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ON EXTENDING AN UNBOUNDED ORTHOGONAL
VECTOR MEASURE IN A SEMIFINITE VON NEUMANN
ALGEBRA TO A WEIGHT

The aim of this paper is to extend the result of the paper [2] (on the
possibility of the extension of a Hilbert-space-valued unbounded orthogonal
vector measure on all projections on a Hilbert space to a vector weight) to
the case of an arbitrary semifinite von Neumann algebra.

Throughout the paper, let M be a von Neumann algebra which acts on
a Hilbert space, endowed with an inner product < .,. >. We will denote by
X?" and Xt the sets of all orthoprojections and positive operators in X(C
M), respectively. We will examine measures on projections with values in a
Hilbert space K complemented with an improper element co. The following
assumptions will be needed in this case:

f+oo=00(feK), cotoo=00, Aow=00(A>0), 0-0c0=14

(here @ denotes the zero vector in K'). We first give a definition of a scalar
unbounded measure on projections (see Definition 2.2 [6]).

DEFINITION 1. Let M be a von Neumann algebra acting on a Hilbert
space H. A mapping m : MP" — [0, +00] is said to be a semifinite measure
if

(i) there exists a net (py)aca C MP" with p, /1 and m(p,) < +oo for
a € A;

(i) m(X. pi) = 3 m(p;) for any family (p;) of mutually orthogonal pro-
jections in MPT,

We will deal with unbounded orthogonal vector measures (see Definition
3.3 [6] and (3]):

DEFINITION 2. Let M be a von Neumann algebra acting on a Hilbert
space H and K be a Hilbert space complemented with an improper element
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0o. A mapping p : MP" — K U {oo} is said to be a semifinite orthogonal
vector measure (K -valued measure for short) if
(i) there exists a net (pa)aca C MP" with p, /' 1 and p(p.) € K for
a € A;
(ii) pg = 0, u(p), u(q) € K = (u(p), u(g)) = 0;
(ii) p = 3 pi (p,pi € MP") implies
Y u(pi) if the series Y u(p;) converges
u(p) = in the norm topology on K,
00 otherwise.

(The convergence of an uncountable family of summands means that there
exists a limit of the net of finite sums.)

A measure 4 is said to be unbounded if u(1) = co. Our definition agrees
with the one given in [1] whenever p(1) € K.

In [1], the problem of the extension of a bounded K-valued measure to an
orthogonal vector field was affirmatively solved. The latter was defined as a
linear mapping F': M — K that is continuous (for the ultraweak topology
on M and the weak topology on K) and satisfies (F(p), F(g)) = 0 when
p,q € MP" and pg = 0.

THEOREM 1 [1]. Let M be a von Neumann algebra without type I, direct
summands and let p : MP" — K be a K-valued measure. Then there is an
orthogonal vector field F : M — K such that F|MP" = pu.

Let us introduce an unbounded analogue to the orthogonal vector field.
However we will impose no continuity requirements.

DEFINITION 3. We call a mapping F : MT — K U {c} an orthogonal
vector weight if satisfies the following conditions:

(i) F(z +y) = F(z) + F(y), F(\z) = AF(z)(a,y € M*,A > 0);

(ii) pg = 0(p,q € M?"), F(p), F(q) € K = (F(p), F(q)) = 0.

The following theorem is the main result of the paper:

THEOREM 2. Let M be a semifinite von Neumann algebra without type
I, direct summands and let yu : MP" — K U{oo} be an unbounded K -valued
measure. Then there ezists an orthogonal vector weight F : M* — K U{oc}
such that FI|MP" = pu.

Proof. The proof will be devided into 5 steps. We first prove (steps 1-4)
the theorem for finite von Neumann algebras.

Step 1. According to Proposition 1 [3] for a given unbounded K -valued
measure we can construct an unbounded semifinite scalar measure
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m : MP" — [0,+00] putting

(1) m(p) = {ump)n? if u(p) € K,

(%) otherwise .

The following statement is a sharpened version of Proposition 1 [4].

ProrosiTiON 1. Let M ba a finite von Neumann algebra with no type I,
direct summands and let m : MP" — [0, +00] be a semifinite measure. Then
there ezists a normal weight w : M+ — [0,400] whose restriction to MP™
s m.

Proof. Let 7 be a faithful normal semifinite trace on M (it exists be-
cause M is finite and hence semifinite). Suppose now that p, / 1, where
(Pa)aca C MP" is a net satisfying (i) of Definition 1. As my = m,, |MJT is
a finite measure on projections in the reduced algebra M,_, it extends to a
normal state defined by a selfadjoint operator T, > 0 (the density operator)
which acts in the Hilbert space p, H and is affiliated with M, . Moreover,
Mg is defined as mq(p) = 7a(Tap) (p € MJT), where 7, is the trace T re-
duced to Mp, . The family (T,) is compatible in the sense that p, < pg
implies poTgpo = Tw- Let us define a linear operator " on H by

D(T) = | J(D(Ta) N paH) and Tf = T f for f € D(Ta) N paH.

