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Introduction 
The main aim of this paper is to extend the field theory from the classical 

calculus of variations in order to obtain the Weierstrass-type conditions for 
a minimum in a Bolza optimal control problem in the case when a functional 
whose minimum we want to find and all functions occuring in the constraints 
do not depend explicitly on the parameter t. The analogous problem was 
considered by V. Velicenko in some of his paper, but very strong assumptions 
about the smoothness of functions and the assumption that the set U of 
values of controls is open are too strong for optimal control problems. This 
paper is a genaralization of chapter II in part II of Young's book [14] and it 
deals with a new field theory - theory of concourse of flights. This theory is 
more useful in optimization problems because it is free from a great number 
of assumptions about smoothness, one-to-one covering and openess of a set 
of trajectories which satisfy the maximum principle. The Hilbert integral 
is defined here but in a new, more general sense, and it is shown that the 
Hilbert integral does not depend on the path of integration when there exists 
a cocnourse of flights. On this basis, a sufficient condition of Weierstrass-
type for a minimum is formulated and conections of the Hilbert integral with 
the value function, Hamilton-Jacobi equation and the K-function is shown. 
Moreover, the practice construction of the optimal feedback control is given. 

1. Preliminary notes and assumptions 
Let L be the family of Lebesgue measurable subsets of the interval [0,1] 

and Br — the family of Borel subsets of the space R r . Denote by L x Br 

the (T-algebra of subsets of [0,1] x R r which is generated by the cartesian 
product of subsets of the families L and Br. 

Let / : r x R r - > r and / ° : R n x R r -» I be functions of variables 
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(x, u) which are Lipschitz with respect to x when u is fixed, i.e. 

\\f(xi,u)~ f(x2,u)\\ < fcillxi -X2II , 
|| f°(x1,u)-f°(x2,u)\\<k2\\xl-x2\\ 

for some constants k\ and k2 with u fixed, and Borel measurable with re-
spect to u when x is fixed. Let I : R n —• R be a function which is lower 
semicontinuous. Denote by to any point of the interval [0,1]. 

D E F I N I T I O N 1.1. A Lebesgue measurable function u : [¿0» 1] —• U(t), 
where U(t) is any subset of R r for each fixed t £ [¿o51], will be called an 
admissible control or a control. 

We assume that the graph of U, i.e. {( / ,u) £ [io, 1] x R r : u £ U(t)}, is 
L x immeasurable. 

D E F I N I T I O N 1.2. The admissible trajectory corresponding to an ad-
missible control u : [io,l] —• U(t) is an absolutely continuous function 
x : [io>l] —• such that f°(x(t),u(t)) is a summable function, the value 
l(x(l)) is finite and 

(1.1) x(t) = f (x( t ) , u(t)) for t e [t0,1] a.e. 

A pair (x(t),u(t)), t £ [fo?l]5 is called an admissible pair when u(t) is an 
admissible control and x(t) — the admissible trajectory corresponding to u. 

We shall consider the problem of finding an admissible pair ( x ( t ) , u ( t ) ) , 
t £ [0,1], such that the functional 

1 

(1.2) I(x, u) = /(x(l)) + j f°(x(t), u(t)) dt 
0 

attains its minimum along all admissible pairs for which x(0) = x0 where 
xo is any fixed point in I " . 

D E F I N I T I O N 1.3. An admissible pair (x*(t), u*(t)), t £ [ I 0 , 1 ] , will be said 
to satisfy the maximum principle if there exists an absolutely continuous 
conjugate function y : [¿o, 1] —»• R n such that 

(1.3) -y{t) £ y{t)dxf{x*(t), u*{t)) - dxf°(x*{t), u*{t)) for t £ [t0,1] a.e., 

(1.4) H(x*(t), y(t), u*(t)) = sup {H(x*(t), y(t), u) : u £ U(t)} 

= 0 for / £ [¿o, 1] a.e., 

(1.5) -2/(1) G Ôl(x( 1)), 
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where d x f , d x f ° are generalized jacobians of the functions x —>• f ( x , u ( t ) ) 

and x —• f ° ( x , u ( t ) ) , respectively (which exist on the assumption that / , 
f° are Lipschitz functions), dl{x) is the generalized gradient of l(x), and 
H(x(t), y ( t ) , u(0) = y ( t ) f ( x ( t ) , u(t)) - f ° ( x ( t ) , u(t)). 

From (1.4) we have 

(1.6) y ( t ) f ( x * ( t ) , u*{t)) - f°{x*{t), u*(t)) = 0 for t G [i0,1] a.e. 

D E F I N I T I O N 1.4. A pair 

(x ( t ) , u ( t ) ) fo r t e [ i0 , l ] 

which satisfies the maximum principle will be called a line of flight, and a 
triple 

( x ( t ) , y { t ) , u ( t ) ) i o r t e [i0,l] 

such that the pair ( x ( t ) , u ( t ) ) is a line of flight and y(t) the conjugate func-
tion corresponding to it — a canonical line of flight. 

