

G. Lugovaya, A. Sherstnev

ON EXTENDING AN UNBOUNDED ORTHOGONAL
VECTOR MEASURE IN A SEMIFINITE VON NEUMANN
ALGEBRA TO A WEIGHT

The aim of this paper is to extend the result of the paper [2] (on the possibility of the extension of a Hilbert-space-valued unbounded orthogonal vector measure on all projections on a Hilbert space to a vector weight) to the case of an arbitrary semifinite von Neumann algebra.

Throughout the paper, let M be a von Neumann algebra which acts on a Hilbert space, endowed with an inner product $\langle \cdot, \cdot \rangle$. We will denote by M^{pr} and M^+ the sets of all orthoprojections and positive operators in M , respectively. We will examine measures on projections with values in a Hilbert space K complemented with an improper element ∞ . The following assumptions will be needed in this case:

$$f + \infty \equiv \infty \quad (f \in K), \quad \infty + \infty = \infty, \quad \lambda \cdot \infty \equiv \infty \quad (\lambda > 0), \quad 0 \cdot \infty = \theta$$

(here θ denotes the zero vector in K). We first give a definition of a scalar unbounded measure on projections (see Definition 2.2 [6]).

DEFINITION 1. Let M be a von Neumann algebra acting on a Hilbert space H . A mapping $m : M^{pr} \rightarrow [0, +\infty]$ is said to be a *semifinite measure* if

- (i) there exists a net $(p_\alpha)_{\alpha \in A} \subset M^{pr}$ with $p_\alpha \nearrow 1$ and $m(p_\alpha) < +\infty$ for $\alpha \in A$;
- (ii) $m(\sum p_i) = \sum m(p_i)$ for any family (p_i) of mutually orthogonal projections in M^{pr} .

We will deal with unbounded orthogonal vector measures (see Definition 3.3 [6] and [3]):

DEFINITION 2. Let M be a von Neumann algebra acting on a Hilbert space H and K be a Hilbert space complemented with an improper element

∞ . A mapping $\mu : M^{pr} \rightarrow K \cup \{\infty\}$ is said to be a *semifinite orthogonal vector measure* (*K-valued measure* for short) if

- (i) there exists a net $(p_\alpha)_{\alpha \in A} \subset M^{pr}$ with $p_\alpha \nearrow 1$ and $\mu(p_\alpha) \in K$ for $\alpha \in A$;
- (ii) $pq = 0$, $\mu(p), \mu(q) \in K \Rightarrow \langle \mu(p), \mu(q) \rangle = 0$;
- (iii) $p = \sum p_i$ ($p, p_i \in M^{pr}$) implies

$$\mu(p) = \begin{cases} \sum \mu(p_i) & \text{if the series } \sum \mu(p_i) \text{ converges} \\ \infty & \text{in the norm topology on } K, \\ & \text{otherwise.} \end{cases}$$

(The convergence of an uncountable family of summands means that there exists a limit of the net of finite sums.)

A measure μ is said to be *unbounded* if $\mu(1) = \infty$. Our definition agrees with the one given in [1] whenever $\mu(1) \in K$.

In [1], the problem of the extension of a bounded *K*-valued measure to an orthogonal vector field was affirmatively solved. The latter was defined as a linear mapping $F : M \rightarrow K$ that is continuous (for the ultraweak topology on M and the weak topology on K) and satisfies $\langle F(p), F(q) \rangle = 0$ when $p, q \in M^{pr}$ and $pq = 0$.

THEOREM 1 [1]. *Let M be a von Neumann algebra without type I_2 direct summands and let $\mu : M^{pr} \rightarrow K$ be a K -valued measure. Then there is an orthogonal vector field $F : M \rightarrow K$ such that $F|M^{pr} = \mu$.*

Let us introduce an unbounded analogue to the orthogonal vector field. However we will impose no continuity requirements.

DEFINITION 3. We call a mapping $F : M^+ \rightarrow K \cup \{\infty\}$ an *orthogonal vector weight* if it satisfies the following conditions:

- (i) $F(x + y) = F(x) + F(y)$, $F(\lambda x) = \lambda F(x)$ ($x, y \in M^+$, $\lambda \geq 0$);
- (ii) $pq = 0$ ($p, q \in M^{pr}$), $F(p), F(q) \in K \Rightarrow \langle F(p), F(q) \rangle = 0$.

