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THE WEIERSTRASS-TYPE CONDITION FOR A MINIMUM
IN A BOLZA OPTIMAL CONTROL PROBLEM

Introduction

The main aim of this paper is to extend the field theory from the classical
calculus of variations in order to obtain the Weierstrass-type conditions for
a minimum in a Bolza optimal control problem in the case when a functional
whose minimum we want to find and all functions occuring in the constraints
do not depend explicitly on the parameter . The analogous problem was
considered by V. Velicenko in some of his paper, but very strong assumptions
about the smoothness of functions and the assumption that the set U of
values of controls is open are too strong for optimal control problems. This
paper is a genaralization of chapter II in part II of Young’s book [14] and it
deals with a new field theory - theory of concourse of flights. This theory is
more useful in optimization problems because it is free from a great number
of assumptions about smoothness, one-to-one covering and openess of a set
of trajectories which satisfy the maximum principle. The Hilbert integral
is defined here but in a new, more general sense, and it is shown that the
Hilbert integral does not depend on the path of integration when there exists
a cocnourse of flights. On this basis, a sufficient condition of Weierstrass-
type for a minimum is formulated and conections of the Hilbert integral with
the value function, Hamilton-Jacobi equation and the K-function is shown.
Moreover, the practice construction of the optimal feedback control is given.

1. Preliminary notes and assumptions

Let L be the family of Lebesgue measurable subsets of the interval {0, 1]
and B™ — the family of Borel subsets of the space R". Denote by L x B”
the o-algebra of subsets of [0,1] x R" which is generated by the cartesian
product of subsets of the families Z and B".

Let f: R*x R™" — R™and f°: R® x R™ — R be functions of variables
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(z,u) which are Lipschitz with respect to z when u is fixed, i.e.

| f(z1,u) = f(z2,u)|| < Eaflza — 22| ,
11021, u) — fO(22,w)|| < kalzy — 22

for some constants ky and k, with u fixed, and Borel measurable with re-
spect to u when z is fixed. Let [ : R® — R be a function which is lower
semicontinuous. Denote by ¢y any point of the interval [0, 1].

DEFINITION 1.1. A Lebesgue measurable function « : [to,1] — U(t),
where U(t) is any subset of R” for each fixed ¢ € [tp, 1], will be called an
admissible control or a control.

We assume that the graph of U, i.e. {(¢,u) € [to,1] x R" : u € U(t)}, is
L x BT-measurable.

DEFINITION 1.2. The admissible trajectory corresponding to an ad-
missible control u : [t,1] — U(t) is an absolutely continuous function

z : [tp, 1] — R™ such that f(z(t),u(t)) is a summable function, the value
I(x(1)) is finite and

(1.1) &(t) = f(z(t),u(t)) for t € [to, 1] a.e.
A pair (z(t),u(t)), t € [to,1], is called an admissible pair when u(t) is an
admissible control and z(t) — the admissible trajectory corresponding to u.

We shall consider the problem of finding an admissible pair (z(t), u(t)),
t € [0, 1], such that the functional

(1.2) I(z,u) = (2(1) + | f((®), u(¥)) dt

0

attains its minimum along all admissible pairs for which z(0) = 2o where
Zo is any fixed point in R™.

DEFINITION 1.3. An admissible pair (z*(t), u*(t)), t € [to, 1], will be said
to satisfy the mazimum principle if there exists an absolutely continuous
conjugate function y : [¢g, 1] — R™ such that

(13) —3(1) € y()d: F(z™(2), w"(1)) = 9 f(a*(1), u™(1)) for ¢ € [to, 1] ace.,

sup {H(*(8), (1), ) u € U(1))
=0 fortelty,1]ae,

(14)  H(2™(1),y(1),w (1))

(1.5) —y(1) € 9l(z(1)),
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where 0. f, 0, f° are generalized jacobians of the functions z — f(z,u(t))
and ¢ — fO(z,u(t)), respectively (which exist on the assumption that f,
fO are Lipschitz functions), dl(z) is the generalized gradient of I(z), and

H(a(t), y(t), u(t)) = y(t)f(=(t), u(?)) = fO(x(t), u(t)).

From (1.4) we have
(1.6) y() f(2* (1), u*(t)) — fO(z*(t),u*(t)) = 0 for t € [to, 1] a-e.
DEFINITION 1.4. A pair
(z(t), u(t)) for t € [to, 1]

which satisfies the maximum principle will be called a line of flight, and a
triple

(2(2), y(1), u(t)) for t € [to, 1]

such that the pair (z(t),u(t)) is a line of flight and y(t) the conjugate func-
tion corresponding to it — a canonical line of flight.

An arc of line of flight (canonical line of flight) is any open arc of line of
flight (canonical line of flight) i.e. functions z(t), u(t) (resp. z(t), y(t), u(t))
defined on an open interval (¢~,t%) C [to, 1].

