DEMONSTRATIO MATHEMATICA
Vol. XXX No 3 1997

Ewa Ignaczak

WEYL-VON NEUMANN TYPE THEOREMS
WITH THE PERTURBATION VANISHING
ON A GIVEN SUBSPACE,I

1. Introduction

The theory of approximation of operators in a Hilbert space by diagonal
(and block-diagonal) operators was widely developed. One says that any
normal operator F' is diagonal if F' = ). A\je;, A; € C, for some orthonormal
basis (e;). We denote

e =(,eleforee H, |le| = 1.

Many problems in differential equations and dynamically systems de-
scribed by Hamiltonians are connected with such approximations (see, for
example, [7]). Let us mention (as the most interesting results in that di-
rection) the following classical results. The Weyl-von Neumann theorem
states that, for any selfadjoint operator A, a perturbation Y for which
A +Y is diagonal can be found with the arbitrarily small Hilbert-Schmidt
norm ||Y|l, (7], [8] compare also [1], [4], [5], [6]). Voiculescu in his theorem
states the same for any normal operator A. His proof is more algebraic (and
more complicated). Both those results have a number of extensions and ap-
plications [9]. Some other aspects of compact perturbations can be found
in [2].

In that note we show, by an extension of the method of von Neumann,
that his classical result can be improved in the following way. One can require
that the perturbation Y of a selfadjoint operator A (with ||Y||, arbitrarily
small and 4 + Y diagonal) can additionaly satisfy Y P = 0 for any given
finite-dimensional orthogonal projection O (Theorem 2.3).

We also show that the classical von Neumann theorem gives an analogous
approximation for any projection I (not necessarily selfadjoint). Namely,
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there exists an operator Y such that ||Y||, is arbitrarily small and

I+Y =3 (he)ei+hifi),hi€C
for some orthogonal system {e;} U {f;}, i.e., [ +Y is a block-diagonal pro-
jection, as simple as possible (Theorem 3.1).

It seems interesting to obtain the perturbation Y in the Voiculescu the-
orem (and in our Theorem 3.1 for projections) with the additional require-
ment that Y P = 0 for a given finite-dimensional orthogonal projection P.
This will be done in the next part of the paper.

2. Extension of the Weyl-von Neumann theorem
Let H be a separable Hilbert space.

2.1. THEOREM ( Weyl-von Neumann [6], [7], [8]). If A be a selfadjoint
(possibly unbounded) operator on H and if € > 0, then there ezists a selfad-
joint operator Y with the Hilbert-Schimdt norm ||Y||, < €, such that A+Y
is a diagonal (selfadjoint) operator.

The following lemma is just an extension of the classical technical propo-
sition, crucial in the von Neumann reasoning ([7], X §2, Lemma 2.2).

2.2. LEMMA. Let A be a selfadjoint operator in H. For any u > 0 and
an orthonormal system fy,..., fn, there exist an operator Y and a finite-
dimensional orthogonal projection T, such that:

(i) dimY < 4%, Y| < u,
(i) TLf;=0,i=1,...,n,
(iii) A+Y is reduced by TH,
(iv)Yfi=0,i=1,...,n.

Proof. Assume that A = fol AdE()) is the spectral representation of A.
This is a harmless assumption involving no loss of generality. Let m be a
positive integer (to be determined later).

Write g; = Af;, ¢ = 1,...,n. Let E; be the projection E([ﬁ—l,%]),
1<j<mand E, = E([21,1]) and let fi; = E;fi, gij = E;jg9i, j =
1,...,m,i = 1,...,n. Let T},57 = 1,...,m, be the orthogonal projection
whose range is the span of the vectors fij,..., fnj, 91j,.-.,9n;. For any
j=1,...,m we have E;T; = T}, that is,

We shall denote T =Ty + T, + ...+ T,. Observe that T is the orthogonal
projection in the subspace spanned by fi;, gij, ¢ =1,...,n,7=1,...,m.
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Let —Y = TAT+ 4+ T+ AT. We have
(1) dimY < 2dimT < 4nm.

By the definition of Y, the perturbed operator A 4+ Y is reduced by TH.

As Afij = gij» j = 1,...,m, ¢ = 1,...,n we have Y f;; = 0, thus
Yfi=3,;Yfi;=0.

It remains to prove (i). Observe that YE; = (-TAT+ — T+AT)E; =
E;Y, hence Y = YT E;Y = 3, E;YE; and |[Y]| = max;||E;YE|| <
2max; || E;(A - DE;]| < 2.

If m> %, then, by (1), we have (i).

2.3. THEOREM. Let A be a selfadjoint bounded operator in H. For anye >
0 and a finite-dimensional orthogonal projection P, there exists a selfadjoint
operator Y in H with the Hilbert-Schmidt norm ||Y ||, < ¢, such that A+Y
is a diagonal operator (i.e., the operator A +Y has a pure point spectrum),
and YP = 0.

Proof. One may assume that A = fol AdE()) is the spectral represen-
tation of A. Let P be an orthogonal projection, dim P = n and fy,..., fa
an orthonormal system in PH. Suppose that ¢ > 0.