An arc of line of flight (canonical line of flight) is any open arc of line of 
flight (canonical line of flight) i.e. functions x(t), u(t) (resp. x(t), y(t), u(t)) 
defined on an open interval ( t ~ , t + ) C [io, 1]-

Denote by D a set which is covered by trajectories of lines of flight. For 
any point x\ £ D, we define a function 

l 
( 1 . 7 ) J ( X l ) = l(x( 1 ) ) + J f ( x ( t ) , «(*)) dt 

t1 

along a line of flight ( x ( t ) , u ( t ) ) , t 6 [i',1], such that x(t') = x\, t' G [0,1]. 
Through the point x\ there can pass more than one trajectory of a line of 
flight, so from among all lines of flight ( x ( t ) , u ( t ) ) , t G [i',1], x{t') = X\, 

t' G (0,1.], we shall consider only those for which functions (1.7) attain the 
same value. This condition is called synchronization (see [14], p. 266). 

2. Spray of flights 
Let G be any open subset of R m . We shall consider two functions t~(cr) 

and t + ( a ) defined on G with values in [0,1], such that t+(cr) is a C1-function 
and, for all a G G, we have t~(a) < t + ( a ) . 

Denote by S~, S, S+ the sets of pairs (¿,cr) where a G G and t satisfies 
the conditions 

0 < t ~ ( a ) = t , r ( a ) < t < t+(<r), t = t+(cr)< 1, 

respectively. The notation will be used for the union of the sets S~, S, 
S+. 
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Denote by S*~, S*, S*+ the sets of triples (/, cr, ¡3) where (f, cr) satisfies 
the conditions from the definitions of S~, 5 , S+, respectively, and (cr, (3) £ G 
where G is a standard projection of G in the following sense: for any point 
(cr0,/?0) € G and any sufficiently small curve 7 C G issuing from cr°, there 
exists a continuous function /3(cr) defined on 7 such that (3(cr°) = ¡3° and 
the point (<r,(3(a)) for a € 7 lies in G (see [14], p. 266). The notation |5*| 
will be used for the union of the sets S*~, S*, 51*"1". 

Let Z denote a family of arcs of lines of flight defined by the functions 

(2.1) x(t,a),u(t,<j),(t,a)e S. 

The parameter a is constant along any fixed arc of line of flight defined on 
the interval t~(a) <t< t+(a). 

Let Z* denote a family of canonical line of flight defined by the functions 

(2.2) x(t, a), y(t, cr, 0), u(t, a), (t , a, (3)eS*, 

such that (x(t,a),u(t,a)) E Z and y(t,cr,/3) is the conjugate function corre-
sponding to it. The parameter ¡3 appears here because the conjugate function 
defined by (1.3) with condition (1.5) is not unique. 

Let us assume that functions (2.1) and (2.2) can be extended to the 
sets 151 and |5*|, respectively. This means defining them for t = t~(a) and 
t = t+(a), a eG. 

Denote by E~, E, E+, |.E| the sets of values of the functions x — x(t,cr) 
with (t,a) from S~, S, S+, |S | , respectively, and by E*~, E*, E*+, \E*\ 
the sets of values of those triples (x(t, <r), y(t, a, /?), u(t, cr)) for which (t , cr, (3) 
belongs to 5*" , 5*, S*+, |S*|, respectively. 

For (t,<j) e |5 | , let us put 

f0(t,a) = f(x(t,a),u(t,a)), 

f(t,a) = f(x(t,<j),u(t,a)), 

J+(a) = J(x(t+(o),<r)). 

Assume that the following hypotheses are satisfied: 
HI. The functions f°(t,a), f(t,a) are continuous in |5 | and there exist 

continuous derivatives f°c(t,a), fa(t,(r) in | | and derivatives 
f°(x,u(t,a)), ^f(x,u(t,a)) for each x = x(t,a), which satisfy the 

conditions 
a 

f°a (i, a) = ^ A * , «(* ,")) + f A x , <r))x*(t, 

d fa(t, a) = —f(x,u(t, a)) + fx(x, u(t, a))xa(t, cr), 
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and the functions x f°(x,u(t,a)), x f(x,u(t,a)) are strictly dif-
ferentiable. in x = x(t, cr) for (i, a) G S. 

H2. The function y(t,a,f3) is continuous in |5*|. 
H3. The function a) is a Cx-function in 15"! and u(t, a) is a Borel function 

in |5|. 
H4. The mappings S~ -»• E~,S E defined by (t, a) x(t, a) are descrip-

tive, i.e. the following condition is satisfied for any point (t°,<r0) G S~ 
((t°,a°) G S): for any rectifiable curve C C E~ (resp. C C E) issuing 
from x(t°,<r°), there exists a rectifiable curve r C S~ (T C S) issuing 
from (i°,CT°) such that any sufficiently small arc of the curve C issuing 
from x(t°,cr0) is the image of a sufficiently small arc of the curve T 
issuing from (t°,a-°) under the mapping {t,a) —>• x(t,a) (see [14], p. 
266). 

D E F I N I T I O N 2 . 1 . Let us assume that the conditions from the definitions 
of the functions t~(cr) and t+(a) and the sets G, G as well as hypotheses 
HI — H4 are satisfied. Then the family Z will be called a spray of flights 
from E~ to E+ and the family Z* — a canonical spray of flights from E~ 
to E+. 

3. The Hilbert integral 
Denote by D, as in section 1, a set covered by trajectories of lines of 

flight. 

D E F I N I T I O N 3 . 1 . For any subset A c A the set A C K2ra of points ( X , y) 
will be called the canonical set corresponding to A if any point (x, y) lies on 
a canonical line of flight and x G A. 

