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A NOTE ON TWO WEAK FORMS
OF OPEN MAPPINGS AND BAIRE SPACES

1. Introduction
Z. Frolik (2] stated without proof the following Proposition 1.1 in order
to use it in the proof of the next Theorem 1.2 given also in [2].

ProPosITION 1.1. If f is one-to-one feebly-continuous mapping from a
space X onto a space Y, then f is almost-continuous.

THEOREM 1.2. Let f be a one-to-one feebly-continuous and feebly-open
mapping from a space X onto a space Y. Then X is a Baire space if and
only if Y is a Baire space.

Later, T.Neubrunn [9] gave a counter example which shows that Propo-
sition 1.1 is not true in general and proved that Theorem 1.2 is true, while
Proposition 1.1 is false. :

In 1968 M.K.Singal and A.R. Singal [7] defined almost-open mappings
which contain the class of open mappings and in 1984 D.A.Rose [6] intro-
duced a new class of mappings called weakly-open mappings which contain
the class of open mappings.

The purpose of the present note is to give some sufficient conditions
which insure that Proposition 1.1 is true (Theorem 2.4) and to point out
the supposition that “feebly-open mapping” in the “if” part of Theorem
1.2 can be replaced by “almost-open mapping” (Theorem 3.3) and then to
show that the suppositions of Theorem 1.2 is also valid for feebly-continuous
and weakly-open mapping in the case when the space X is almost-regular
(Corollary 3.4).

The most frequently used notations are following: Let A be a subset of
a topological space X. The closure of A in X and interior of 4 in X will be
denoted by A and intA, respectively. The complement of A in X is X — A.
Throughout this paper by X and Y will be always denoted topological
spaces on which no separation axioms are assumed unless stated explicitly.
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No mapping is assumed to be continuous unless stated.

2. Preliminaries

DEFINITION 2.1. A mapping f : X — Y is called almost-open [7] (resp.
weakly-open [6]) if the image of every regularly open subset of X is an open
subset of Y (resp. for every open set U of X, f(U) C int(f(U)) ).

Remark 2.1. Every almost-open mapping is weakly-open (see [6] The-
orem 4), but the converse of this statement may not be true in general as is
shown by the following example.

ExaMPLE 2.1. Let X = {a,b,¢,d}, T = {X,0,{b}, {d},{b,d},{b,c,d}}
and Y = {1,2,3},7" = {¥,0,{1},{1,2},{1,3}}. Let f : (X,T) — (V,T")
be given by f(a) = 1, f(b) = 2, f(¢) = f(d) = 3. Then f is weakly-open, but
since {b} is regular open in (X 7T) and f({b}) {2} is not open in (Y, 7T"),

then f is not almost-open.

DEFINITION 2.2. A topological space X is said to be almost-regular [8]
if for each 2 € X and each regular open set G containing z there exists a
regular open set V such that z € V CV CG.

The following result which gives the sufficient condition for a weakly-open
mapping to be almost-open, will be used in the sequel.

THeEOREM 2.1. If X is almost-regular space and f : X — Y is weakly-
open, then f is almost open.

Proof. Let G be any regular open subset of X and let y be arbitrary
point of f(G). Then there exists a point z of G such that f(z) = y. Since X
is almost-regular, then there exists a regular open subset U of X containing
z such that 2 € U C U C G. Hence f(z) € f(U) C f(G). Since f is
weakly-open, then f(U) C int(f(U)) C f(G) by Definition 2.1.

Thus f(G) is neigbourhood of f(z). This shows that f(G) is open in Y.
Consequently f is almost-open.

DEFINITION 2.3. A mapping f: X — Y is called almost-continuous [2]
if, for every open set V of Y, f~1(V) # 0 implies f~}(V) C int(f~1(V)). A
mapping f: X — Y is called feebly-continuous [2] if, for every nonempty
open set V in Y, f~Y(V) # 0 implies int(f~1(V)) # 0. A mapping f :
X — Y is called feebly-open [2] if, for every nonempty open set Uin X,
the set int f(V') is nonempty.

Remark 2.2. Example 2.1 shows that weakly-open mapping is not
needed to be feebly open. Indeed, since {b} is open in (X, 7) and int( f({b}))
= int({2}) = 0, then f is not feebly-open.
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DEFINITION 2.4. A being a subset of X is said to be semi-open {5] if
there exists an open subset U of X such that U C ACU.

THEOREM 2.2. (cf. [5]). A subset A in X is semi-open if and only if
A C intA.

DEFINITION 2.5. A mapping f: X — Y is said to be semi-continuous
[5] if, for each open subset V in Y, f~1(V) is semi-open in X.

The following characterization will be used in the sequel

THEOREM 2.3. (cf.[4], Theorem 1). For the mapping f : X — Y the
following statements are equivalent
(i) f is semi-continuous,

(ii) int(f~1(B)) C f~Y(B) for each subset B of Y,
(i) f(intA) C f(A) for each subset A of X.

Remark 2.3. (i) It appears that Frolik’s almost-continuity in Definition
2.3 is precisely Levin’s semi-continuity in Definition 2.5, since § C A for any
set A.

(ii) Obviously every almost-continuous mapping is feebly-continuous, but
the converse of this statement is not necessarily true as shown by the fol-
lowing example due to T.Neubrunn [9].

ExaMPLE 2.2. Let X and Y be the set of real numbers with usual
topology. Let the mapping f : X — Y be defined as follows f(z) = =z,
ifz #0and z # 1; f(0) = 1,f(1) = 0. Then f is one-to-one feebly-
continuous and feebly-open, but it is not almost-continuous. Indeed, since
G= (-} %) is an open subset in ¥ and f~}(G) = (-1,0)u(0,3) U {1},
then int(f~1(G)) = [—%, 3], consequently f is not almost-continuous by
Definition 2.3.

