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A N O T E ON TWO W E A K FORMS 
OF OPEN M A P P I N G S A N D BAIRE SPACES 

1. Introduction 
Z. Frolik [2] stated without proof the following Proposition 1.1 in order 

to use it in the proof of the next Theorem 1.2 given also in [2]. 

PROPOSITION 1.1. If f is one-to-one feebly-continuous mapping from a 
space X onto a space Y, then f is almost-continuous. 

T H E O R E M 1.2 . Let f be a one-to-one feebly-continuous and feebly-open 
mapping from a space X onto a space Y. Then X is a Baire space if and 
only if Y is a Baire space. 

Later, T.Neubrunn [9] gave a counter example which shows that Propo-
sition 1.1 is not true in general and proved that Theorem 1.2 is true, while 
Proposition 1.1 is false. 

In 1968 M.K.Singal and A.R. Singal [7] defined almost-open mappings 
which contain the class of open mappings and in 1984 D.A.Rose [6] intro-
duced a new class of mappings called weakly-open mappings which contain 
the class of open mappings. 

The purpose of the present note is to give some sufficient conditions 
which insure that Proposition 1.1 is true (Theorem 2.4) and to point out 
the supposition that "feebly-open mapping" in the "if' part of Theorem 
1.2 can be replaced by "almost-open mapping" (Theorem 3.3) and then to 
show that the suppositions of Theorem 1.2 is also valid for feebly-continuous 
and weakly-open mapping in the case when the space X is almost-regular 
(Corollary 3.4). 

The most frequently used notations are following: Let A be a subset of 
a topological space X. The closure of A in X and interior of A in X will be 
denoted by A and intA, respectively. The complement of A in X is X — A. 
Throughout this paper by X and Y will be always denoted topological 
spaces on which no separation axioms are assumed unless stated explicitly. 
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No mapping is assumed to be continuous unless stated. 

2. Preliminaries 

DEFINITION 2.1. A mapping / : X —• Y is called almost-open [7] (resp. 
weakly-open [6]) if the image of every regularly open subset of X is an open 
subset of Y (resp. for every open set U of X, f(U) C int(/(f/)) ). 

R e m a r k 2.1. Every almost-open mapping is weakly-open (see [6] The-
orem 4), but the converse of this statement may not be true in general as is 
shown by the following example. 

E X A M P L E 2.1. Let X = {a,b,c,d}, T = {X,<b,{b},{d},{b,d},{b,c,d}} 
and Y = {1,2,3},T' = {Y, 0, {1}, {1,2}, {1,3}}. Let / : (X,T) — (Y, T') 
be given by f ( a ) = 1, f(b) = 2, /(c) = f ( d ) = 3. Then / is weakly-open, but 
since {6} is regular open in (X,T) and f({b}) = {2} is not open in ( Y , T ' ) , 
then / is not almost-open. 

DEFINITION 2 . 2 . A topological space X is said to be almost-regular [ 8 ] 

if for each x £ X and each regular open set G containing x there exists a 
regular open set V such that x 6 V C V C G. 

The following result which gives the sufficient condition for a weakly-open 
mapping to be almost-open, will be used in the sequel. 

T H E O R E M 2 . 1 . If X is almost-regular space and f : X —• Y is weakly-
open, then f is almost open. 

Proo f . Let G be any regular open subset of X and let y be arbitrary 
point of f(G). Then there exists a point x of G such that f ( x ) = y. Since X 
is almost-regular, then there exists a regular open subset U of X containing 
x such that x e U C U C G.JIence f ( x ) G f(U) C f(G). Since f is 
weakly-open, then f(U) C int(f(U)) C f(G) by Definition 2.1. 

Thus f(G) is neigbourhood of f ( x ) . This shows that f(G) is open in Y. 
Consequently / is almost-open. 

DEFINITION 2.3. A mapping / : X —> Y is called almost-continuous [2] 
if, for every open set V of Y, /~x(V) / 0 implies /~a(V) C m i (/ - 1 (F ) ) . A 
mapping / : X —> Y is called feebly-continuous [2] if, for every nonempty 
open set V in Y, f~l{V) ^ 0 implies i n i ( / _ 1 ( y ) ) ^ 0. A mapping / : 
X —• Y is called feebly-open [2] if, for every nonempty open set U in X, 
the set i n t f ( V ) is nonempty. 

R e m a r k 2.2. Example 2.1 shows that weakly-open mapping is not 
needed to be feebly open. Indeed, since {6} is open in (X, T) and int(f({b})) 
= ¿ni({2}) = 0, then f is not feebly-open. 



A note on weak forms of open mappings 587 

D E F I N I T I O N 2.4. A being a subset of X is said to be semi-open [5] if 
there exists an open subset U of X such that U C A C U. 