For x G D, denote by Y(x) the set of those values of the conjugate 
function y for which (a:,y) is a point of the canonical set D corresponding to 
D. In this way, Y(x) can be a multifunction. Denote by y(x) a single-valued 
function defined in D which has its values in Y{x) for all x. For any fixed 
spray of flights Z, we denote by Yz(x), for x € \E\, the set of values of 
the function j/(i,cr,/?), (i,cr,/?) G |5*|, such that the pair (x(t,a),y(t,<7,/3)) 
lies in the canonical spray of flights Z*, and x — x(t,a). Denote by yz(%), 
x G |£ | , a single-valued function which has its values in Yz(x) for all x. 
The single-valued functions y(x) and yz(x), defined as above, will be called 
selections. 

D E F I N I T I O N 3 . 2 . Any rectifiable curve C C D will be called a bounded 
curve if the function J(x) defined in (1.7) is bounded along C. 

For any bounded rectifiable curve C C D with the description x = v(s), 
0 < s < b, where s is the arc length parameter, we define a curvilinear 
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integral 

b d v 

(3.1) \y(x)dx = \y(v(s))-^ds 
c o s 

for a selection y{x) for which y(v(s))j^ is a measurable function of the arc 
length s along C. Integral (3.1) will be called the Hilbert integral. 

Our main aim is to show the circumstances when integral (3.1) does 
not depend on the choice of the bounded rectifiable curve C lying in D 
with fixed endpoints Xi, X2 in D or on the choice of the selection y{x) 
with values in Y(x). Note that if the expression y(v(s))-Qjj takes the same 
value for all selections y(x) with values in Y(x), x 6 D, on a fixed bounded 
rectifiable curve C, then Hilbert integral (3.1) does not depend on the choice 
of selection y(x) with values in Y(x). 

D E F I N I T I O N 3 . 3 . a) For all x e D, a direction Q such that, for all 
selections y(x) with values in ^ ( 2 ) , a projection y© onto this direction is 
this same will be called a direction of univalence (see [14], p. 270). 

b) We term curve of univalence a rectifiable curve C C D such that, for 
almost all points of C, the direction of the tangent to C is a direction of 
univalence. 

c) We shall call A C D a set of univalence if all bounded rectifiable 
curves C C A are curves of univalence. 

It follows from the introduced definition that, for any bounded rectifiable 
curve C lying in a set of univalence A, Hilbert integral (3.1) does not depend 
on the choice of the selection y(x) with values in Y(x), x £ A. This integral 
can be expressed as 

b 
J y{x) dx - $ y(v(s))0(s) ds 
c 0 

where v(s) is the arc length parametrization of C and 0 = 0(s) = is a 
direction of univalence almost everywhere on C. 

D E F I N I T I O N 3.4. A set A c D will be called an exact set if it is a set 
of univalence and, for any bounded rectifiable curve C C A with endpoints 
Xi, X2, we have 

^ y(x)dx = J(xi) - J(x2) 
c 

for all selections y(x) with values in F(x) . 
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Of course, the notations described above can also be carried over to the 
spray of flights Z. 

DEFINITION 3.5. a) For all a; E a direction 0 such that, for all 
selections yz{x) with values in Yz(x), a projection yzQ onto this direction 
is this same will be called a direction of relative univalence. 

b) We term curve of relative univalence a rectifiable curve C C \E\ such 
that, for almost all points of C, the direction of the tangent to C is a direction 
of relative univalence. 

c) We shall call A C \E\ a set of relative univalence if all bounded 
rectifiable curves C C A are curves of relative univalence. 

d) A set A C \E\ will be called a relative exact set if it is a set of relative 
univalence and, moreover, for any bounded rectifiable curve C C A, 

(3.2) \yz(x)dx = J(x1)-J(x2) 
c 

for all selections yz{x) with values in Yz(x), x e \E\, where x1 e 

X2 € |2£| are endpoints of the curve C. 

4. Auxiliary lemmas 
Let us suppose that there exists a spray of flights Z from E~ to E+ such 

that E+ is a relative exact set. 
In our next cosiderations we shall take only those curves C which are the 

images of curves T in the (t, cr)-space under the mapping (t, <r) ^ x(t, a) and 
those selections y(x) which have the form y(t,cr,P) on those curves, where 
/3 = (3(a) is a continuous function chosen according to the definition of the 
standard projection. 

LEMMA 4.1. If E+ is a relative exact set, then there exists a derivative 
J\{a) in G and 

(4.1) J + ( a ) = - ( / ° ( i + ( a ) , a ) i + ( a ) + 2/(i+(a) ,Cr, )5K(/+(a) ,a) ) 

for (<T,/3)eG. 

P r o o f . Denote by (t°, <t°,P°) any point of S*+ and by T any sufficiently 
small rectifiable curve in with the description t = t+(crk) where Uk varies 
from <7° to a1 along the ^-coordinate of a. Denote by C the image under the 
mapping ( t , a ) —> x(t,a) of the curve T in E+, with endpoints x ( i ° ,a ° ) and 
x{tl,al) where Z1 = i+(<r1). As E+ is a relative exact set, by (1.6), for a 
continuous function /3(<T) chosen according to the definition of the standard 
projection and for a selection y(x) which has the form y(t,a,P) on T, we 
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have 

( 4 . 2 ) J+{a0)- J+(<t1) = J ( x ( t ° , a 0 ) ) - J(x(t\a1)) = \y(x)dx 

c 
= \ y(t, a, /3(a))xt(t, a)dt + y(t, a, fi(a))xa(t, a) da 

r 

= j /°(i, a)dt + y(t, a, P{o))xc(t, a) da 

r 

= \{f°(t, a)t+c(a) + y{t, a, P(a))xa{t, a)) da. 