Denote by D a set which is covered by trajectories of lines of flight. For
any point z; € D, we define a function

1
(1.7) J(@1) = Wz(1))+ | fO(a(t), u(t)) dt

M
along a line of flight (z(t), u(t)), ¢t € [/, 1], such that z(¢') = 4, t' € [0,1].
Through the point z; there can pass more than one trajectory of a line of
flight, so from among all lines of flight (z(t),u(t)), ¢t € [¢',1], z(¢') = =z,
t' € (0,1.], we shall consider only those for which functions (1.7) attain the
same value. This condition is called synchronization (see [14], p. 266).

2. Spray of flights

Let G be any open subset of R™. We shall consider two functions ¢~ (o)
and t* (o) defined on G with values in [0, 1], such that ¢¥ (o) is a C-function
and, for all ¢ € G, we have t=(0g) < t*(0).

Denote by S, S, St the sets of pairs (¢,0) where ¢ € G and t satisfies
the conditions

0<t (o)=t, t(o)<t<tt(o), t=tt(a)< 1,

respectively. The notation |S| will be used for the union of the sets §—, 5,

S+,
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Denote by §*~, §*, §** the sets of triples (¢, 0, 3) where (2, 0) satisfies
the conditions from the definitions of $~, §, §t, respectively, and (7, 8) € G
where G is a standard projection of G in the following sense: for any point
(¢2,8%) € G and any sufficiently small curve v C G issuing from o, there
exists a continuous function B(o) defined on 7 such that 3(¢°) = 8° and
the point (o, 3(c)) for o € 7 lies in G (see [14], p. 266). The notation |5*|
will be used for the union of the sets §*~, §*, §**.

Let Z denote a family of arcs of lines of flight defined by the functions

(2.1) z(t,0), u(t, ), (t,0) € S.

The parameter o is constant along any fixed arc of line of flight defined on
the interval (o) < t < t* (o).
Let Z* denote a family of canonical line of flight defined by the functions

(2.2) z(t,0), y(t, o0, B), u(t,0), (¢t,0,8) € ¥,

such that (2(t,0),u(t,0)) € Z and y(t, 0, 8) is the conjugate function corre-
sponding to it. The parameter § appears here because the conjugate function
defined by (1.3) with condition (1.5) is not unique.

Let us assume that functions (2.1) and (2.2) can be extended to the
sets |.S| and |§™*|, respectively. This means defining them for ¢ = t~ (o) and

=tt(0),0 € G.

Denote by E-, E, E*, |E| the sets of values of the functions z = z(t,0)
with (¢,0) from S , S, 8T, |S], respectively, and by E*~, E*, E**, |E”|
the sets of values of those triples (z(t, o), y(t, 0, B),u(t, o)) for which (t, a, )
belongs to $*~, §*, §**, |S*|, respectively.

For (t,0) € |5], let us put

fot,0) = £(=(t, ), u(t, ),
f(t,0) = f(z(t,0),ult, o)),
J*(0) = J(2(t*(0),0)).
Assume that the followmg hypotheses are satisfied:
H1. The functions f°(t,0), f(t o) are continuous in |S| and there exist
continuous derivatives f° (t,0), f,(t,0) in |S| and derivatives

£ 2z, u(t,0)), & f(z,u(t,0)) for each = z(t,), which satisfy the
conditions

Pt ) = - @t ) + 1ol )20l ),
fo(tv o)= a%f(zv u(t, o))+ folz,ul?, 0))z.(t, 0),
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and the functions z — f°(z,u(t,0)), ¢ — f(z,u(t,0)) are strictly dif-
ferentiable in z = z(t,0) for (t,0) € S.

H2. The function y(t,0, ) is continuous in |5*|.

H3. The function z(t,o)is a C!-function in || and u(t, o) is a Borel function
in |S].

H4. The mappings S~ — E~, S — F defined by (t,0) — z(t, ) are descrip-
tive, i.e. the following condition is satisfied for any point (¢°,0°) € S~
((°,0°) € S): for any rectifiable curve C C E~ (resp. C' C E) issuing
from z(t°, 0°), there exists a rectifiable curve I' C §~ (T’ C §) issuing
from (%, 00) such that any sufficiently small arc of the curve C issuing
from z(°,0°) is the image of a sufficiently small arc of the curve I
issuing from (°,0°) under the mapping (¢,0) — z(t,0) (see [14], p.
266).

DEFINITION 2.1. Let us assume that the conditions from the definitions
of the functions ¢~ (o) and t*(o) and the sets G, G as well as hypotheses
H1 — H4 are satisfied. Then the family Z will be called a spray of flights
from E~ to ET and the family Z* — a canonical spray of flights from E~
to Et.

3. The Hilbert integral
Denote by D, as in section 1, a set covered by trajectories of lines of
flight.

DEFINITION 3.1. For any subset A C D, the set A C R2” of points (z,y)
will be called the canonical set corresponding to A if any point (z, y) lies on
a canonical line of flight and z € A.