Step 1. Apply Lemma 2.2 to p such that /mg < €. The result is the
finite-dimensional orthogonal projection Ty and the operator Yy, such that
A+ Y, is reduced by TpH,

I¥oll < p; dim ¥ ssg, Tifi=0,i=1,...,n;

: £
||Y0”2 < ”YO” Vdim Yp < 5

Step 2. Apply the Weyl-von Neumann theorem to the part of the bound-
ed operator A + Yy, acting in the subspace (1 — Ty)H. The result is the
selfadjoint operator Y} in (1—Tp)H; with the Hilbert-Schmidt norm ||¥;||, <
£/2 and the diagonal operator A+ Yy +Y; in (1— Py)H. Define Y = Y5 +Y;
to finish the proof.

2.4. Remark. The perturbation Y in Theorem 2.3 can satisfy ||Y]|_ < ¢
for any Schatten norm || -{{,, p > 1, (instead of |Y||, < ¢). As usual ﬁY||p

denotes (3", |An|?)!/? according to the representation of a compact operator
Y- =3 An(:, en)o, for some orthonormal sets {e, } and {¢,} in H [11]. For
details (and other extensions) see [7, X §2.2]. In consequence, it is obvious
that, in our Theorem 2.3, any Schatten norm |f-||,, p > 1 can be used
instead of the Hilbert-Schmidt norm || - ||,.
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3. Approximation of a projection

In a Hilbert space H, projections which are not necessarily selfadjoint
play an important role. It is enough to remark that an operator A similar to
a selfadjoint one (A = TBT~! with B = B*; T,T~! € B(H) has the form
fZ_AdE()), where E() is a spectral family of projections (i.e. || E(})|| are
uniformly bounded and E(A)E(A) = E(A1) = (E(M))” for A; < A).

By analogy to a selfadjoint diagonal operator A = ) ; Aj€;, A; € R, where
{e;} is an orthonormal system, we shall consider the projection of the form

(2) I¢) = D (eae + M),
where {e;} U {fi} is an orthonormal system, to have an equally elementary
form.

In this section, as a corollary from the Weyl-von Neumann theorem we
obtain

3.1. THEOREM. Let I be a projection in H. For each ¢ > 0 there erists an
operator Y in H with the Hilbert-Schmidt norm ||Y||, < ¢, an orthonormal
system {e;} U {f;} in H and a sequence of positive numbers {a;}, such that

I+Y =) (eei+aifi).
iEN

Let us begin with some elementary properties of projections. An arbi-
trary projection I is uniquely described by two closed subspaces K, F of
the space H which are, respectively, the kernel and the set of fixed points
of the operator I:

Iz=2&1zc¢€ f’,
Iz=0&z¢ K’,
forallz€¢ H.Then K+ F=H,KnF = 0.
Two orthogonal projections P, () are said to have a generic position if
PAQ=PAQt*=PtAQ=PtAQ =0

3.2. THEOREM (Halmos). ([3, Theorem 2}, [10, V, 1]). If orthogonal pro-
jections have a generic position, then H = L & L and, according to this
representation, we have

i, 0 s
P = =
[ 0 0] » ¢ [sc 52}
forsome operators s, cmL 0<s,0<ckers=kerc=0ands?+c? =1g.

Let F = FH and K = KH be, respectively, the set of fixed points and
the kernel of some projection I, with some orthogonal projections F and K.
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Then
F = 1 EB 0 @ F3,
K=0018 K3
according to some representation

H=H,®oH,9 H3

and, moreover, F3, (3 have a generic position in Hj3. Therefore it is sufficient
to deal with an approximation of a projection I for which F, K have a generic
position. We shall call such an I generic position.

It is easy to verify that a generic projection can be represented in the
form

1, -¢

I= $

) s
according to a suitable representation H = L @ L. Here £ denotes one

selfadjoint unbounded operator in L, £ = fo \/__de(/\)

The spectral measure satisfies E((O 1))=1.

3.3. Proof of Theorem 3.1. Let I be of the form (3). Apply the Weyl-von
Neumann theorem to the operator A = —¢ in the space L. The result is Y’
in H such that [[Y'||, <eand —$+Y' =3 a;if].

It is obvious that we may assume a; to be positive. It is enough to denote

0o Y
Y = :
o o)
Then
1; —<4Y 1 . a; f!
I=y= [OL "o ] B [OL Z10 f,] =2 (hedle +aify)
where ¢; = [£], fi = [}){]-
References

(11 J.D. Berg, An exstensions of the Weyl-von Neumann theorem to normal operators,
Trans. A.M.S., 160 (1971), 365-371.

[2] S.Elsner,S. Friedland, Variation of the discrete eigenvalues of normal operator,
Proc. A.M.S,, 123 (1995).

[3] P.R.Halmos, Two subspaces, Trans. A.M.S., 144 (1969), 381-389.

{4] P.R. Halmos, Limits of shifts, Acta Sci. Math. (Szeged), 34, (1973), 131—139.

[5] P.R. Halmos, Ten problems in Hilbert space, Bull. A.M.S., 76 (1970), 887-933.

[6] P.R. Halmos, V. S. Sunder, Bounded Integral Operators on L? Space, Springer
Verlag (1978).

[7] T.Kato, Perturbation Theory for Linear Operators, Springer-Verlag (1966).



634 E. Ignaczak

[8] J. von Neumann, Charakterisierung des Spektrums eines Integraloperators, Her-
mann (1935).
[9] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine
Math. Pures Appl., 21 (1976), 97-113.
[10] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, N.Y., Basel (1990).

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF SZCZECIN
al. Piastéw 17

70-310 SZCZECIN, POLAND

Received April 10, 1996.