r 

The function f°(t,a)t+(a) + y(t,a,p(a))xa{t,o) is a continuous function 
on T, so there exists a limit 

$r(/°(i, a)t+a{a) + y(t, a, fi{a))xa{t, a)) da) 
11111

 T~n > 
(a0 - a1) 

and hence there exists a limit 

lim ^ H V ) 
a i - x ^ o a0 _ a l 

Thus 
- f + a k ( a ) = 'f^a^+^ + y ^ a ^ ^ x ^ a ) 

at (t°,a°,P0). Since the point ( t ° , a ° , / 3 ° ) and the ¿-coordinate of a are any 
point of and any coordinate of a, and t = t+(a) in S*+, therefore (4.1) 
holds. • 

L E M M A 4.2 . Let T be any rectifiable curve in |5| with endpoints (t°,a°), 

(t1,^1). Then 

(4.3) \ f ° ( t , a)dt - ( | f \ ( r , a) dr) da = J(x(t°,a0)) - / ( z ^ 1 , a 1 ) ) 

where 

( 4 . 4 ) \f0<T(r,a)dr = \ a) dr + f ° ( t + ( a ) , a)t+a(a) + J+C(a). 

t t 

P r o o f . Consider the function 
l l 

(4.5) R(t, a) = J / ° ( T , a 0 ) dr - J / ° ( r , a) dr 

t° t 
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defined in |5| , where 

( 4 . 6 ) \ f ° ( r , a ) d r = J f ° ( r , a ) dr + J+(a), 
t t 

so 
l 
\ f ° ( r , a ) d r = J ( x ( t , a ) ) . 
t 

In virtue of HI and Lemma 4.1, the function R(t,a) has the continuous 
derivatives with respect to t and a in |S|. Moreover, 

( 4 . 7 ) f ° ( t , a ) d t - (J 

is an exact derivative of R(t,a) with respect to the variables (t, cr) in \S\. 

Hence 

\ f ° ( t , a ) d t - ^ ^ f°a(Tia) dr^J dcr 

* = R ( t V 1 ) - R(t°,c7°) = J(x(t°,a0)) - Jixit1,*1)). m 

Note that, under the above assumptions and notations, Hilbert integral 
(3.1) takes the form 

j y(x) dx = j y(t, a, j3)xt(t, a)dt + y(t, a, j3)x(r(t, a) da 
c r 

= \f°(t,a)dt+y(t,a,f3)x<T{t,a)da 
^ r 

= J f ° ( t , a)dt - (J J°c{T, a) d r ) da + \ ( y ( t , a, 0)xo(t, a) + \ /»„ (r, a) dr) da. 

r m ' r t 

In consequence, by (4.3), the relative exactness condition (3.2) reduces to 
the vanishing of the expression 

l 
\ ( y ( t , a, 0)xo(t, a) + \ J°„(T, a) dr) da 

r i 

or, equivalently, to the vanishing of 

l 
y ( t , v , P ) x 0 ( t , * ) + \J°A(TT<T)DT. 

t 
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LEMMA 4 .3 . For all (t,a,(3) € S*+, the expression 

1 

y(t,<r,P)x„(t,o) + \f0
(,(T,<T)dT 

t 

vanishes identically. 

P r o o f . According to (4.1), we have 

j+M) = -(f°(t,a)t+
a(a) + y(t,(7,f3)x<r(t,a)) 

and from (4.4), for t = t+(a), 
l 

= \f°Ar,a)dT-f0(t+(a),a)t+
<T(a). 

t 
Hence, for t = t+(a), we have 

l 
\f0

C7(T,a)dT-f0(t,a)t+<T(cT) = -f°(t,a)t+c(a) - y(t,a,P)xff(tta), 
t 

l 
y(t, a, f3)xa(t, a) + j J°„(T, a)dr= 0 

t 

for (t,a,0) e S*+. m 

LEMMA 4 .4 . Let C be a rectifiable curve lying, together with its terminal 
points, in E~ or E. Then C is a bounded curve. Moreover, there exists a 
bounded, Borel measurable selection yz{%) along C. 

P r o o f . By H4 for each point of C, there exists a neighbourhood on C 
such that it is the image of some curve F, lying entirely in S~ or S, under 
the mapping (/, <r) —• x(t, a). On any such curve the value of the function 

i + ( a ) 

J(x(t,a))= j f°(T,a)dT+ j+(a) 
t 

is bounded. Indeed, J+(<r) is a continuous function of a variable a , and 
ji ky j j ^ jg a c o n t i n u ous function of variables ( t ,a) ; so, on 
the curve T which is a compact set it is bounded. It then follows from Borel 
covering theorem that J(x(t, a)) is bounded on C. 

In proving the second assertion, without loss of generality we may assume 
the curve C lying in E~ or E so small that it is the image of a curve T lying 
in S~ or S, respectively, under the mapping (t, a) —> x(t,a). 
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Denote by F(x) a multifunction defined on C with values on T in the 
following way 

F(x) = { ( t , a ) G T : x = z ( i , a )} . 

