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WEYL-VON NEUMANN TYPE THEOREMS 
WITH THE PERTURBATION VANISHING 

ON A GIVEN SUBSPACE, I 

1. Introduction 
The theory of approximation of operators in a Hilbert space by diagonal 

(and block-diagonal) operators was widely developed. One says that any 
normal operator F is diagonal if F — ^ • A;?;, A, £ C, for some orthonormal 
basis (ei). We denote 

e• = (•, e)e for e € H, ||e|| = 1. 

Many problems in differential equations and dynamically systems de-
scribed by Hamiltonians are connected with such approximations (see, for 
example, [7]). Let us mention (as the most interesting results in that di-
rection) the following classical results. The Weyl-von Neumann theorem 
states that, for any selfadjoint operator A, a perturbation Y for which 
A -f Y is diagonal can be found with the arbitrarily small Hilbert-Schmidt 
norm ||F||2 ([7], [8] compare also [1], [4], [5], [6]). Voiculescu in his theorem 
states the same for any normal operator A. His proof is more algebraic (and 
more complicated). Both those results have a number of extensions and ap-
plications [9]. Some other aspects of compact perturbations can be found 
in [2]. 

In that note we show, by an extension of the method of von Neumann, 
that his classical result can be improved in the following way. One can require 
that the perturbation Y of a selfadjoint operator A (with ||y||2 arbitrarily 
small and A + Y diagonal) can additionaly satisfy YP = 0 for any given 
finite-dimensional orthogonal projection 0 (Theorem 2.3). 

We also show that the classical von Neumann theorem gives an analogous 
approximation for any projection I (not necessarily selfadjoint). Namely, 
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there exists an operator Y such that ||Y||2 is arbitrarily small and 

I + Y = Yt(;ei)(ei + \ i f i ) , \ i e C 
i 

for some orthogonal system {e,} U {/¿}, i.e., I + Y is a block-diagonal pro-
jection, as simple as possible (Theorem 3.1). 

It seems interesting to obtain the perturbation Y in the Voiculescu the-
orem (and in our Theorem 3.1 for projections) with the additional require-
ment that YP = 0 for a given finite-dimensional orthogonal projection P. 
This will be done in the next part of the paper. 

2. Extens ion of the W e y l - v o n N e u m a n n theorem 
Let H be a separable Hilbert space. 

2 . 1 . T H E O R E M (Weyl-von Neumann [6], [7], [8]). If A be a selfadjoint 
(possibly unbounded) operator on H and if e > 0, then there exists a selfad-
joint operator Y with the Hilbert-Schimdt norm ||Y||2 < e, such that A + Y 
is a diagonal (selfadjoint) operator. 

The following lemma is just an extension of the classical technical propo-
sition, crucial in the von Neumann reasoning ([7], X §2, Lemma 2.2). 

2 . 2 . L E M M A . Let A be a selfadjoint operator in H. For any n > 0 and 
an orthonormal system fx ,...,/„, there exist an operator Y and a finite-
dimensional orthogonal projection T, such that: 
(i) d imY < 4* , | |Y | | < fi, 
(ii) T L f i = 0, i = 1 , . . . , n, 
(iii) A + Y is reduced by TH, 
(iv) Y f i = 0,i= l , . . . , n . 

P r o o f . Assume that A = f^ XdE(X) is the spectral representation of A. 
This is a harmless assumption involving no loss of generality. Let m be a 
positive integer (to be determined later). 

Write gi = Afi, i = 1 Let E j be the projection 
1 < j < m and Em = 1]) and let fa = Ejfc, g{j = Ejgu j = 
l , . . . , m , i = 1 , . . . , n . Let Tj,j = l , . . . , m , be the orthogonal projection 
whose range is the span of the vectors f i j , • • •, fnj, • • • ,9nj- For any 
j = l , . . . , m w e have EjTj = Tj, that is, 

ATj - —Tj J m J 
1 

< —. 
m 

We shall denote T = Ti + T2 + ... + Tn. Observe that T is the orthogonal 
projection in the subspace spanned by f i j , g%j, i = 1,... ,n, j = 1 , . . . , TO. 
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Let -Y = TATx + T±AT. We have 

(1) d i m y < 2 d i m T < 4nm. 

By the definition of Y, the perturbed operator A + Y is reduced by TH. 
As Afij = gij, j = 1 , . . . , m , i = 1 ,...,n we have Y f i j - 0, thus 

Y f i = j : j Y f i j = 0. 
It remains to prove (i). Observe that YEj = {-TAT1- - TLAT)Ej = 

EjY, hence Y = EjY = ^ EjYEj and | |y | | = ma X j | | E j Y E \ \ < 
2 m a x j \\Ej(A — l).Ej|| < 2^-. 

If m > then, by (1), we have (i). 

2 . 3 . T H E O R E M . Let Abe a selfadjoint bounded operator in H. For any s > 
0 and a finite-dimensional orthogonal projection P, there exists a selfadjoint 
operator Y in H with the Hilbert-Schmidt norm ||y ||2 < s, such that A + Y 
is a diagonal operator (i.e., the operator A + Y has a pure point spectrum), 
andYP = 0. 