The following theorem is the main result of the paper:

THEOREM 2. *Let M be a semifinite von Neumann algebra without type I_2 direct summands and let $\mu : M^{pr} \rightarrow K \cup \{\infty\}$ be an unbounded K -valued measure. Then there exists an orthogonal vector weight $F : M^+ \rightarrow K \cup \{\infty\}$ such that $F|M^{pr} = \mu$.*

P r o o f. The proof will be divided into 5 steps. We first prove (steps 1–4) the theorem for finite von Neumann algebras.

Step 1. According to Proposition 1 [3] for a given unbounded K -valued measure we can construct an unbounded semifinite scalar measure

$m : M^{pr} \rightarrow [0, +\infty]$ putting

$$(1) \quad m(p) = \begin{cases} \|\mu(p)\|^2 & \text{if } \mu(p) \in K, \\ \infty & \text{otherwise.} \end{cases}$$

The following statement is a sharpened version of Proposition 1 [4].

PROPOSITION 1. *Let M be a finite von Neumann algebra with no type I_2 direct summands and let $m : M^{pr} \rightarrow [0, +\infty]$ be a semifinite measure. Then there exists a normal weight $\omega : M^+ \rightarrow [0, +\infty]$ whose restriction to M^{pr} is m .*

P r o o f. Let τ be a faithful normal semifinite trace on M (it exists because M is finite and hence semifinite). Suppose now that $p_\alpha \nearrow 1$, where $(p_\alpha)_{\alpha \in A} \subset M^{pr}$ is a net satisfying (i) of Definition 1. As $m_\alpha \equiv m_{p_\alpha}|M_{p_\alpha}^{pr}$ is a finite measure on projections in the reduced algebra M_{p_α} , it extends to a normal state defined by a selfadjoint operator $T_\alpha \geq 0$ (the density operator) which acts in the Hilbert space $p_\alpha H$ and is affiliated with M_{p_α} . Moreover, m_α is defined as $m_\alpha(p) = \tau_\alpha(T_\alpha p)$ ($p \in M_{p_\alpha}^{pr}$), where τ_α is the trace τ reduced to M_{p_α} . The family (T_α) is compatible in the sense that $p_\alpha \leq p_\beta$ implies $p_\alpha T_\beta p_\alpha = T_\alpha$. Let us define a linear operator T on H by

$$D(T) = \bigcup_{\alpha} (D(T_\alpha) \cap p_\alpha H) \text{ and } Tf = T_\alpha f \text{ for } f \in D(T_\alpha) \cap p_\alpha H.$$

Obviously, T is positive and affiliated with M . So, its closure (for which we use the same letter T) is affiliated with M as well. Since M is finite, it follows that T is measurable with respect to M and hence positive and selfadjoint. Define a normal weight ω putting

$$\omega(x) = \tau(Tx) \quad (x \in M^+),$$

where the right side is understood in the known regularized sense (see [5]):

$$\tau(Tx) \equiv \lim_{\varepsilon \rightarrow 0+} \tau(T_\varepsilon^{1/2} x T_\varepsilon^{1/2}), \quad T_\varepsilon \equiv T(I + \varepsilon T)^{-1}, \quad \varepsilon > 0.$$

The proof is completed by showing that $\omega|M^{pr} = m$. Since M is finite, it follows that every $p \in M^{pr}$ is representable as an orthogonal sum $p = \sum p_\gamma$, where each projection p_γ is majorized by a suitable p_α , $\alpha = \alpha(\gamma)$. We thus get

$$\omega(p) = \sum \omega(p_\gamma) = \sum \tau(Tp_\gamma) = \sum \tau_{\alpha(\gamma)}(T_{\alpha(\gamma)} p_\gamma) = \sum m(p_\gamma) = m(p)$$

and the proof is complete.