For any fixed x G C, the set F(x) of values of this multifunction is closed 
in R 1 + m as the preimage of the one-element set {a:} under the continuous 
mapping. Denote by B e a family of Borel subsets of R™ which are entirely 
contained in C. This family Be is the CT-algebra of Borel sets on C (see [7], 
p. 77). For any compact subset A C I \ the set .F - 1( ,4) is compact. Indeed, 
we have 

F~\A) = {rc 6 C : F(x) n A ± 0} 
= { x e c : { ( i , a) G r : x = x(t, or)} n A ^ 0} 
= {x G C : x = x(t,a) a n d (t,a) G ^4}, 

so F~ 1 (A) is the image of the compact set A under the continuous map-
ping. In this way, for for any compact set A C T, we have F~1(A) G Be-
From proposition 1A from [9], p. 160 we have that F is a Borel measurable 
mapping. By proposition IB from [9], p. 161 (see also [2], pp. 64, 74), the con-
dition of the measurability of F is equivalent to the fact that there exists a 
countable (or finite) family (tn(x), an(x)), n G T, of Borel measurable selec-
tions such that (tn(x),an(x)) :C —• T and F(x) = {(¿„(a;), an(x)), n G T} 
for all x G C. As the function y(t,a,f3), where /3 is a continuous function 
of variable a chosen according to the definition of the standard projection, 
is continuous, thus the composition y(tn(x), <rn(x), f3(an(x))) — yz(x) is a 
Borel measurable function. By the above, yz(x) is bounded. • 

L E M M A 4 . 5 . On each arc of the canonical spray of flights Z*, the expres-
sion l 

y{t,a,P)x<T(t,a) + \f°<T(T,a) dr 
t 

takes a constant value (for fixed (a, ¡3) and for all t G [t~(a), i+((r)]). 

P r o o f . Let (t,a,j3) be any point of S* and x(t), y(t), u(t) the corre-
sponding values of the functions x(t,&), y(t,a,f3), u(t,a) for t G [i, i+(cr)). 
Let ai denote any coordinate of the vector a G G. By integrating (1.1) with 
respect to t in an interval [£, t), t G [i, i + ( a ) ) , then differentiating in aj and 
again differentiating in t, we have 

t Q 

X<Ti(t,a)-Xai(i,(T) = \—f(T,(T)dT, 

t ' 

and 
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(4-8) 

at the point ( t , a), t € [i, t + ( a ) ) . 

Multiplying (1.3) by x<7i, we have at ( t , c r ) , t £ [£, )), 

( 4 . 9 ) x a i { t , a ) — y { t ) = f \ ( x ( t ) , u ( t ) ) x ^ t , < y ) ~ m W ( t ) , H t ) ) ^ i ( t ^ ) -

Multiplying (4.8) by y(t) and adding the result to both sides of (4.9), we 
obtain at this point 

d d 
y(t)-Q~t

x°i ( i , + fadi*)** (*» a ) 

= f ° M t ) , u ( t ) ) x ( t , a) + a) - y ( t ) W ( t ) , « ( O K («, *) 

and, by HI, 

faiyifyxci&o)) 

so 

(4.10) 

at ( t , c r ) for almost all t £ [f, f+(<r)). The triple ( x ( t ) , y ( t ) , u ( t ) ) satisfies 
the maximum principle for almost all t € [ / , t + ( a ) ) , so it satisfies condition 
(1.4). The supremum on the right-hand side of (1.4) is attained for those u 
for which u = u(t,a), a £ G, when t £ [i,/+(CT)) is fixed, thus the necessary 
condition for the extremum is satisfied: 

d d 
y ( t ) — f ( x ( t ) , u(t, a)) - — /° (£( i ) , «(*> *)) = 0 

at (/, a) for almost all t £ [t, t + ( a ) ) . From (4.10) we obtain 

(4-11) A / o ( i ? a ) = 0 

at (/, a) for almost all t £ [i, i+(er)). Integrating equality (4.10) in the interval 
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[ i , t + ( a ) ) and taking account of (4.11), we get 

j ( i k ( i » + \ f ° < r i M d t = y(t+(a))xCi(t+(&),*) 

t 

at (t,cr), t £ i+(o-)), and, according to (4.4), 

l 
(4.12) y(t)x0i ( t , a) + j (f, a) dt 

t 

where the left-hand side is calculated at the point ( t ,a ) . The right-hand 
side of (4.12) does not depend on t and depends only on a and (3. Hence the 
value of the expression 

l 
y { i , a J ) x ( T i ( i , a ) + \ f 0

( T i { t , a ) d t 

t 

does not depend on the choice of the point t. • 

LEMMA 4 . 6 . If the identity 
l 

y(t, a, /3)x0(t, a) + J / ^ ( r , a) dr = 0 
t 

holds in S*~ (or 5 * ) , then E~ (resp. E) is a relative exact set. 

P r o o f . On account of the similarity in proving both assertions of the 
lemma, we shall limit ourselves to the first, i.e. we shall show that, under 
the above assumption, the set E~ is relative exact. 

Let C denote a sufficiently small bounded rectifiable curve contained in 
E~, with the parametric description x = v(s), 0 < s < b, where s is the 
arc length parameter. Denote by 0(s) the direction of the tangent to the 
curve C defined for almost all s. Let so G [0, b) be any point such that the 
function 0 ( s ) is approximately continuous at it i.e. it is a point such that, 
for each e > 0, there exists a closed set B of values of s such that, for any 
sufficiently small interval iy = { s : 0 < s < * 5 } , w e have 

( i ) | G ( s ) - 0 ( s o ) | < £ for 5 e B n W , 

( i i ) meas (W — B) < e meas W. 