Obviously, T is positive and affiliated with M. So, its closure (for which
we use the same letter T') is affiliated with M as well. Since M is finite,
it follows that T is measurable with respect to M and hence positive and
selfadjoint. Define a normal weight w putting

w(z)=71(Tz) (z€ M),
where the right side is understood in the known regularized sense (see [5]):
m(Tz) = lir(r)1+ (T 22T, T.=TU +¢T)™!, €>0.
The proof is completed by showing that w|M?P™ = m. Since M is finite, it
follows that every p € MP" is representable as an orthogonal sum p =} p,,

where each projection p, is majorized by a suitable p,, a = a(y). We thus
get

w(p) = Zw(p’Y) = ZT(TP'Y) = ETOI('y)(Ta('y)p'y) = Z m(p-y) = m(p)

and the proof is complete.
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Let w: Mt — [0, +00] be a weight which extends the measure m defined
by (1). We consider the following sets:

m, = {z € Mt|w(z) < +o0};

n, = {y € Mly"y € m,} (aleft ideal in M);
: x x 2

lingm, = nin, = (nl, Nny)".

Moreover, (n2n,)?" is a hereditary subcone of M*. Define a positive bilinear
form on n, by

(z,9), =w(y"z) (2,9 € ny).

We will denote by ||z||, = (z, z)i (z € n,) the corresponding seminorm.
Step 2. We introduce the set

M= {p€ M |u(p) € K} = {p € MP"|m(p) < +o0}.

According to J. Hamhalter [1], the measure p, = p|M}" extends to an
orthogonal vector field F, : M} — K. Furthemore, standard arguments
based on the spectral theorem show that = € Mz',F n M;' (p,q € R) implies
Fp(z) = Fy(z).

Remark 1. A consequence of Proposition 1 is that if p € 9, then the
restriction w, = w|Mp is a normal state of M.

Let A be the set of indices as in Definition 2. Denote My = {p €
MP|3a € A (p £ po)} and M = {z € my)|3a € A (rp(z) < po)} (2
hereditary subcone of M*). Here rp(z) denotes the range projection of the
operator z.

Put pu(M4) = {p(p)|p € Ma}. We will consider Ko = [lingu(D4)]™ as
a real Hilbert space with the inner product (£,7), = Re(€,n) (§,7 € Ko).
We extend 7|94 to an additive and positively homogeneous mapping by

¢(k) = Frpry (k) (k € M)

It should be noted that ling{p(k)|k € M} is dense in K.

We next claim that ¢ well extends to a real linear mapping (again de-
noted by ¢) from M3* = M} ~ M7 into K.

Step 3. Take an arbitrary y € n,,, and let ®, be the real linear functional
on the linear subspace (M 35%) C Ko (that is dense in Ko) defined by

@y (p(k)) = Re(k,y), (ke MY).

Put Mo = {k € Mk = >, Aipi(pip; = 0, # j) is a finite sum}. Note
that ¢(Mp) is dense in Ko. For k = ), A\ip; € My we have
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2
(2 Il = w(k?) =Y Am(pi) = ) A llu(p)l
i i
=Y A Frp(i) (i), Frpiy(pi))

= (Frp(iy (k), Frpi (k) = lle(R)II

= [l (k)llg-
Therefore,

124 (@(k))] = |Re(k, y),| < Nyl NIk, = Il ile(F)llo-

Hence &, is a continuous linear functional on Ky and, by the Riesz theorem,
there exists ¢~ (y) € Ko such that

@y(b) = (b,9™(¥))o (b€ Ko).
Finally, define the desired orthogonal vector weight F' : M+ — K U {oo}
extending p by
~ . M x +
F(z) = { ¢7(z) ifz€(nin,)",
(3) (2) {oo otherwise .

Step 4. We will verify that F|Mj{ = @ and F extends p. First suppose
that k& € Mj{ and k, /" k, where k, € MgN{k}" (i.e., k, € My are operators
from the commutative von Neumann algebra generated by k). From (2) and
Remark 1, if follows that

IkIZ, = w(k?) = limw(k2) = lim [lp(ka)|* = lim [| Frpe,) (ko)
= lim || Frpgiy (ka)lI* = (B = iR = llo(k) 5.

This gives that ||¢]|> = [|(2)||2 for all ¢ € M3*. We have
3

Re(t, k), = iRe YoMt + itk t+i"k),

n=0

= k), — (= k- k),

= Ut + ), plt+ R)) — (olt — £), 0t — )}

= Re(p(t), (k) = (e(t), 0(k))y (t€ M3
The equality

(1), (k) = Bulee(1)) = Relt, k), = (g(t), p(k))y (¢ € M3
yields F(k) = ¢~ (k) = (k).