Let $\omega : M^+ \rightarrow [0, +\infty]$ be a weight which extends the measure m defined by (1). We consider the following sets:

$$\begin{aligned} m_\omega &\equiv \{x \in M^+ | \omega(x) < +\infty\}; \\ n_\omega &\equiv \{y \in M | y^* y \in m_\omega\} \quad (\text{a left ideal in } M); \\ \text{lin}_{\mathbb{C}} m_\omega &= n_\omega^* n_\omega = (n_\omega^* \cap n_\omega)^2. \end{aligned}$$

Moreover, $(n_\omega^* n_\omega)^+$ is a hereditary subcone of M^+ . Define a positive bilinear form on n_ω by

$$\langle x, y \rangle_\omega \equiv \omega(y^* x) \quad (x, y \in n_\omega).$$

We will denote by $\|x\|_\omega \equiv \langle x, x \rangle_\omega^{\frac{1}{2}}$ ($x \in n_\omega$) the corresponding seminorm.

Step 2. We introduce the set

$$\mathfrak{M} \equiv \{p \in M^{pr} | \mu(p) \in K\} = \{p \in M^{pr} | m(p) < +\infty\}.$$

According to J. Hamhalter [1], the measure $\mu_p \equiv \mu|M_p^{pr}$ extends to an orthogonal vector field $F_p : M_p^+ \rightarrow K$. Furthermore, standard arguments based on the spectral theorem show that $x \in M_p^+ \cap M_q^+$ ($p, q \in \mathbb{R}$) implies $F_p(x) = F_q(x)$.

Remark 1. A consequence of Proposition 1 is that if $p \in \mathfrak{M}$, then the restriction $\omega_p \equiv \omega|M_p$ is a normal state of M_p .

Let A be the set of indices as in Definition 2. Denote $\mathfrak{M}_A \equiv \{p \in M^{pr} | \exists \alpha \in A (p \leq p_\alpha)\}$ and $M_A^+ \equiv \{x \in m_\omega) | \exists \alpha \in A (rp(x) \leq p_\alpha)\}$ (a hereditary subcone of M^+). Here $rp(x)$ denotes the range projection of the operator x .

Put $\mu(\mathfrak{M}_A) \equiv \{\mu(p) | p \in \mathfrak{M}_A\}$. We will consider $K_0 \equiv [\text{lin}_{\mathbb{R}} \mu(\mathfrak{M}_A)]^-$ as a real Hilbert space with the inner product $\langle \xi, \eta \rangle_0 \equiv \text{Re} \langle \xi, \eta \rangle$ ($\xi, \eta \in K_0$). We extend $\eta|\mathfrak{M}_A$ to an additive and positively homogeneous mapping by

$$\varphi(k) \equiv F_{rp(k)}(k) \quad (k \in M_A^+).$$

It should be noted that $\text{lin}_{\mathbb{R}}\{\varphi(k) | k \in M_A^+\}$ is dense in K_0 .

We next claim that φ well extends to a real linear mapping (again denoted by φ) from $M_A^{sa} \equiv M_A^+ - M_A^+$ into K_0 .

Step 3. Take an arbitrary $y \in n_\omega$, and let Φ_y be the real linear functional on the linear subspace $\varphi(M_A^{sa}) \subset K_0$ (that is dense in K_0) defined by

$$\Phi_y(\varphi(k)) \equiv \text{Re} \langle k, y \rangle_\omega \quad (k \in M_A^{sa}).$$

Put $M_0 \equiv \{k \in M_A^{sa} | k = \sum_i \lambda_i p_i (p_i p_j = 0, i \neq j) \text{ is a finite sum}\}$. Note that $\varphi(M_0)$ is dense in K_0 . For $k = \sum_i \lambda_i p_i \in M_0$ we have

$$\begin{aligned}
(2) \quad \|k\|_{\omega}^2 &= \omega(k^2) = \sum_i \lambda_i^2 m(p_i) = \sum_i \lambda_i^2 \|\mu(p_i)\|^2 \\
&= \sum_i \lambda_i^2 \langle F_{rp(k)}(p_i), F_{rp(k)}(p_i) \rangle \\
&= \langle F_{rp(k)}(k), F_{rp(k)}(k) \rangle = \|\varphi(k)\|^2 \\
&= \|\varphi(k)\|_0^2.
\end{aligned}$$