Denote x = v(so), & — ©(so), V — a n y element of Yz(x), (i,a,/3) — a 
point of S*~ such that x(t,a) — x, y ( t , a , f l ) = y. 
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Denote by T a rectifiable curve in S~ such that small arcs of the curve C , 
issuing from x, are, in accordance with H4, the images under the mapping 
( t , a) —> x(t,a) of small arcs 7 of the curve T, issuing from the point ( t , a). 
Let us find the parametric description of the curve T : / = t(A), a = c(A) , 
0 < A < p, so that the point of T should correspond to the value 
Ao G [0, p), where A is the arc length parameter. Let ¿(A) denote a continuous 
increasing function on [Ao,p], such that ¿(Ao) = so, which characterizes the 
arc length along C , i.e. it satisfies 

(4.13) v(s(A)) = x ( f (A) , a (A) ) for A e [A0 ,p]. 

Let As, AJ denote the corresponding difference in s and in J(x) at the 
ends of a sufficiently small curve C issuing from x, and let A = {A : S(A)EB}. 

Now, we must only show that 
( a ) the expression is bounded, 
(b) for any sufficiently small arc of the curve C , issuing from the point x, we 

have l i m ^ - o 3 7 = ~y&-

Actually, condition (b) gives us that 0 is a direction of relative univalence 
at the point x. Moreover, for any selection yz(x) with its values in Yz(x), 
x G |-E|, the equality 

/A IA\ d J ( v ( s ) ) dv (4.14) = - y z ( v ( s ) ) ~ 

holds almost everywhere along C as the point x is any point of C such that 
the function 0 ( s ) is approximately continuous, so it is almost any point of 
curve C . Besides, by (a ) , after integrating (4.14) in s we get condition (3.2) 
from the definition of relative exactness. Let 7 be a sufficiently small arc 
of T issuing from the point (x, a), described in the interval P = [ A o , A i ] , 
P C [ A o , p ] . Let AJ denote the value of integral (4.3) along 7 . In virtue of 
the assumption that yxc + J J f0a dr = 0 in S*~, for ¡3 chosen according to 
the definition of the standard projection and such that fi(cr) = ¡3, we have 

AJ{x) = J /°(t , a)dt - (\ f \ ( r , <7) dr^j da 

= J /°(f (A) ,a (A))df(A) + y ( i ( A ) , a ( A ) , ^ ( A ) ) K ( f ( A ) , a ( A ) ) ^ ( A ) . 
p 

From (1.6) and (1.1) we obtain 

/° ( f (A) , a (A) ) 

= y(i(\),a(\),0(*(\)))f(i(\),a(\)) = ^~(A)^(A) ,/? (a (A) ) )x t ( f (A) , a (A) ) , 
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SO 

AJ(x) = J y(i(\),v(\),f3(a(\)))xt(t(\),a(\))dt(\) 
P 

+»(<(A), a(A), p(c(\)))xa(i(\), a(A)) da(A). 

Now, taking (4.13) into account, we get 

(4.15) AJ{x) = J y(t(A),a(A),/3(a(A)))0(s(A))ds(A). 
p 

The last integral in (4.15) is the Riemann-Stieltjes integral (the function ¿(A) 
is increasing and uniformly continuous). The function y(t,a,/3) is bounded 
as a continuous function on the closed interval P , thus there exists a constant 
M > 0 such that ||?/(i(A),£(A),/?(CT(A)))|| < M for A G [A0, Ai]. Moreover, 

\ \ & ( s ( m = I I^&atI I = II > r l l = 1 ( s e e T o n e U i t h - ' P- 1 8°)- H e n c e 

and from (4.15) we have < %As and, since -AJ(x) = AJ(x), we 
obtain || |] < M, so the expression is bounded. Moreover 

(4.16) Aj/As - yO 

= A s " 1 \ (y(t(A), <r(A), /?(<r(A)))0(5(A)) - yQ) ds(A) p 

= As-1 J (i,(i(A),a(A),/3(a(A)))0(5(A))-2/(9)^(A) 
PC\A 

+ ZVS-1 J (y(i(A),a(A),f3(d(A)))6(s(A))-y6)ds(A). 
P-A 

For a sufficiently small P , the function yO — yO is bounded on P , thus it 
is bounded on P — A and this set has s(A)-measure less than e by (ii). The 
set P fl A has .s(A)-measure at most As and, by (i) and the continuity of y, 
we have 

H i / 0 - j / 0 | | <112/11110-011 + 11011112/-^, 

so the value of this expression is at most a fixed multiple of e. The above 
implies that the last two terms in (4.16) cannot exceed certain fixed multiples 
of an arbitrarily small positive e. In consequence, condition (b) is true. • 

L E M M A 4 . 7 . Let Z* be the canonical spray of flights corresponding to a 
spray of flights Z. Then E~ and E are relative exact sets. 

P r o o f . From Lemma 4.5 we have that the expression yxa + J J 
takes a constant value along each arc of the canonical spray Z* and from 
Lemma 4.3 we get that in S*+ this expression vanishes identically. The 
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continuity of the function yxa -f J* f°a dr in |5*| implies that this expression 
vanishes identically in S*~ and S*. From Lemma (4.6) we obtain that E~ 
and E are relative exact sets. • 

5.Chain of flights 
Up till now, we have considered the fixed spray of flights Z defined in 

section 2. Of course, the family of lines of flight may consist of a greater 
number of sprays of flights satisfying conditions HI — H4, with trajectories 
contained in D. 