For 2 € D, denote by Y(z) the set of those values of the conjugate
function y for which (z, y) is a point of the canonical set D corresponding to
D. In this way, Y (z) can be a multifunction. Denote by y(z) a single-valued
function defined in D which has its values in Y(z) for all z. For any fixed
spray of flights Z, we denote by Yz(z), for ¢ € |E|, the set of values of
the function y(¢,0,0), (t,0,8) € |S*|, such that the pair (z(t, o), y(¢,0,0))
lies in the canonical spray of flights Z*, and z = z(t, o). Denote by yz(z),
z € |E|, a single-valued function which has its values in Yz(z) for all z.
The single-valued functions y(z) and yz(z), defined as above, will be called
selections.

DEFINITION 3.2. Any rectifiable curve C ¢ D will be called a bounded
curve if the function J(z) defined in (1.7) is bounded along C.

For any bounded rectifiable curve C C D with the description z = v(s),
0 < s < b, where s is the arc length parameter, we define a curvilinear
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integral

b

dv
3.1 z)dzr = v(8))—ds
(3.1) fate)ds = fulolD;

for a selection y(x) for which y(v(s))4% is a measurable function of the arc
length s along C'. Integral (3.1) will be called the Hilbert integral.

Our main aim is to show the circumstances when integral (3.1) does
not depend on the choice of the bounded rectifiable curve C lying in D
with fixed endpoints z;, 22 in D or on the choice of the selection y(z)
with values in Y (z). Note that if the expression y(v(s))j—‘s’ takes the same
value for all selections y(z) with values in Y (z), z € D, on a fixed bounded
rectifiable curve C, then Hilbert integral (3.1) does not depend on the choice
of selection y(z) with values in Y (z).

DEeFINITION 3.3. a) For all z € D, a direction © such that, for all
selections y(2) with values in Y(z), a projection y@ onto this direction is
this same will be called a direction of univalence (see [14], p. 270).

b) We term curve of univalence a rectifiable curve C' C D such that, for
almost all points of C, the direction of the tangent to C is a direction of
univalence.

¢) We shall call A C D a set of univalence if all bounded rectifiable
curves C' C A are curves of univalence.

It follows from the introduced definition that, for any bounded rectifiable
curve C lying in a set of univalence A, Hilbert integral (3.1) does not depend
on the choice of the selection y(z) with values in Y(z), € A. This integral
can be expressed as

b
{y(e) dz = {y(v(s))O(s) ds

C 0

where v(s) is the arc length parametrization of C and © = 9(s) = L is a
direction of univalence almost everywhere on C.

DEFINITION 3.4. A set A C D will be called an ezact set if it is a set
of univalence and, for any bounded rectifiable curve C' C A with endpoints
z1, T2, we have

| y(z) dz = J(21) = J(=2)
C

for all selections y(x) with values in Y (z).
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Of course, the notations described above can also be carried over to the
spray of flights Z.

DEFINITION 3.5. a) For all z € |E|, a direction @ such that, for all
selections yz(z) with values in Yz(z), a projection yz© onto this direction
is this same will be called a direction of relative univalence.

b) We term curve of relative univalence a rectifiable curve C C |E| such
that, for almost all points of C', the direction of the tangent to C is a direction
of relative univalence.

c) We shall call A C |E| a set of relative univalence if all bounded
rectifiable curves C C A are curves of relative univalence.

d) A set A C |F| will be called a relative ezact set if it is a set of relative
univalence and, moreover, for any bounded rectifiable curve C C A4,

(3.2) {vz(2) dz = J(21) - J(22)
C

for all selections yz(z) with values in Yz(z), ¢ € |E|, where z; € |E|,
zy € |E| are endpoints of the curve C.

4. Auxiliary lemmas

Let us suppose that there exists a spray of flights Z from E~ to E¥ such
that Et is a relative exact set.

In our next cosiderations we shall take only those curves C which are the
images of curves I' in the (¢, 0)-space under the mapping (t,0) — z(¢,0) and
those selections y(z) which have the form y(¢,,3) on those curves, where
B = B(o) is a continuous function chosen according to the definition of the
standard projection.

_ LemMma 4.1. If E* is a relative ezact set, then there exists a derivative
Jt (o) in G and

41 Th(o) = =(F°(t*(9),0)t%(0) + y(t¥(0), 0, B)zo(t* (0),0))
for (o,8) € G.

Proof. Denote by (¢°,0°, 8°) any point of $** and by I' any sufficiently
small rectifiable curve in S+ with the description t = t*(o}) where o}, varies
from o to o! along the k-coordinate of 0. Denote by C the image under the
mapping (¢,0) — z(t,0) of the curve T in E*, with endpoints z(¢°,0°) and
z(t!,0') where t! = t+(g!). As E¥ is a relative exact set, by (1.6), for a
continuous function (o) chosen according to the definition of the standard
projection and for a selection y(z) which has the form y(¢,0,8) on I, we
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have