Therefore,

$$|\Phi_y(\varphi(k))| = |Re\langle k, y \rangle_{\omega}| \leq \|y\|_{\omega} \|k\|_{\omega} = \|y\|_{\omega} \|\varphi(k)\|_0.$$

Hence Φ_y is a continuous linear functional on K_0 and, by the Riesz theorem, there exists $\varphi^{\sim}(y) \in K_0$ such that

$$\Phi_y(b) = \langle b, \varphi^{\sim}(y) \rangle_0 \quad (b \in K_0).$$

Finally, define the desired orthogonal vector weight $F : M^+ \rightarrow K \cup \{\infty\}$ extending μ by

$$(3) \quad F(x) = \begin{cases} \varphi^{\sim}(x) & \text{if } x \in (n_{\omega}^* n_{\omega})^+, \\ \infty & \text{otherwise.} \end{cases}$$

Step 4. We will verify that $F|M_A^+ = \varphi$ and F extends μ . First suppose that $k \in M_A^+$ and $k_{\alpha} \nearrow k$, where $k_{\alpha} \in M_0 \cap \{k\}''$ (i.e., $k_{\alpha} \in M_0$ are operators from the commutative von Neumann algebra generated by k). From (2) and Remark 1, it follows that

$$\begin{aligned}
\|k\|_{\omega}^2 &= \omega(k^2) = \lim_{\alpha} \omega(k_{\alpha}^2) = \lim_{\alpha} \|\varphi(k_{\alpha})\|^2 = \lim_{\alpha} \|F_{rp(k_{\alpha})}(k_{\alpha})\|^2 \\
&= \lim_{\alpha} \|F_{rp(k)}(k_{\alpha})\|^2 = \|F_{rp(k)}(k)\|^2 = \|\varphi(k)\|^2 = \|\varphi(k)\|_0^2.
\end{aligned}$$

This gives that $\|t\|_{\omega}^2 = \|\varphi(t)\|_0^2$ for all $t \in M_A^{sa}$. We have

$$\begin{aligned}
Re\langle t, k \rangle_{\omega} &= \frac{1}{4} Re \sum_{n=0}^3 i^n \langle t + i^n k, t + i^n k \rangle_{\omega} \\
&= \frac{1}{4} \{ \langle t + k, t + k \rangle_{\omega} - \langle t - k, t - k \rangle_{\omega} \} \\
&= \frac{1}{4} \{ \langle \varphi(t + k), \varphi(t + k) \rangle - \langle \varphi(t - k), \varphi(t - k) \rangle \} \\
&= Re\langle \varphi(t), \varphi(k) \rangle = \langle \varphi(t), \varphi(k) \rangle_0 \quad (t \in M_A^{sa}).
\end{aligned}$$

The equality

$$\langle \varphi(t), \varphi^{\sim}(k) \rangle_0 = \Phi_k(\varphi(t)) = Re\langle t, k \rangle_{\omega} = \langle \varphi(t), \varphi(k) \rangle_0 \quad (t \in M_A^{sa})$$

yields $F(k) = \varphi^{\sim}(k) = \varphi(k)$.

Finally, let $p \in \mathfrak{M}$ and (p_{α}) be a net of projections satisfying the condition (i) of Definition 2. Since M is finite it follows that $p \wedge p_{\alpha} \nearrow p$. Then

for every $k \in M_A^{sa}$ it holds

$$\begin{aligned} |\langle k, p \rangle_\omega - \langle k, p \wedge p_\alpha \rangle_\omega| &= |\langle k, p - p \wedge p_\alpha \rangle_\omega| \\ &= |\omega((p - p \wedge p_\alpha)k)| \leq \omega(p - p \wedge p_\alpha)^{\frac{1}{2}} \cdot \omega(k^2) \rightarrow 0. \end{aligned}$$

