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ON EXTENDING AN UNBOUNDED ORTHOGONAL 
VECTOR MEASURE IN A SEMIFINITE VON N E U M A N N 

ALGEBRA TO A WEIGHT 

The aim of this paper is to extend the result of the paper [2] (on the 
possibility of the extension of a Hilbert-space-valued unbounded orthogonal 
vector measure on all projections on a Hilbert space to a vector weight) to 
the case of an arbitrary semifinite von Neumann algebra. 

Throughout the paper, let M be a von Neumann algebra which acts on 
a Hilbert space, endowed with an inner product < .,. >. We will denote by 
Xpr and X+ the sets of all orthoprojections and positive operators in X(C 
M), respectively. We will examine measures on projections with values in a 
Hilbert space K complemented with an improper element oo. The following 
assumptions will be needed in this case: 

/ + oo = oo ( / € K), 00 + 00 = 00, A • 00 = oo(A >0) , 0 • 00 = 0 

(here 6 denotes the zero vector in K). We first give a definition of a scalar 
unbounded measure on projections (see Definition 2.2 [6]). 

DEFINITION 1. Let M be a von Neumann algebra acting on a Hilbert 
space H. A mapping m : Mpr —• [0, +00] is said to be a semifinite measure 
if 

(i) there exists a net (pa)a€A C Mpr with pa / 1 and m(pa) < +00 for 
ae A; 

(ii) m(52Pi) = X) m(Pi) for any family (p,) of mutually orthogonal pro-
jections in Mpr. 

We will deal with unbounded orthogonal vector measures (see Definition 
3.3 [6] and [3]): 

DEFINITION 2. Let M be a von Neumann algebra acting on a Hilbert 
space H and K be a Hilbert space complemented with an improper element 
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oo. A mapping fi : Mpr —*• K U {00} is said to be a semifinite orthogonal 
vector measure {K-valued measure for short) if 

(i) there exists a net (p Q ) a eA C Mpr with pa f 1 and n{pa) £ K for 
a £ A; 

(ii) pq = 0, fi(p),ix(q) e K =• (ji(p), /¿(g)) = 0; 
(iii) P=^Pi (P,Pi G Mpr) implies 

{ Ys^iPi) if the series ^ n(pi) converges 

in the norm topology on K, 
00 otherwise. 

(The convergence of an uncountable family of summands means that there 
exists a limit of the net of finite sums.) 

A measure /i is said to be unbounded if /x(l) = 00. Our definition agrees 
with the one given in [1] whenever /¿(l) £ K . 

In [1], the problem of the extension of a bounded K-valued measure to an 
orthogonal vector field was affirmatively solved. The latter was defined as a 
linear mapping F : M —> K that is continuous (for the ultraweak topology 
on M and the weak topology on K) and satisfies (F(p), F(q)) = 0 when 
p,q € Mpr and pq = 0. 

T H E O R E M 1 [1]. Let M be a von Neumann algebra without type I2 direct 
summands and let fi : Mpr K be a K-valued measure. Then there is an 
orthogonal vector field F : M —» K such that F\Mpr = //. 

Let us introduce an unbounded analogue to the orthogonal vector field. 
However we will impose no continuity requirements. 

DEFINITION 3 . We call a mapping F : M+ —»• K U { 0 0 } an orthogonal 
vector weight if satisfies the following conditions: 

(i) F(x + y) = F(x) + F(y), F(Xx) = XF(x)(x, y G M+,X > 0); 
(ii) pq = 0 ( p , q e Mpr), F(p),F(q) e K => (F(p),F(g)) = 0. 

The following theorem is the main result of the paper: 
T H E O R E M 2 . Let M be a semifinite von Neumann algebra without type 

L2 direct summands and let ¡i : Mpr —• K U {00} be an unbounded K-valued 
measure. Then there exists an orthogonal vector weight F : M+ iiTu{oc} 
such that F\Mpr = ft. 

P r o o f . The proof will be devided into 5 steps. We first prove (steps 1-4) 
the theorem for finite von Neumann algebras. 

Step 1. According to Proposition 1 [3] for a given unbounded A'-valued 
measure we can construct an unbounded semifinite scalar measure 



Unbounded orthogonal vector measure 593 

m : Mpr [0, +00] put t ing 

(1) m(P) = (Mp)W2 i f M ( p ) e J r . 
( 00 otherwise . 

The following statement is a sharpened version of Proposition 1 [4]. 

P R O P O S I T I O N 1. Let M ba a finite von Neumann algebra with no type I2 
direct summands and let m : Mpr —• [0, + 0 0 ] be a semifinite measure. Then 
there exists a normal weight ui : M+ —• [0, + 0 0 ] whose restriction to Mpr 

is m. 