(42)  JH(o) - FH(ah) = I((°,0%) - J(z(t', o)) = | y(z) do
C

y(t,0,08(0))z4(t,0)dt + y(t,0,8(0))z.(t,0)do

= |

r

= | f°t,0)dt + y(t,0,8(0))z,(t,0) do

T

g( ot 0)tt,(0) + y(t, 0, 8(0))z,(t, 0)) do.
r

The function fO(t,0)tt (o) + y(t,0,8(0))zs(t,0) is a continuous function
on I', so there exists a limit

g T (FO(t, 0)t* o (o) + y(t, 0, B(0))zo(t, 0)) do)

ol—o0 (0’0—0'1) ’

and hence there exists a limit
j+ 0 J+ 1
g (@) = J¥(e)
ol 00 o0 — ol

Thus
—T¥5,(0) = FO(t,0)tF o, (0) + 4(2, 9, 8(0))z0, (1, 0)

at (t%,0°, 3%). Since the point (¢°, 0%, 3%) and the k-coordinate of o are any
point of $** and any coordinate of ¢, and t = t¥ (o) in S**, therefore (4.1)
holds. m

LEMMA 4.2. Let T’ be any rectifiable curve in |S| with endpoints (1°,0°),
(t',01). Then
1

4.3) | f(t,0)dt - (g 7o (r,0) dr) do = J(2(1°,0°)) — J(z(t*,0?))
r

t
where
t*(a)

@44) (f(ro)dr= | fo(ro)dr+ fo(t*(0),0)t* o () + T (o).

t

Proof. Consider the function

(4.5) R(t,o0) = S fo(r, 0% dr — Sfo(‘r o)dr

10
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defined in ||, where

1 t*(o)
(4.6) {F(roydr="| f(r,0)dr+ J%(0),

SO

Sfo(r,a) dr = J(z(t,0)).

In virtue of H1 and Lemma 4.1, the function R(t,0) has the continuous
derivatives with respect to t and o in |S|. Moreover,

1
(4.7) fo(t,o)dt — < Sfoa(‘r, o) dr) do

is an exact derivative of R(t,0) with respect to the variables (¢,0) in |S|.

Hence
1

S fot,0)dt - (Sfoa(r, o) dr) do
' t = R(t',0") = R(1°,0°) = J(2(1°,0%)) — J(2(s},01)). m

Note that, under the above assumptions and notations, Hilbert integral
(3.1) takes the form

[ y(e)dz = {y(t,0,B)z.lt, )t + y(t,0, B)as(t, o) do
C r

= S fOt,0)dt + y(t, 0, 8)z,(t,0)do
r

= Sfo(t,a)dt - (Sfoa(r,a) dT) do + S(y(t, a,08)z,(t,0)+ S f% (r,0)dr)do.
r t r ?

In consequence, by (4.3), the relative exactness condition (3.2) reduces to
the vanishing of the expression

Vu(t,0,8)z0(t,0) + | F%(7,0) dr) do
r t

or, equivalently, to the vanishing of

1
y(t7 g, IB)zU(ta 0’) + Sfoa(T, 0') dr.
t
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LEMMA 4.3. For all (t,0,3) € S**, the expression

1
y(t,0,8)z.(t,0) + S fOU(,r, o)dr

t
vanishes identically.

Proof. According to (4.1), we have
T5(0) = =(f(t,0)t"o(0) + y(t, 0, B)24(t, )
and from (4.4), for ¢t = t*(0),

1
JH(o) = | F%(r,0) dr = f(t+(0),0)t o (o).

Hence, for t = t* (o), we have
1
; "00(7_, o)dr— fo(t’ U)t+o(0) = _fo(ta U)t+d(0') - y(t,0,8)z,(t, 0),

t

1
y(tv g, ﬂ)za(ta U) + Sfocr(‘ra U) dr=10
1

for (t,0,6)€ S**. m

LeEMMA 4.4. Let C be a rectifiable curve lying, together with its terminal
points, in E= or E. Then C s a bounded curve. Moreover, there ezists a
bounded, Borel measurable selection yz(z) along C.

Proof. By H4 for each point of C, there exists a neighbourhood on C
such that it is the image of some curve T', lying entirely in S~ or S, under
the mapping (t,0) — z(t,0). On any such curve the value of the function

t*(a)
J(=@t,a)= | fr,0)dr+ J¥(0)

t

is bounded. Indeed, J* (o) is a continuous function of a variable o, and

S:Jr(g) fO(T,a) dr by H1, is a continuous function of variables (t,0); so, on
the curve " which is a compact set it is bounded. It then follows from Borel
covering theorem that J(z(t, o)) is bounded on C.

In proving the second assertion, without loss of generality we may assume
the curve C lying in E~ or F so small that it is the image of a curve I lying
in §7 or S, respectively, under the mapping (t,0) — z(¢,0).
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Denote by F(z) a multifunction defined on C with values on I' in the
following way

F(z)={(t,o) €Tz =z(t,0)}.