D E F I N I T I O N 5.1. A finite or countable sequence of sprays of flights 

Zi, • • • , Zn, • • • 

with trajectories contained in D will be called a chain of flights, and the 
corresponding sequence of canonical sprays of flights 

Z* <7* 1 > ¿2t • ••> ^Ni • • • 
will be called the canonical chain of flights if, for i = 1 ,2 , . . . , N — 1 , . . . , 
the set E*~ corresponding to the canonical spray Z* contains the set E*^ 
corresponding to Z*+1. 

It is required here that not only the arcs of lines of flight between indi-
vidual sprays should fit together but also the arcs of canonical lines of flight 
should have this property. 

D E F I N I T I O N 5 . 2 . The sets E~ and Ei corresponding to the spray of 
flight Z{ will be called the constituent sets of the chain. 

If the set E~ or E{ of the spray Zx is a relative exact set, we shall call it 
a relative exact constituent set for the given chain. 

If the set corresponding to has the form = {(t, a, f3) : t = 
1, € C?i} where G\ is such that its standard projection is G\ corre-
sponding to spray Z\, then the chain will be called a distinguishable chain. 

Note that if, in any fixed spray of flights Zi, the set Ef is relative exact, 
then, according to Lemma 4.7, the sets Ei and E~ are relative exact. Then 
the set Ef+l corresponding to the spray is also relative exact as a subset 
of E~. It is easy to show by induction that if the set of any fixed chain 
of flights is relative exact, then all constituent sets of this chain are relative 
exact. 

D E F I N I T I O N 5 . 3 . A chain whose all constituent sets are relative exact 
will be called a relative exact chain. 

Assume that, apart from hypotheses HI — H4, the following condition 
is satisfied: 
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H5. The function /+(cr) = l(x(l, <r))has a continuous derivative for a 6 G\. 

LEMMA 5.1. Any distinguishable chain is relative exact. 

P r o o f . At first, we shall show that , in any distinguishable chain, the 
expression 

1 

y(t,<T,l3)x„(t,<T)+\f0
<,(T,<T)dT 

t 

is equal to 0 at any point (t, a,/3) G + , so it is equal to 0 at any point 
(1,CT, ¡3) where (<7, (3) £ G\. Indeed, we have 

l 
y(l,a,f3)x<7(l,a) + \f°<7(T,a)dr 

t 

t+(a) 
= y(l,a,/3)xa(l,a)+ \ f0

<r(r,a)dr+ f°(t+(a),a)t+(T(a) + J+(a) 
i+(<r) 

= y{l,a,(3)xcr(l,cT) + l+
<r(a). 

From (1.5) it follows (see [4], p. 61) that 

(-j /( l , (T,/3) ,- l)(x c r( l ,cr) , /+
( T(a)) = 0, 

thus 
l 

2/(1, a , 0)xa(l, a) + J pa(T, a)dT= 0 
t 

in Si + . From the proof of Lemma 4.7 and from Lemma 4.6 we get that 
the sets E-f and Ei are relative exact. Taking account of the considerations 
preceding Definition 5.3, we have that E f is relative exact. • 

6. Concourse of flights 
Denote by K the family of all bounded rectifiable curves lying in D, and 

by Dn, n = 1 ,2 , . . . , a finite or countable system of disjoint subsets of D 
whose union is D. 

D E F I N I T I O N 6 . 1 . A curve C G K will be called a fragment if its interior 
lies entirely in some Dn. 

The class of such fragments will be denoted by Kq. 

D E F I N I T I O N 6 . 2 . a) Let the final point of C\ be the initial point of C 2 . 

We term fusion of C\, Ci a curve C made up of two adjacent arcs consisting 
of C\ and C2 in that order. 
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b) Let C2 be a closed curve intersecting C\. We term embellishment of 
C\ by C2 a curve C that describes first an arc of C\, up to an intersection, 
then C2 and then the remaining arc of C\. 

c) We term C\ the result of trimming or cutting C2 from C if C is 
expressible as the embellishment of C\ by Ci or as the fusion of C\ and C2, 
respectively. 

We shall assume that K and KQ are classes such that if any curve belongs 
to one of them, then all arcs of this curve and all inverse arcs belong to this 
class. Moreover, we shall assume that the operations of embellishment and 
trimming can be carried out countable often and the operations of fusion 
only finitely often under the restriction that from elements of K we shall 
again obtain elements of K. 

Denote by K\ a class of curves which are obtained from the elements of 
the class KQ after finite operations of fusion and countable of embellishment. 
Denote by K2 a class of such curves which are obtained by at most countable 
operations of trimming. 

In problem (1.1)—(1.2) we want to find a minimum of the functional 
I(x, u) in the entire set D. So far, we have had information only about this 
functional in sets Dn whose union is equal to D. This means that we have 
information about I(x,u) in some subclass of curves from KQ when we are 
interested in this functional in the class K. 

The method described in our paper can be applied only when Ki = K. 
DEFINITION 6 . 3 . If K = K2, then the class K0 will be called a re-

pairable class of fragments and the decomposition of the set D into disjoint 
subsets Dn — a repairable decomposition. Then the set D will be termed 
the unimpaired union of the sets Dn. 

DEFINITION 6 . 4 . We shall term concourse of flights a finite or countable 
system of chains of flights such that D is the unimpaired union of the con-
stituent sets of these chains and D — the unimpaired union of their canoni-
cal constituent sets, where by canonical constituent set we understand a set 
from the canonical chain corresponding to a constituent set from a chain of 
flights. 

