda dE(\lambda)$, where $E(\lambda)$ is a spectral family of projections (i.e. $\|E(\lambda)\|$ are uniformly bounded and $E(\lambda)E(\lambda_1) = E(\lambda_1) = (E(\lambda_1))^2$ for $\lambda_1 \leq \lambda$).

By analogy to a selfadjoint diagonal operator $A = \sum_i \lambda_i \hat{e}_i$, $\lambda_i \in R$, where $\{e_j\}$ is an orthonormal system, we shall consider the projection of the form

$$(2) \quad I(\cdot) = \sum_i \langle \cdot, e_i \rangle (e_i + \lambda_i f_i),$$

where $\{e_i\} \cup \{f_i\}$ is an orthonormal system, to have an equally elementary form.

In this section, as a corollary from the Weyl–von Neumann theorem we obtain

3.1. **THEOREM.** *Let I be a projection in H . For each $\varepsilon > 0$ there exists an operator Y in H with the Hilbert–Schmidt norm $\|Y\|_2 < \varepsilon$, an orthonormal system $\{e_i\} \cup \{f_i\}$ in H and a sequence of positive numbers $\{a_i\}$, such that*

$$I + Y = \sum_{i \in N} \langle \cdot, e_i \rangle (e_i + a_i f_i).$$

Let us begin with some elementary properties of projections. An arbitrary projection I is uniquely described by two closed subspaces \tilde{K} , \tilde{F} of the space H which are, respectively, the kernel and the set of fixed points of the operator I :

$$Ix = x \Leftrightarrow x \in \tilde{F},$$

$$Ix = 0 \Leftrightarrow x \in \tilde{K},$$

for all $x \in H$. Then $\tilde{K} + \tilde{F} = H$, $\tilde{K} \cap \tilde{F} = \emptyset$.

Two orthogonal projections P, Q are said to have a generic position if

$$P \wedge Q = P \wedge Q^\perp = P^\perp \wedge Q = P^\perp \wedge Q^\perp = 0.$$

3.2. **THEOREM (Halmos).** ([3, Theorem 2], [10, V, 1]). *If orthogonal projections have a generic position, then $H = L \oplus L$ and, according to this representation, we have*

$$P = \begin{bmatrix} 1_L & 0 \\ 0 & 0 \end{bmatrix}, \quad Q = \begin{bmatrix} c^2 & sc \\ sc & s^2 \end{bmatrix}$$

for some operators s, c in L , $0 \leq s, 0 \leq c$, $\ker s = \ker c = 0$ and $s^2 + c^2 = 1_L$.

Let $\tilde{F} = FH$ and $\tilde{K} = KH$ be, respectively, the set of fixed points and the kernel of some projection I , with some orthogonal projections F and K .

Then

$$F = 1 \oplus 0 \oplus F_3,$$

$$K = 0 \oplus 1 \oplus K_3$$

according to some representation

$$H = H_1 \oplus H_2 \oplus H_3$$

and, moreover, F_3, K_3 have a generic position in H_3 . Therefore it is sufficient to deal with an approximation of a projection I for which F, K have a generic position. We shall call such an I generic position.

It is easy to verify that a generic projection can be represented in the form

$$(3) \quad I = \begin{bmatrix} 1_L & -\frac{c}{s} \\ 0 & 0 \end{bmatrix}$$

according to a suitable representation $H = L \oplus L$. Here $\frac{s}{c}$ denotes one selfadjoint unbounded operator in L , $\frac{s}{c} = \int_0^1 \frac{\lambda}{\sqrt{1-\lambda^2}} dE(\lambda)$.

The spectral measure satisfies $E((0, 1)) = 1$.

3.3. Proof of Theorem 3.1. Let I be of the form (3). Apply the Weyl-von Neumann theorem to the operator $A = -\frac{c}{s}$ in the space L . The result is Y' in H such that $\|Y'\|_2 < \varepsilon$ and $-\frac{c}{s} + Y' = \sum_i a_i f'_i$.

It is obvious that we may assume a_i to be positive. It is enough to denote

$$Y = \begin{bmatrix} 0 & Y' \\ 0 & 0 \end{bmatrix}.$$

Then

$$I = Y = \begin{bmatrix} 1_L & -\frac{c}{s} + Y' \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1_L & \sum_i a_i f'_i \\ 0 & 0 \end{bmatrix} = \sum_i \langle \cdot, e_i \rangle (e_i + a_i f_i)$$

where $e_i = \begin{bmatrix} f'_i \\ 0 \end{bmatrix}$, $f_i = \begin{bmatrix} 0 \\ f'_i \end{bmatrix}$.

References

- [1] J. D. Berg, *An extensions of the Weyl-von Neumann theorem to normal operators*, Trans. A.M.S., 160 (1971), 365–371.
- [2] S. Elsner, S. Friedland, *Variation of the discrete eigenvalues of normal operator*, Proc. A.M.S., 123 (1995).
- [3] P. R. Halmos, *Two subspaces*, Trans. A.M.S., 144 (1969), 381–389.
- [4] P. R. Halmos, *Limits of shifts*, Acta Sci. Math. (Szeged), 34, (1973), 131–139.
- [5] P. R. Halmos, *Ten problems in Hilbert space*, Bull. A.M.S., 76 (1970), 887–933.
- [6] P. R. Halmos, V. S. Sunder, *Bounded Integral Operators on L^2 Space*, Springer Verlag (1978).
- [7] T. Kato, *Perturbation Theory for Linear Operators*, Springer-Verlag (1966).

- [8] J. von Neumann, *Charakterisierung des Spektrums eines Integraloperators*, Hermann (1935).
- [9] D. Voiculescu, *A non-commutative Weyl-von Neumann theorem*, Rev. Roumaine Math. Pures Appl., 21 (1976), 97–113.
- [10] K. Zhu, *Operator Theory in Function Spaces*, Marcel Dekker, N.Y., Basel (1990).

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF SZCZECIN
al. Piastów 17
70-310 SZCZECIN, POLAND

Received April 10, 1996.