P r o o f . Let r be a faithful normal semifinite trace on M (it exists be-
cause M is finite and hence semifinite). Suppose now that pa f 1, where 
(Pa)aeA C Mpr is a net satisfying (i) of Definition 1. As mQ = mPa \MP^ is 
a finite measure on projections in the reduced algebra MPa, it extends to a 
normal s ta te defined by a selfadjoint operator Ta > 0 (the density operator) 
which acts in the Hilbert space paH and is affiliated with MPa. Moreover, 
ma is defined as ma(p) = ra(Tap) (p 6 Mpwhere Ta is the trace r re-
duced to MPa. The family (Ta) is compatible in the sense that pa < pp 
implies PaTppa = Ta. Let us define a linear operator T on H by 

D{T) = U ( £ ( T a ) n paH) and Tf = Taf for / € D(Ta) n paH. 
a 

Obviously, T is positive and affiliated with M. So, its closure (for which 
we use the same letter T) is affiliated with M as well. Since M is finite, 
it follows tha t T is measurable with respect to M and hence positive and 
selfadjoint. Define a normal weight ui putt ing 

U(X) = T(TX) ( x e M + ) , 

where the right side is understood in the known regularized sense (see [5]): 

r(Tx) = Jam+ t{T^2xT^2), T£ = T{I + e T ) " 1 , e > 0 . 

The proof is completed by showing that u)\Mpr = m. Since M is finite, it 
follows tha t every p 6 Mpr is representable as an orthogonal sum p = 
where each projection p 7 is majorized by a suitable pa, a = a ( 7 ) . We thus 
get 

"(p) = = 2 r ( r i , - y ) = J2Ta(-y)(T<*(~<)P^ = S = m ( p ) 

and the proof is complete. 
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Let U>: M+ —• [0, +00] be a weight which extends the measure M defined 
by (1). We consider the following sets: 

mw = {x £ M+\u>(x) < +00}; 
nu = {y G M\y*y € mw} (a left ideal in M); 
lincmu = n^riu — (rc* D nu)2. 

Moreover, (n* nu,)+ is a hereditary subcone of M + . Define a positive bilinear 
form on n u by 

(xiV)u = "(y*x) (x,y€nu). 

We will denote by ||«||w = (x, x)^ (x € nu) the corresponding seminorm. 
Step 2. We introduce the set 

m={pe Mpr\n(p) € K} = {p6 Mpr\m(p) < +00}. 

According to J. Hamhalter [1], the measure nv = n\MpT extends to an 
orthogonal vector field Fp : M+ —> K. Furthemore, standard arguments 
based on the spectral theorem show that x € M+ fl M+ (p, q G M) implies 
Fp(x) = Fq(x). 

R e m a r k 1. A consequence of Proposition 1 is that if p € 271, then the 
restriction OJp = u\Mp is a normal state of Mp. 

Let A be the set of indices as in Definition 2. Denote 9JIA = {p G 
Mpr\3a e A (p < pa)} and M+ = {a; € mw)\3a e A (rp(x) < pa)} (a 
hereditary subcone of M+). Here rp(x) denotes the range projection of the 
operator x. 

Put h(Ma) = {fi(p)\p € W-A}- We will consider K0 = [/m®/i(9JT^)]- as 
a real Hilbert space with the inner product {£,t?)0'= Re(€,v) £ Ko)-
We extend T]\£UIA to an additive and positively homogeneous mapping by 

<p{k) = Frp{k]{k) (keM%). 

It should be noted that lin&{<p(k)\k £ Mj[} is dense in KQ. 
We next claim that (p well extends to a real linear mapping (again de-

noted by ip) from Mjja = M\ - into K0. 
Step 3. Take an arbitrary y £ nu, and let be the real linear functional 

on the linear subspace <p(M™) C Ko (that is dense in Ko) defined by 

*„(¥>(*)) = iie<fc,yL (keMX a ) . 
Put M0 = {k £ M™\k = J^i^iPiiPiPj = 0,i ± j) is a finite sum}. Note 
that (p(Mo) is dense in KQ. For k = J^i ^iPi £ Mo we have 
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(2) ||fc||i = u(k2) = £ A}m{ P i ) = £ A?IMw)||2 

i i 
= YX2i(Frp(k)(Pi),Frp(k)(pi)) 

i 

= (Frpik)(k),FrpW(k)} = Mk)\\2 

= M * ) l 6 -
Therefore, 

|*s(y>(*))l = | R e (k , y ) J < | |y | | J |* |L = | |y | | J I^OIIo-
Hence is a continuous linear functional on Kg and, by the Riesz theorem, 
there exists <p~(y) € Kq such that 

*y(b) = (b,<p~(y))0 (beKo). 

Finally, define the desired orthogonal vector weight F : M+ —» I( U {oo} 
extending /z by 

(3) F(x) = I if x e (n«n«)+> 
I oo otherwise . 

Step 4. We will verify that F\M\ = (¿> and F extends ¡i. First suppose 
that k G and ka f k, where ka G M0C\{k}" (i.e., ka € Mo are operators 
from the commutative von Neumann algebra generated by k). From (2) and 
Remark 1, if follows that 

\\k\i = = l i m u ( k l ) = lim = lim || 

= lim ||F rp( fc )(fc.)| |2 = = Mk)\\2 = ||v(fc)||J. 