However we have the following result which gives the sufficient condition
for a feebly-continuous mapping to be almost-continuous in order to use it
for our proof in the sequel.

THEOREM 2.4. Let f be one-to-one mapping from a space X into a space
Y. If f is feebly-continuous and weakly-open, then f is almost-continuous.

Proof. Let B be any open subset of Y. To prove that f is almost-conti-
nuous it is enough to show that f~*(B) # § implies f~1(B) C int(f-1(B))
by Definition 2.3. Let z be arbitrary point of f~!(B); then we have f(z) € B.
Let U be arbitrary open neighbourhood of z. Since f is weakly-open, f(z) €
f(U) C int(f(U)). Hence the set W = B nint(f(U)) is an open neighbour-
hood of f(z). Since f is feebly-continuous, int(f~*(B N int(f(V))) # 0.
This shows that int(f~1(Bn f(U))) # §. Moreover, since f is injective, we
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obtain int(f~1(B)) NintTU # (. From this we have int(f~1(B)NT # 0.
This implies that int(f~1(B)) N U # 0. Hence z belongs to the closure of
the set int(f~1(B)), that is z € int(f~1(B)).

COROLLARY 2.5. Let f be one-to-one mapping from a space X into a
space Y. If f is feebly-continuous and almost-open, then f is almost contin-
uous.

The proof follows from Remark 2.1 and Theorem 2.4.

Remark 2.4. Almost-open mapping does not need to be feebly open in
general, as the following example shows.

ExXAMPLE 2.3. Let X =Y = R be the set of real numbers and let &/ be
the usual topology of the set of real numbers. Let the topology «* on X
be generated by & U {U N (R — Q){U € U}, where @ is the set of rational
numbers and let 7 be lower limit topology on Y generated by the right
half-open intervals [a,b), a,b € R. Now (X,U*) is a Baire space and the
identity mapping ¢ : (X,U*) — (Y, T) is almost-open and feebly continuous,
but it is not feebly-open. To see that ¢ is not feebly-open, let A be the set
of irrational numbers between 0 and 1. Then A is nonempty open subset of
X . However interior of i(A) = A (with respect to the lower limit topology
on Y') is empty. Consequently ¢ is not feebly-open.

The following definitions, which will be used in the sequel, can be found
in {1],[3].

DEFINITION 2.6. Let A be a subset of a topological space X. Then 4 is
nowhere dense in X if int(4) = 0. If A is not nowhere dense in X, then it
is called somewhere dense in X.

DEFINITION 2.7. A subset A of a space X is of first category (also called
meager) in X if it is the union of countable family of nowhere dense subsets
of X. A subset A of X is of second category (also called nonmeager) in X
if it is not of first category in X.

DEerINITION 2.8. A Baire space is a topological space such that every
nonempty open subset is of the second category.

DEFINITION 2.9. A mapping f : X — Y is called §-open (cf. [3] ,p.45) if,
for every nowhere dense subset N of Y, f~!(V) is a nowhere dense subset
of X, or equivalently if, for every somewhere dense subset A of X, f(A) is
somewhere dense subset of Y.

THEOREM 2.6. If f is a 6—open mapping from a space of second category
X on a space Y, then' Y is a space of second category (cf.[3], Proposition

4.6 p.46).
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3. Some Results

THEOREM 3.1. If f : X — Y 1is one-to-one feebly-continuous and
almost-open mapping, then f is 6-open.

Proof. Let A be somewhere dense of X. That is int(4) # 0. Let us
put G = int(A). Hence G is regular-open subset of X. Since f is almost-
open, f(G) is nonempty open subset in Y, by Definition 2.1. On the other
hand, since f is almost-continuous by Corallary 2.5, consequently f is semi-
continuous, by the case (i) of Remark 2.3, then f(G) = f(int(4)) C f(A),
by the case (iii) of Theorem 2.3. This shows that int(f(A)) # 0. Hence f is
6-open.

CoROLLARY 3.2. If X is almost-regular and f : X — Y 1is feebly-
continuous and weakly-open injection, then f is 6-open.

The proof follows from Theorems 2.1 and 3.1.

THEOREM 3.3. Let f be one-to-one feebly-continuous and almost-open
mapping from a space X onto a space Y. If X is Baire space, then Y is
Baire space.

Proof. Suppose that Y is not a Baire space. Then there exists a non-
empty open first category subset B of X, by Definition 2.8. That is B =
Un—, Bn where each B, is nowhere dense subset in Y, by Definition 2.7. On
the other hand, since f is §-open, by Theorem 3.1, f~(B) = Us_, f~1(Bx)
is of the first category subset of X, by Definition 2.9. Moreover, since f is
feebly-continuous, int(f~1(B)) # 0. Let us put G = int(f~1(B)). Thus G is
an open first category subset in X. This contradicts the assumption that X
is Baire space.

COROLLARY 3.4. Let f be one-to-one feebly-continuous and weakly-open
mapping from an almost-reqular space X onto a space Y. If X is a Baire
space, then Y is Baire space.

The proof follows from Theorems 2.1 and 3.3.

Note that Theorem 3.3 and Corollary 3.4 remain to be true if the state-
ment “if X is a Baire space, then Y is a Baire space” is substituted by “if
X is a space of second category, then Y is a space of second category”. For
this case the proof follows from Theorem 2.6.
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