Hence

$$\begin{aligned} \langle \varphi(k), \varphi^\sim(p) \rangle_0 &= \Phi_p(\varphi(k)) = Re \langle k, p \rangle_\omega = \lim_\alpha \langle \varphi(k), \varphi(p \wedge p_\alpha) \rangle_0 \\ &= \lim_\alpha \langle \varphi(k), \mu(p \wedge p_\alpha) \rangle_0 = \langle \varphi(k), \mu(p) \rangle_0 \quad (k \in M_A^{sa}). \end{aligned}$$

In the last equality, we have used the following property: $p_\alpha \nearrow p$ ($p_\alpha \in M_A^{pr}$) implies $\mu(p_\alpha) \rightarrow \mu(p)$, which (as $m|M_p$ extends to a normal state on M_p) is equivalent to (iii) of Definition 2. So, we may conclude that $\varphi^\sim(p) = \mu(p)$.

Step 5. (The end of the proof). Let τ be a faithful normal semifinite trace on M . Put

$$\mathfrak{M}_{\tau, \mu} \equiv \{p \in M^{pr} \mid p \in \mathfrak{M}, \tau(p) < +\infty\}.$$

Let $r_\sigma = \bigvee_{q \in \sigma} q$, where σ is a finite subset of $\mathfrak{M}_{\tau, \mu}$. In this case $r \nearrow I$. The family (M_{r_σ}) is an increasing net of finite reduced von Neumann subalgebras of M . By making use of arguments similar to those in [4], we obtain that $\mu_\sigma \equiv \mu|M_{r_\sigma}^{pr}$ is a semifinite orthogonal measure for every σ . Denote by F_σ the orthogonal vector weight constructed as in Step 3 which extends the measure μ_σ .

Let $\omega : M^+ \rightarrow [0, +\infty]$ again be a weight extending the measure m defined by (1). Its existence is guaranteed by [4] together with the above-proved Proposition 1. In addition, the weight ω has the following property: if $(x_\alpha) \subset M^+$ is a net increasing to $x \in M^+$ with $\omega(x) < +\infty$, then $\omega(x_\alpha) \rightarrow \omega(x)$.

Note (using the notation of Steps 1 and 2) that

$$(n_\omega^* n_\omega)^+ \supset \bigcup_\sigma (n_{\omega_\sigma}^* n_{\omega_\sigma})^+, \text{ where } \omega_\sigma \equiv \omega_{r_\sigma}.$$

Put $\varphi_\sigma^\sim(x) \equiv F_\sigma(x)$, $x \in (n_{\omega_\sigma}^* n_{\omega_\sigma})^+$.

For an arbitrary $y \in n_\omega$ we consider the real linear functional Φ_y defined on $\varphi(\bigcup_\sigma M_{A_\sigma}^{sa})$ by

$$\Phi_y(\varphi(k)) \equiv Re \langle k, y \rangle_\omega \quad (k \in M_{A_\sigma}^{sa}).$$

Here, $\varphi(\bigcup_\sigma M_{A_\sigma}^{sa})$ is dense in $K_0 \equiv [lin_{\mathbb{R}}\mu(\bigcup_\sigma \mathfrak{M}_{A_\sigma})]^-$. Observe that the sets \mathfrak{M}_{A_σ} , $M_{A_\sigma}^{sa}$ and the mapping φ can be constructed in finite von Neumann algebras M_{r_σ} by the method of Step 2. According to arguments similar to Step 3, we conclude that Φ_y is a bounded linear functional on K_0 . We define the orthogonal vector weight $F : M^+ \rightarrow K \cup \{\infty\}$ by (3). We will show that F extends μ .

Let $p \in \mathfrak{M}$ and $p_\gamma \nearrow p$ ($p_\gamma \in \mathfrak{M}_{\tau, \mu}$). Then

$$\begin{aligned}\langle \varphi(k), F(p) \rangle_0 &= \Phi_p(\varphi(k)) = Re\langle k, p \rangle_\omega = \lim_\gamma Re\langle k, p_\gamma \rangle_\omega \\ &= \lim_\gamma \langle \varphi(k), \varphi_{\sigma \cup \{\gamma\}}(p_\gamma) \rangle_0 = \lim_\gamma \langle \varphi(k), \mu(p_\gamma) \rangle_0 \\ &= \langle \varphi(k), \mu(p) \rangle_0 \quad (k \in M_{A_\sigma}^{sa}).\end{aligned}$$

Hence $F(p) = \mu(p)$, and the proof is complete.