This gives that ||i||2 = ||y>(i)|l2 for all i 6 Ms/. We have 

1 3 
Re(t, k)w = -ReY,in(t + ink,t + ink)w 

n=0 

= \{(t + k,t + k ) u - ( t - k , t - k ) J 

= \ m t + *), <p(t + *)> - (¥>(* - *)><p(t - k))} 

= Re(<p(t), <p(k)) = (<p(t), <p(k))0 (t eMs/)-
The equality 

Mi), <p~(k))0 = *k(<p(t)) = Re(t, k)u = {<p(t), <p(k))0 (t 6 M%°) 
yields F(k) = y~{k) = <p(k). 

Finally, let p € 9Jt and (p a ) be a net of projections satisfying the condi-
tion (i) of Definition 2. Since M is finite it follows that p A pa / p. Then 
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for every k 6 M™ it holds 

K^iPL - (k>PAP<x)J = \(k,P~ phpa)u\ 

= |w((p - p A pa)A;)| < u(p - p A pay • u(k 2 ) 0. 

Hence 

(<p(k),<p~(p)) o = *p{<P(k)) = Re(k,p)„ =lim((p(k),<p(pApa))0 

= lim (¥>(&),Mp A P a ) )o = /i(p))0 (fc € M l 0 ) . a 
In the last equality, we have used the following property: pa / p (pa 6 
implies fi(pa) —> /¿(p), which (as m|Mp extends to a normal state on Mp) is 
equivalent to (iii) of Definition 2. So, we may conclude that <p~(p) = 

Step 5. (The end of the proof). Let r be a faithful normal semifinite 
trace on M . Put 

wiTitl = {Pe Mpr\p e an, r(P) < +00}. 

Let ra = Vge<T 9» where a is a finite subset of In this case r /* I . The 
family (Mr<r) is an increasing net of finite reduced von Neumann subalgebras 
of M . By making use of arguments similar to those in [4], we obtain that 
fi„ = fJ.\M^ is a semifinite orthogonal measure for every a. Denote by Fa 

the orthogonal vector weight constructed as in Step 3 which extends the 
measure 

Let u : M+ —»• [0, +oo] again be a weight extending the measure m 
defined by (1). Its existence is guaranteed by [4] together with the above-
proved Proposition 1. In addition, the weight u has the following property: 
if (xa) C M+ is a net increasing to x £ M+ with u(x) < +oo, then 
u(xa) u(x). 

Note (using the notation of Steps 1 and 2) that 

( n * n w ) + D ( J ) + , where u>0 = ur<r. 
a 

Put (p~(x) = F„(x),x e 
For an arbitrary y € nu we consider the real linear functional defined 

on ^ ( U . M - J b y 

*y(<p(k)) = Re(k,y)u (keMXl). 

Here, <p{|Ja M\) is dense in Kg = [^ i/^U c t • Observe that the sets 
VOIA^IM™ and the mapping <p can be constructed in finite von Neumann 
algebras Mrg. by the method of Step 2. According to arguments similar to 
Step 3, we conclude that is a bounded linear functional on KQ. We define 
the orthogonal vector weight F : M+ —> K U {oo} by (3). We will show that 
F extends \i. 
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Let p G 9K and p1 / p (p7 G 9KTiit). Then 

(<p(k),F(p))0 = *,(¥>(*)) - Re(k,p)u = lim Re(k,p^)w 

= lim(y?(A;), v>~u {7 } (p7 ) )o = lim (<p(k), 

= <¥>(*), A*(P)> 0 (ktMXl). 

Hence = ¿¿(p), and the proof is complete. 
Let us add a result associated with the nature of the continuity of the 

obtained weight. 

THEOREM 3. The orthogonal vector weight constructed as in Theorem 2 
has the following property: if(xa) is a net increasingto x with F(xa), F(x) G 
A', then F(xa) —• F(x) in the norm of K. 

P r o o f . Given a net ( x a ) put yQ = x - xa. In this case ( y a ) C mw , 
ya < x and ya \ 0. It is sufficient to show that F(y) 6. We have (in the 
notations of Theorem 2) = v ( y l ) < ||z||u;(t/a) -»• 0 and 

11^ )11 = = sup | < M v # ) ) l 
IM*)llo=i. k £ \ J „ M Z 

< sup \(k,y a )J < ||»olL. 

The theorem follows. 
Finally, we observe that the constructed orthogonal weight has the fol-

lowing sharpened property of orthogonality (in comparision with (ii) of Def-
inition 3): 

COROLLARY. The orthogonal vector weight F constructed as in Theorem 

2 has the following property: if rp(x) and rp(y)(x,y G M+) are orthogonal 

and F(x), F(y) G K, then ( F ( x ) , F{y)) = 0. 

P r o o f . According to the spectral theorem we approximate x and y 

( x , y G M+) from the below by Riemann's integral sums xn and yn, re-
spectively, 

Xn = ^ AinPin / X and yn = ^ (ijnQjn y, 
« j 

(here, pin and qjn are spectral projections of x and y, respectively). Since 
rp(x) and rp(y) are orthogonal, it follows that Pinqjn = 0 for all i,j,n. 

Then we have (F(pin), F(qjn)) = for all i,j,n. From Theorem 3, we obtain 
(F(x),F(y)) = l i m n ( F ( x n ) , F{yn)) = 0. 
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