For any fixed z € C, the set F(z) of values of this multifunction is closed
in R*™ ags the preimage of the one-element set {z} under the continuous
mapping. Denote by B¢ a family of Borel subsets of R™ which are entirely
contained in C. This family B¢ is the o-algebra of Borel sets on C (see [7],
p. 77). For any compact subset A C T, the set F~!(A) is compact. Indeed,
we have

A ={zeC:Fz)n A+ 0}
={zeC:{(t,o)eT:z=2z(t,0)} N A # 0}
={zeC:z=2z(to)and (t,0) € A},

so F~1(A) is the image of the compact set A under the continuous map-
ping. In this way, for for any compact set A C I, we have F~1(A) € Bc.
From proposition 1A from [9], p. 160 we have that F is a Borel measurable
mapping. By proposition 1B from [9)], p. 161 (see also [2], pp. 64, 74), the con-
dition of the measurability of F is equivalent to the fact that there exists a
countable (or finite) family (¢,(z), on(z)), n € T, of Borel measurable selec-
tions such that (¢,(z),0n(2)) : C — T and F(z) = {(tx(z),0n(z)), n € T}
for all z € C. As the function y(t,0,0), where 3 is a continuous function
of variable o chosen according to the definition of the standard projection,
is continuous, thus the composition y(t,(2),on(z),8(on(z))) = yz(z) is a
Borel measurable function. By the above, yz(z) is bounded. =

LEMMA 4.5. On each arc of the canonical spray of flights Z*, the expres-
sion

1
y(t,0,0)z,(t,0)+ S fo(r,o)dr
t

takes a constant value (for fized (o,8) and for all t € [t~ (0),t%(0))).

Proof. Let ({,4,3) be any point of $* and #(t), §(t), @(t) the corre-
sponding values of the functions z(t, &), y(, &, 3), u(t,&) for t € [,t+(5)).
Let o; denote any coordinate of the vector o € G. By integrating (1.1) with
respect to t in an interval [f,1), t € [{,11(6)), then differentiating in o; and
again differentiating in ¢, we have

2 i

t
To,(t,0) — 2,,(1,0) S
: 80,

and
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J -
(4. gi7ei(t:0) = - f(2,0)

at the point (¢,5), t € [t,t7(5)).
Multiplying (1.3) by z,,, we have at (t,6), t € [{,t+(5)),

(4.9) z,,(2, 0)%@(75) = fOo(8(2), 6t))ao, (t, 0) = §(8) fo(#(2), 6(t))2o, (2, 0).

Multiplying (4.8) by §(t) and adding the result to both sides of (4.9), we
obtain at this point

(1) 20, (1,) + 51 i(1)20(1,0) a
= fO(&(t), a(t))zo, (1, 0) + @(t)a—a;f(t, o) — §(t) f=(#(t), Ut))z,,(t, 0)

and, by H1,
2 (#1120, 1,0)) 8 a a
= 307 Ft,o)- 90; FO(&(2), u(t, o)) + g(t)a—m F(3(1), u(t, o))

(110) (@0 (t,0)) - 5 F(t,0)

= (1) J@0),u(t, ) - 5 (60, u(t,0)

at (t,6) for almost all ¢ € [{,¢7(6)). The triple (&(2),9(t), @(t)) satisfies
the maximum principle for almost all ¢ € [{,¢+()), so it satisfies condition
(1.4). The supremum on the right-hand side of (1.4) is attained for those u
for which u = u(t,0), 0 € G, when t € [{,#1(8)) is fixed, thus the necessary
condition for the extremum is satisfied:

0 0
(1) o £(8(0),ult, ) = 5~ £(E(D), u(t,0) = 0
at (t,o) for almost all ¢ € [,¢7(6)). From (4.10) we obtain

(4.11) 510020, (1,) = 51,0 =0

at (¢,&) for almost all ¢ € [{,(5)). Integrating equality (4.10) in the interval
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[£,4*(6)) and taking account of (4.11), we get

t+(5)
iDza (o)t | ot 0)dt = 5 (8))20,(£(8),0)

t

at (t,8), t € [{,t1(8)), and, according to (4.4),

1
(4.12)  §(D)es, (i, 0)+ x_f"a..(t,a) dt
= y(t1(8), 5)z0, (t7(5),8) + fO(t1(6),8)tT o(5) + T ()

where the left-hand side is calculated at the point (f,5). The right-hand
side of (4.12) does not depend on ¢ and depends only on & and 3. Hence the
value of the expression

1
y(t,5,B)z0,(£,6) + | %, (t,0) dt
i

does not depend on the choice of the point i. m

LEMMA 4.6. If the identity

y(t,0,8)z,(t,0) + Sf (7,0)dT =0

holds in S*~ (or §*), then E~ (resp. E) is a relative ezact set.

Proof. On account of the similarity in proving both assertions of the
lemma, we shall limit ourselves to the first, i.e. we shall show that, under
the above assumption, the set £~ is relative exact.

Let C denote a sufficiently small bounded rectifiable curve contained in
E~, with the parametric description z = v(s), 0 < s < b, where s is the
arc length parameter. Denote by ©(s) the direction of the tangent to the
curve C defined for almost all s. Let s € [0,b) be any point such that the
function @(s) is approximately continuous at it i.e. it is a point such that,
for each ¢ > 0, there exists a closed set B of values of s such that, for any
sufficiently small interval W = {s:0 < s < é}, we have

(i) |@(s) = O(so)| < efor s € BNW,
(ii)) meas (W — B) < emeas W.