Finally, let p € 9t and (p,) be a net of projections satisfying the condi-

tion (i) of Definition 2. Since M is finite it follows that p A po /" p. Then
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for every k € M§® it holds
[(k,p), — (kP A Pa)o,| = (B, p = P A Pl
= [w((p~ PAPIR) S w(p = P A pa)? - w(k?) — 0.

Hence
(p(k), ¢~ (P))o = Bp((k)) = Re(k,p),, = lim (p(k), ¢(p A pa))g

= lim (o(k), (P A pa))o = (¢(K), 1(P))o (k€ ME).

In the last equality, we have used the following property: p, /" p (po € MY")
implies p(po) — p(p), which (as m|M, extends to a normal state on M,) is
equivalent to (iii) of Definition 2. So, we may conclude that ¢~ (p) = u(p).

Step 5. (The end of the proof). Let 7 be a faithful normal semifinite
trace on M. Put

M, . ={p€ MPpeM1(p) < +o0}.

Let 7o = V¢, @, where o is a finite subset of M, ,. In this case r /* I. The
family (M., ) is an increasing net of finite reduced von Neumann subalgebras
of M. By making use of arguments similar to those in [4], we obtain that
1o = p|ME" is a semifinite orthogonal measure for every o. Denote by F,
the orthogonal vector weight constructed as in Step 3 which extends the
measure f,.

Let w : M+ — [0,+00] again be a weight extending the measure m
defined by (1). Its existence is guaranteed by [4] together with the above-
proved Proposition 1. In addition, the weight w has the following property:
if (zo) C M is a net increasing to z € M*' with w(z) < +oo, then
w(zy) — w(z).

Note (using the notation of Steps 1 and 2) that

(nrny)t > U (ng, nw,)t, where w, = wy, .
g

Put o3 (z) = F,(z),z € (n:‘,an%)f

For an arbitrary y € n, we consider the real linear functional ®, defined
on o(lJ, Mz%) by
®y(p(k)) = Re(k,y), (k€ ME).

Here, o(J, M3® ) is dense in Ko = [lingpu(lJ, M4, )] - Observe that the sets
Ma,, M2 and the mapping ¢ can be constructed in finite von Neumann
algebras M,_ by the method of Step 2. According to arguments similar to
Step 3, we conclude that @, is a bounded linear functional on Ky. We define
the orthogonal vector weight F' : Mt — K U {oo} by (3). We will show that
F extends pu.
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Let p € M and p, / p (py € M,,,.). Then
(P(k), F(Dy = Bu(p(k)) = Re(k,p),, = lim Re(k, ),

= lign(go(k), PouiyPy)lo = li’ryn (e(k), 1(Py))o

= (p(k), u(p))e (k€ MZ).

Hence F(p) = pu(p), and the proof is complete.
Let us add a result associated with the nature of the continuity of the

obtained weight.
THEOREM 3. The orthogonal vector weight constructed as in Theorem 2

has the following property: if (zo) is a net increasing to ¢ with F(z,), F(z) €
K, then F(zy) — F(z) in the norm of K.

Proof. Given a net (z,) put yo = T — 4. In this case (y.) C my,
Yo < z and yq \, 0. It is sufficient to show that F(y) — 6. We have (in the

notations of Theorem 2) [|y|12, = w(32) < [|z[lw(ya) — 0 and

|E(ye)ll = lle™ (ya)ll = sup @y (0(K))|
”90(k)"0=11 kEUa M,’qaa
S sup |<k3 ya)wl S ”ya”w'

llkll, =1,kel J, M2

The theorem follows.

Finally, we observe that the constructed orthogonal weight has the fol-
lowing sharpened property of orthogonality (in comparision with (ii) of Def-
inition 3): .

CoRrOLLARY. The orthogonal vector weight F constructed as in Theorem
2 has the following property: if rp(z) and rp(y)(z,y € M) are orthogonal
and F(z), F(y) € K, then (F(z), F(y)) = 0.

Proof. According to the spectral theorem we approximate z and y

(z,y € M%) from the below by Riemann’s integral sums z, and y,, re-
spectively,

Tn = Z)‘inpin /' z and y, = Z,anan 7Y,
i J

(here, pin, and g¢;, are spectral projections of z and y, respectively). Since
rp(z) and rp(y) are orthogonal, it follows that p;ng;, = 0 for all ¢,7,n.
Then we have (F(pin), F(g;n)) = for all 7, j, n. From Theorem 3, we obtain
(F(z), F(y)) = limn(F(zn), F(yn)) = 0.
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