Let us add a result associated with the nature of the continuity of the obtained weight.

THEOREM 3. *The orthogonal vector weight constructed as in Theorem 2 has the following property: if (x_α) is a net increasing to x with $F(x_\alpha), F(x) \in K$, then $F(x_\alpha) \rightarrow F(x)$ in the norm of K .*

Proof. Given a net (x_α) put $y_\alpha = x - x_\alpha$. In this case $(y_\alpha) \subset m_\omega$, $y_\alpha \leq x$ and $y_\alpha \searrow 0$. It is sufficient to show that $F(y) \rightarrow 0$. We have (in the notations of Theorem 2) $\|y_\alpha\|_\omega^2 = \omega(y_\alpha^2) \leq \|x\| \omega(y_\alpha) \rightarrow 0$ and

$$\begin{aligned}\|F(y_\alpha)\| &= \|\varphi^\sim(y_\alpha)\| = \sup_{\|\varphi(k)\|_0=1, k \in \bigcup_\sigma M_{A_\sigma}^{sa}} |\Phi_{y_\alpha}(\varphi(k))| \\ &\leq \sup_{\|k\|_\omega=1, k \in \bigcup_\sigma M_{A_\sigma}^{sa}} |\langle k, y_\alpha \rangle_\omega| \leq \|y_\alpha\|_\omega.\end{aligned}$$

The theorem follows.

Finally, we observe that the constructed orthogonal weight has the following sharpened property of orthogonality (in comparision with (ii) of Definition 3):

COROLLARY. *The orthogonal vector weight F constructed as in Theorem 2 has the following property: if $rp(x)$ and $rp(y)$ ($x, y \in M^+$) are orthogonal and $F(x), F(y) \in K$, then $\langle F(x), F(y) \rangle = 0$.*

Proof. According to the spectral theorem we approximate x and y ($x, y \in M^+$) from the below by Riemann's integral sums x_n and y_n , respectively,

$$x_n = \sum_i \lambda_{in} p_{in} \nearrow x \quad \text{and} \quad y_n = \sum_j \mu_{jn} q_{jn} \nearrow y,$$

(here, p_{in} and q_{jn} are spectral projections of x and y , respectively). Since $rp(x)$ and $rp(y)$ are orthogonal, it follows that $p_{in} q_{jn} = 0$ for all i, j, n . Then we have $\langle F(p_{in}), F(q_{jn}) \rangle = 0$ for all i, j, n . From Theorem 3, we obtain $\langle F(x), F(y) \rangle = \lim_n \langle F(x_n), F(y_n) \rangle = 0$.

Acknowledgements. The authors are thankful to Prof. M. S. Matvejchuk for helpful discussions.

This research was supported by the RFFI (Russia), grant no. 95-01-00025.

References

- [1] J. Hamhalter, *Orthogonal vector measures on projection lattices in a Hilbert space*, Comm. Math. Univ. Carol. 31 (1990), 655–660.
- [2] G. D. Lugovaya, *On extending an unbounded orthogonal vector measures*, Izv. Vuzov. Matematika 6 (1996), 33–36 [in Russian].
- [3] G. D. Lugovaya, *On unbounded orthogonal measures on projections*, Izv. Vuzov. Matematika 12 (1992), 43–46 [in Russian].
- [4] M. S. Matveychuk, *On extending an unbounded measure to a weight*, Izv. Vuzov. Matematika 4 (1987), 47–50 [in Russian].
- [5] G. Pedersen, M. Takesaki, *The Radon–Nikodym theorem for von Neumann algebras*, Acta Math. 130 (1973), 53–87.
- [6] A. N. Sherstnev, *On certain problems in the theory of unbounded measures on projections*, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 357–366.

DEPARTMENT OF MATHEMATICS AND MECHANICS
KAZAN STATE UNIVERSITY
ul. Lenina 18
KAZAN, 420008, RUSSIA
e-mail address: Anatolij.Sherstnev@ksu.ru

Received April 2nd, 1996.