~

Denote & = v(sp), @ = O(sp), § — any element of Yz(%), ({,6,8) — a
point of S*~ such that z(%,6) = %, y(¢,5,8) = §.
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Denote by I a rectifiable curve in S~ such that small arcs of the curve C,
issuing from &, are, in accordance with H4, the images under the mapping
(t,0) — z(t,0) of small arcs ¥ of the curve T, issuing from the point (f,4).
Let us find the parametric description of the curve I' : t = {(A), o = a(}),
0 < X < p, so that the point (f,6) of T' should correspond to the value
Ao € [0, p), where A is the arc length parameter. Let s(A) denote a continuous
increasing function on [Ag, p], such that s(Ag) = sp, which characterizes the
arc length along C, i.e. it satisfies

(4.13) o(s(N)) = 2(§(A),5(\)) for A € [Mo, p].

Let As, AJ denote the corresponding difference in s and in J(z) at the
ends of a sufficiently small curve C issuing from &, and let A = {A : s(A)€B}.
Now, we must only show that
(a) the expression 4< is bounded,
(b) for any sufficiently small arc of the curve C, issuing from the point £, we
have lim a5_.0 % = —30.
Actually, condition (b) gives us that © is a direction of relative univalence
at the point . Moreover, for any selection yz(z) with its values in Yz(z),
¢ € |E|, the equality

dJ(v(s)) _
ds

holds almost everywhere along C' as the point £ is any point of C such that
the function @(s) is approximately continuous, so it is almost any point of
curve C. Besides, by (a), after integrating (4.14) in s we get condition (3.2)
from the definition of relative exactness. Let v be a sufficiently small arc
of T' issuing from the point (&, &), described in the interval P = [Ag, M],
P C [Xo,p). Let AJ denote the value of integral (4.3) along 7. In virtue of
the assumption that yz, + S: f~°a dr =0 in §*7, for 8 chosen according to

the definition of the standard projection and such that §(é) = B, we have

(4.14) ~uz(o(s)) 3o

AJ(z) = sfo(t,a)dt - (Sfoa(r,a) dr) do
= § PP, 8(A)d(N) + y(E(X), 8(), BE(N)))zo(H(A), 5(X)) d5(N).
P

From (1.6) and (1.1) we obtain

FoE),5(0)
= y(#(A), 3(1), B(E(A))FEHN), 5(X) = y((A), 5(N), B(E(N))z(#(A), 5(N)),
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SO

J(z) = Sy(t()\),a()\) B((A)z(E(X), 5(A))di(A)
+y(i(X), 5(2), B(5(X))zo(H(A), 5(A)) d& ().

Now, taking (4.13) into account, we get
(4.15) AJ(z) = [ y(E(2),5(2), B(3(2))O(s(N)) ds(A).
P

The last integral in (4.15) is the Riemann-Stieltjes integral (the function s(X)
is increasing and uniformly continuous). The function y(%, o, 3) is bounded
as a continuous function on the closed interval P, thus there exists a constant
M > 0 such that ||y(¥()),5(}), ,@(a(/\)) | < M for A € [Ag, A1]. Moreover,

O(sO)I = 12320 = 14422)) = 1 (see Tonelli th., (7], p. 180). Hence

and from (4.15) we have H—A—%l” < 2L As and, since —AJ(z) = AJ(z), we

obtain ”%%)-H < M, so the expression 47 is bounded. Moreover

(4.16)  AJ/As—§6
= As™ | (y(E(A), 5(A), B(6(X)))O(s(N)) - §©) ds())
P

I (w(E(X),8(X), B(8(N)))O(s(N) ~ §0) ds(X)

PnA

+4s7h | (y(#(N), (1), B(8(M)))O(s(X)) — §6) ds( ).
P-4

For a sufficiently small P, the function y©@ — 3}@ is bounded on P, thus it
is bounded on P — A and this set has s(A)-measure less than € by (ii). The
set PN A has s(A)-measure at most As and, by (i) and the continuity of y,
we have

ly6 ~ 01| < llllle - &1l + lieflly - 3,

so the value of this expression is at most a fixed multiple of €. The above
implies that the last two terms in (4.16) cannot exceed certain fixed multiples
of an arbitrarily small positive €. In consequence, condition (b) is true. m

LEMMA 4.7. Let Z* be the canonical spray of flights corresponding to a
spray of flights Z. Then E~ and F are relative ezact sets.

Proof. From Lemma 4.5 we have that the expression yz, + S: foa dr
takes a constant value along each arc of the canonical spray Z* and from
Lemma 4.3 we get that in §** this expression vanishes identically. The
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continuity of the function yz, + S: foa dr in |S*| implies that this expression
vanishes identically in $*~ and S*. From Lemma (4.6) we obtain that E~
and F are relative exact sets. m

5.Chain of flights

Up till now, we have considered the fixed spray of flights Z defined in
section 2. Of course, the family of lines of flight may consist of a greater
number of sprays of flights satisfying conditions H1 — H4, with trajectories
contained in D.