P r o o f . One may assume that A = f0 XdE(\) is the spectral represen-
tation of A. Let P be an orthogonal projection, d i m P = n and / i , . . . , / „ 
an orthonormal system in PH. Suppose that e > 0. 

Step 1. Apply Lemma 2.2 to /x such that y /n j l < e. The result is the 
finite-dimensional orthogonal projection To and the operator l o , such that 
A + y0 is reduced by T0H, 

||y0||</i; dimy0<8-, Tj-fi = 0,t = l,...,n; 

Pb||2 < | |y 0 | |\Än < e-. 

Step 2. Apply the Weyl-von Neumann theorem to the part of the bound-
ed operator A + YO, acting in the subspace (1 — TQ)H. The result is the 
selfadjoint operator Y\ in (1—TO)H\ with the Hilbert-Schmidt norm ||yi| |2 < 
E/2 and the diagonal operator A + y0 + Y\ in (1 -P0)H. Define Y = y0 +YI 
to finish the proof. 

2.4. R e m a r k . The perturbation Y in Theorem 2.3 can satisfy ||y|| < e 
for any Schatten norm || • | |p, p > 1, (instead of ||y||2 < £)• As usual [|y||p 
denotes |An |p)1 /p according to the representation of a compact operator 
Y- = ^«('i en)<7n for some orthonormal sets {en} and {c n } in H [11], For 
details (and other extensions) see [7, X §2.2]. In consequence, it is obvious 
that , in our Theorem 2.3, any Schatten norm || • || , p > 1 can be used 
instead of the Hilbert-Schmidt norm || • ||2. 
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3. Approximation of a projection 
In a Hilbert space H , projections which are not necessarily selfadjoint 

play an important role. It is enough to remark that an operator A similar to 
a selfadjoint one (A = TBT~l with B = B*\ T,T~l e B(H) has the form 
J"® XdE(X), where -E(A) is a spectral family of projections (i.e. ||JE(A)|| are 
uniformly bounded and E(X)E(X1) = E(Xi) = (E(Ax))2 for A2 < A). 

By analogy to a selfadjoint diagonal operator A = Yli At ej, Aj 6 R, where 
{ej} is an orthonormal system, we shall consider the projection of the form 

(2) I(-) = Y,(-> e iK e i + Xifi)> 
i 

where {e;} U {/¿} is an orthonormal system, to have an equally elementary 
form. 

In this section, as a corollary from the Weyl-von Neumann theorem we 
obtain 

3 . 1 . T H E O R E M . Let I be a projection in H. For each e > 0 there exists an 
operator Y in H with the Hilbert-Schmidt norm ||y||2 < £, an orthonormal 
system {et } U {/, } in H and a sequence of positive numbers {a^}, such that 

I + Y = J^{-,ei}(ei + aifi). 

Let us begin with some elementary properties of projections. An arbi-
trary projection I is uniquely described by two closed subspaces K, F of 
the space H which are, respectively, the kernel and the set of fixed points 
of the operator I : 

Ix — x x € F, 

Ix - 0 x € K, 

for all x € H. Then K + F = H,Kf)F = $. 
Two orthogonal projections P, Q are said to have a generic position if 

P A Q = P A Qx = P1 A Q = P1 A Qx = 0. 

3.2. T H E O R E M (Haimos). ([3, Theorem 2], [10, V, 1]). If orthogonal pro-
jections have a generic position, then H = L © L and, according to this 
representation, we have 

'It 0" P = 
0 0 Q = 

rc2 sc 
sc s2 

for some operators s, c in L, 0 < s, 0 < c, ker s = ker c — 0 and s2 + c2 = 1 
Let F = FH and K = KII be, respectively, the set of fixed points and 

the kernel of some projection / , with some orthogonal projections F and K. 



Weyl-von Neumann type theorems 633 

0 © F 3 , 

> i © k3 

Then 
F = 1( 

K = 0 ( 

according to some representation 

H = © H2 © H3 

and, moreover, F3, /t'3 have a generic position in H3. Therefore it is sufficient 
to deal with an approximation of a projection I for which F, K have a generic 
position. We shall call such an I generic position. 

It is easy to verify that a generic projection can be represented in the 
form 

<3> 0 0 

according to a suitable representation H — L 

iL "I 

denotes one L. Here c 

selfadjoint unbounded operator in L, ^ = JQ A). 
The spectral measure satisfies £((0 ,1)) = 1. 
3.3. Proof of Theorem 3.1. Let I be of the form (3). Apply the Weyl-von 

Neumann theorem to the operator A = — ~ in the space L. The result is Y' 
in H such that | |Y ' | | 2 < e and - f + Y' = a , - / / . 

It is obvious that we may assume a,- to be positive. It is enough to denote 
" 0 Y'~ 

0 0 

Then 

I = Y = 

... = r / / 

1L 

0 0 
u 
0 

Z i V i f l 

where e{ = [£],£ = j » 
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