7. The sufficient condition for a minimum 
Let C be any bounded rectifiable curve in D with the description x = 

v(s)i 0 < s < b, where s is the arc length parameter. We suppose the 
following additional hypothesis: 

H6. For any bounded rectifiable curve C in D, there exists a selection y(x) 
such that the value of the expression y(v(s))j¿ along C is equal at most 
to an integrable function K{s) of the arc length s of C. 
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This assumption, used in the proof of Theorem 7.1, ensures us that the 
Hilbert integral exists along any bounded rectifiable curve C in D. 

T H E O R E M 7 . 1 (main theorem). Let us assume that there exists a con-
course of flights. Then the set D is exact. 

The proof of this theorem is analogous to that of theorem (29.1) in [14], 
p. 280, when we set E = Z, T(x) = J(x). 

C O R O L L A R Y . Assume that there exists a concourse of flights. Let C be 
any arc of an admissible trajectory in D, issuing from x\ = x(t\), t\ 6 [0,1], 
and ending at = xfo), t% € [0,1], t\ < t2. Let y(x) be any selection in 
D. Then 

\y{x)dx = J(x{h))- J(x(t2)). 
c 

P r o o f . According to Theorem 7.1, we have to show that any admissible 
t rajectory C is bounded. Any admissible trajectory C is the union of a finite 
number of fragments from By Lemma 4.4, along any such fragment the 
function J(x) is bounded, so C is a bounded curve. • 

The following theorem gives us a sufficient condition for a minimum in 
our problem. 

T H E O R E M 7 . 2 . Suppose that there exists a concourse of flights. Let (x*(t), 
u*(t)) be a line of flight defined on [0,1] which is a member of this concourse 
of flights, and z(0) = XQ. Then (x*(t),u*(t)) is the pair which realizes the 
minimum of the functional I(x, u) relative to all admissible pairs (x(t), u(t)) 
defined on [0,1], such that x(0) = £o and whose trajectories x(t) are con-
tained in D. 

P r o o f . Let (x( t ) ,u ( i ) ) be any admissible pair defined on [0,1] such that 
x(0) = £o a n d x(t) lies in JD for t € [0,1]. We have 

I(x*, u*) — I(x, u) 
l l 

= /(*•( 1)) + S f°(x*(t), «*(<)) dt - l(x( 1)) - S f ( x ( t ) , u(t)) dt 
o o 

l 
= J{x0)-l{x{\))~ \f(x(t),u(t))dt. 

0 

From the above corollary we get 

J(xo) = \ y(x) dx + J ( * ( l ) ) = \ y(x) dx + Z(®(1)) 
c c 
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where C is an arc of any admissible trajectory, with endpoints xQ, ®(1). In 
any constituent set there exists a Borel measurable and bounded selection 
yz(x) (by Lemma 4.4), so, along the trajectory x(t), there exists a measur-
able and bounded selection y(x) (since x(t) is a finite union of arcs which are 
contained in some constituent sets). The composition y(x(t)) is a measurable 
and bounded function and, according to (1.1), we get 

l 
J(x0) = J y(x(t))f(x(t), u(t)) dt + /(®(1)). 

o 

Hence 
l 

I{x\u*) - I(x, u) = \(y(x(t))f(x(t), u(t)) - f(x(t), u(t))) dt 
0 

and, by (1.4) 

I(x*,u*) -I(x,u) < 0. • 

8. Conclusions 
1. For any fixed subset T C D, the set f C K n + r of points (x , u) will be 

called a set generated by a line of flight if each point (x, u) of this subset 
is contained in some line of flight and x lies in T. For x G D, let us denote 
by U(x) the set of those values of u(t) for which (x, u) is a point of the set 
D generated by D, and by u(x) — a selection defined in D such that its 
values are contained in U(x) for all x. Note that if there exists a concourse 
of flights, then the function u(x) described above is an optimal feedback 
control. 

2. In the set D, the value function is defined as 

S(x) = JyOOcte + ^tl)) 
c 

where C is any bounded rectifiable curve in D with endpoints x, x{\) and 
y(x) is a selection in D. In this way we obtain an effective expression for 
the value function 5 ( x ) . Up till now, only the conditions for the existence 
of this function were known (comp. [13]). 

3. Let us suppose that D has an non empty interior, and that the value 
function S{x) is Frecliet differentiate at the point x G int D. Then dS/dx = 
y{x). Indeed, from (4.14) we have 

dS(v(s)) dv , . .. dv 
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so 
fdS(v(s)) \dv 

[ t o y i v { s ) ) ) T s = 0 -

Therefore 
dS(x)dx - j / (x) = 0. 

In this case, there exists only one selection y(x) defined in D. Moreover, we 
have 

l i 
\ f ( x ( t ) , u(x(t))) dt = 5 y ( x ( t ) ) f ( x ( t ) , «(«(<)» dt 
t t 

where u(x) is the optimal feedback control from conclusion 1. From these 
considerations we obtain the Hamilton-Jacobi equation 

E ( x , y ( x ) , u ( x ) ) = 0. 

4. Note that the Hilbert integral \cy(x)dx where C is any bounded 
rectifiable curve in D and y(x) — a selection in D, satisfies all conditions 
from the definition of the iv-function and, in this way, we have explicit form 
of the A'-function in a Bolza problem. 
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