DEerFINITION 5.1. A finite or countable sequence of sprays of flights
Z1,23,...,ZNy. ..

with trajectories contained in D will be called a chain of flights, and the
corresponding sequence of canonical sprays of flights

* * *
Zt, 725 D

will be called the canonical chain of flights if, for : = 1,2,...,N - 1,...,
the set E;” corresponding to the canonical spray Z; contains the set E;7;
corresponding to Z[, ;.

It is required here that not only the arcs of lines of flight between indi-
vidual sprays should fit together but also the arcs of canonical lines of flight
should have this property.

DEFINITION 5.2. The sets E; and E; corresponding to the spray of
flight Z; will be called the constituent sets of the chain.

If the set E or E; of the spray Z; is a relative exact set, we shall call it
a relative eract constituent set for the given chain.

If the set S7+ corresponding to Ey has the form St ={(t,0,8): t =
1, (0,8) € Gy} where G is such that its standard projection is Gy corre-
sponding to spray Z, then the chain will be called a distinguishable chain.

Note that if, in any fixed spray of flights Z;, the set E1+ is relative exact,
then, according to Lemma 4.7, the sets E; and E; are relative exact. Then
the set E;CH corresponding to the spray Z;,; is also relative exact as a subset
of E. It is easy to show by induction that if the set Ef of any fixed chain
of flights is relative exact, then all constituent sets of this chain are relative
exact.

DEeFINITION 5.3. A chain whose all constituent sets are relative exact
will be called a relative exact chain.

Assume that, apart from hypotheses H1 — H4, the following condition
is satisfied:
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H5. The function I*(g) = I(z(1,0))has a continuous derivative for o € G;.
LEMMA 5.1. Any distinguishable chain is relative ezact.

Proof. At first, we shall show that, in any distinguishable chain, the

expression
1

y(t7 U? lg)zo'(t7 0) + S fOO'(T7 U) dT

is equal to 0 at any point (t,0,03) € S1*, so it is equal to 0 at any point
(1, 0,08) where (0,0) € G1. Indeed, we have

1
y(1,0,8)z4(1,0) + | /% (r,0) dr
t

t*(0)

=y(1,0,8)z,(1,0)+ | fo(r,0)dr+ (¢t (o), 0)tto(0) + TH(0)
t+(o)

=y(1,0,8)z,(1,0)+ 11 ,(0).

From (1.5) it follows {see [4], p. 61) that

(-y(1,0,8), ~1)(z4(1,0),1%4(0)) = 0,
thus

1
y(lvaw@)za(l, U) + Sfoa(T,O') dr=0
t

in §;*. From the proof of Lemma 4.7 and from Lemma 4.6 we get that
the sets F; and F; are relative exact. Taking account of the considerations
preceding Definition 5.3, we have that E;f is relative exact. m

6. Concourse of flights

Denote by K the family of all bounded rectifiable curves lying in D, and
by D, n = 1,2,..., a finite or countable system of disjoint subsets of D
whose union is D.

DEFINITION 6.1. A curve C € K will be called a fragment if its interior
lies entirely in some D,.

The class of such fragments will be denoted by K.

DEFINITION 6.2. a) Let the final point of C; be the initial point of Cs.
We term fusion of Cy, C2 a curve C' made up of two adjacent arcs consisting
of C1 and C; in that order.
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b) Let C; be a closed curve intersecting Cy. We term embellishment of
Cy by C; a curve C that describes first an arc of Cy, up to an intersection,
then C5 and then the remaining arc of Cj.

c) We term C; the result of trimming or cutting Cy from C if C is
expressible as the embellishment of C; by C; or as the fusion of Cy and Cs,
respectively.

We shall assume that K and K are classes such that if any curve belongs
to one of them, then all arcs of this curve and all inverse arcs belong to this
class. Moreover, we shall assume that the operations of embellishment and
trimming can be carried out countable often and the operations of fusion
only finitely often under the restriction that from elements of K we shall
again obtain elements of K.

Denote by K, a class of curves which are obtained from the elements of
the class Ky after finite operations of fusion and countable of embellishment.
Denote by K5 a class of such curves which are obtained by at most countable
operations of trimming.

In problem (1.1)-(1.2) we want to find a minimum of the functional
I(z,w) in the entire set D. So far, we have had information only about this
functional in sets D, whose union is equal to D. This means that we have
information about I(z,u) in some subclass of curves from Ky when we are
interested in this functional in the class K.

The method described in our paper can be applied only when Ky = K.

DEerFINITION 6.3. If K = K,, then the class Ky will be called a re-
pairable class of fragments and the decomposition of the set D into disjoint
subsets D,, — a repairable decomposition. Then the set D will be termed
the unimpaired union of the sets D,,.

DEFINITION 6.4. We shall term concourse of flights a finite or countable
system of chains of flights such that D is the unimpaired union of the con-
stituent sets of these chains and D — the unimpaired union of their canoni-
cal constituent sets, where by canonical constituent set we understand a set
from the canonical chain corresponding to a constituent set from a chain of
flights.

7. The sufficient condition for a minimum

Let C be any bounded rectifiable curve in D with the description z =
v(s), 0 < s < b, where s is the arc length parameter. We suppose the
following additional hypothesis:

H6. For any bounded rectifiable curve C' in D, there exists a selection y(z)
such that the value of the expression y(v(s))j—g along C'is equal at most
to an integrable function K'(s) of the arc length s of C.
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This assumption, used in the proof of Theorem 7.1, ensures us that the
Hilbert integral exists along any bounded rectifiable curve C in D.

THEOREM 7.1 (main theorem). Let us assume that there ezists a con-
course of flights. Then the set D is ezact.

The proof of this theorem is analogous to that of theorem (29.1) in [14],
p. 280, when we set ¥ = Z, T(z) = J(z).

COROLLARY. Assume that there exists a concourse of flights. Let C be
any arc of an admissible trajectory in D, issuing from z1 = z(t1), t; € [0,1],
and ending at 2 = z(t2), t2 € [0,1], &y < t2. Let y(z) be any selection in
D. Then

Jy(e)dz = J(z(tr)) - J(2(t2))-
C

Proof. According to Theorem 7.1, we have to show that any admissible
trajectory C is bounded. Any admissible trajectory C is the union of a finite
number of fragments from Ky. By Lemma 4.4, along any such fragment the
function J(z) is bounded, so C is a bounded curve. m

The following theorem gives us a sufficient condition for a minimum in
our problem.

THEOREM 7.2. Suppose that there ezists a concourse of flights. Let (z*(t),
u*(t)) be a line of flight defined on [0, 1] which is a member of this concourse
of flights, and z(0) = zo. Then (z*(t),u*(t)) is the pair which realizes the
minimum of the functional I(z,u) relative to all admissible pairs (z(t), u(t))
defined on [0,1], such that x(0) = zo and whose trajectories z(t) are con-
tained in D.

Proof. Let (z(t), u(t)) be any admissible pair defined on [0,1] such that
z(0) = zp and z(t) lies in D for ¢ € [0, 1]. We have

I(z*,u*)— I(z,u)

1 1
= I(z*(1)) + | f(e*(2), u*(2)) dt — U=(1)) — | £°(=(2), u(2)) dt
0 0

1

= J(=o) - (z(1)) - | f°(=(2), u(t)) dt.

0

From the above corollary we get

J(z0) = | y(=)dz + J(=(1)) = | y(z) dz + (2(1))
C C
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where C is an arc of any admissible trajectory, with endpoints zg, z(1). In
any constituent set there exists a Borel measurable and bounded selection
yz(z) (by Lemma 4.4), so, along the trajectory z(t), there exists a measur-
able and bounded selection y(z) (since 2(t) is a finite union of arcs which are
contained in some constituent sets). The composition y(z(t)) is a measurable
and bounded function and, according to (1.1), we get

J(z0) = {y(e())f(2(2), u(t)) dt + (=(1)).

0

Hence
I(z*,u*) = I(z,u) = {(y(z(£) f(2(t), u(t)) — fOz(t), u(t))) dt
0

and, by (1.4)
I(z*,u") - I(z,u) < 0. m

8. Conclusions

1. For any fixed subset T C D, the set T' C R™*" of points (z, u) will be
called a set generated by a line of flight if each point (z,u) of this subset
is contained in some line of flight and 2 lies in T'. For ¢ € D, let us denote
by U(z) the set of those values of u(t) for which (z,u) is a point of the set
D generated by D, and by u(z) — a selection defined in D such that its
values are contained in U(z) for all z. Note that if there exists a concourse
of flights, then the function u(z) described above is an optimal feedback
control.

2. In the set D, the value function is defined as

5(2) = | y(z) de + 1(2(1))
C

where C' is any bounded rectifiable curve in D with endpoints Z, 2(1) and
y(z) is a selection in D. In this way we obtain an effective expression for
the value function S(z). Up till now, only the conditions for the existence
of this function were known (comp. [13]).

3. Let us suppose that D has an non empty interior, and that the value
function S(x) is Fréchet differentiable at the point z € int D. Then dS/dz =
y(z). Indeed, from (4.14) we have

BOEDL ~ ywon e,
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" dS(v(s)) dv
(T - “”“”) Fra
Therefore

dS(z)dz — y(z) = 0.

In this case, there exists only one selection y(z) defined in D. Moreover, we
have

1 1
| £ (2(t), u(2(1))) dt = {y(a(0) f(2(2), ul=(t))) dt

where u(z) is the optimal feedback control from conclusion 1. From these
considerations we obtain the Hamilton-Jacobi equation

H(z,y(z), u(z)) = 0.

4. Note that the Hilbert integral {,y(z)dz where C is any bounded
rectifiable curve in D and y(z) — a selection in D, satisfies all conditions
from the definition of the K-function and, in this way, we have explicit form
of the K-function in a Bolza problem.
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