T H E O R E M 2.2. (cf. [ 5 ] ) . A subset A in X is semi-open if and only if 
A C intA. 

D E F I N I T I O N 2 . 5 . A mapping / : X —> Y is said to be semi-continuous 
[5] if, for each open subset V in Y, is semi-open in X. 

The following characterization will be used in the sequel 

T H E O R E M 2.3. (cf.[4], Theorem 1). For the mapping f : X —• Y the 
following statements are equivalent 

(i) / is semi-continuous, 
(ii) m i ( / _ 1 ( 5 ) ) C f°r each subset B ° f Y i 
(iii) f(intA) C f(A) for each subset A of X. 

R e m a r k 2.3. (i) It appears that Frolik's almost-continuity in Definition 
2.3 is precisely Levin's semi-continuity in Definition 2.5, since 0 C A for any 
set A. 

(ii) Obviously every almost-continuous mapping is feebly-continuous, but 
the converse of this statement is not necessarily true as shown by the fol-
lowing example due to T.Neubrunn [9]. 

E X A M P L E 2 . 2 . Let X and Y be the set of real numbers with usual 
topology. Let the mapping / : X —> Y be defined as follows f ( x ) = x, 
if x # 0 and x # 1; / (0 ) = 1 , / (1 ) = 0. Then / is one-to-one feebly-
continuous and feebly-open, but it is not almost-continuous. Indeed, since 
G = is an open subset in Y and f~l{G) = ( ~ | , 0 ) U (0, U {1}, 
then int(f~1(G)) = consequently / is not almost-continuous by 
Definition 2.3. 

However we have the following result which gives the sufficient condition 
for a feebly-continuous mapping to be almost-continuous in order to use it 
for our proof in the sequel. 

T H E O R E M 2 . 4 . Let f be one-to-one mapping from a space X into a space 
Y. If f is feebly-continuous and weakly-open, then f is almost-continuous. 

P r o o f . Let B be any open subset of Y. To prove that / is almost-conti-
nuous it is enough to show that f~l(B) ^ 0 implies f~l{B) C int(f~1(B)) 
by Definition 2.3. Let x be arbitrary point of f~1(B)] then we have f ( x ) 6 B. 
Let U be arbitrary open neighbourhood of x. Since / is weakly-open, f ( x ) £ 
f(U) C int(f(U)). Hence the set W = B fl int(f(U)) is an open neighbour-
hood of f(x). Since / is feebly-continuous, int(f~1(B D int(f(U))) 0. 
This shows that m i ( / - 1 ( 5 n f(U))) ± 0. Moreover, since / is injective, we 
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obtain int(f~l(B)) n intU ± 0. From this we have int(f~l(B)) D U # 0. 
This implies that i n t ( / - 1 ( 5 ) ) H U ^ 0. Hence a; belongs to the closure of 
the set that is a; <E int(f-^B)). 

C O R O L L A R Y 2 . 5 . Let f be one-to-one mapping from a space X into a 
space Y. If f is feebly-continuous and almost-open, then f is almost contin-
uous. 

The proof follows from Remark 2.1 and Theorem 2.4. 

R e m a r k 2.4. Almost-open mapping does not need to be feebly open in 
general, as the following example shows. 

E X A M P L E 2 . 3 . Let X = Y = R be the set of real numbers and let U be 
the usual topology of the set of real numbers. Let the topology U* on X 
be generated by ZY U {J7 fl (i? — Q)\U G U}, where Q is the set of rational 
numbers and let T be lower limit topology on Y generated by the right 
half-open intervals [a, 6), a, b 6 R. Now ( X , U * ) is a Baire space and the 
identity mapping i : (X,U*) —>• ( Y , T ) is almost-open and feebly continuous, 
but it is not feebly-open. To see that i is not feebly-open, let A be the set 
of irrational numbers between 0 and 1. Then A is nonempty open subset of 
X . However interior of i(A) = A (with respect to the lower limit topology 
on Y) is empty. Consequently i is not feebly-open. 

The following definitions, which will be used in the sequel, can be found 
in [1],[3], 

D E F I N I T I O N 2 . 6 . Let A be a subset of a topological space X. Then A is 
nowhere dense in X if int(A) = 0. If A is not nowhere dense in X, then it 
is called somewhere dense in X. 

D E F I N I T I O N 2 . 7 . A subset A of a space X is of first category (also called 
meager) in X if it is the union of countable family of nowhere dense subsets 
of X. A subset A of X is of second category (also called nonmeager) in X 
if it is not of first category in X. 

D E F I N I T I O N 2 . 8 . A Baire space is a topological space such that every 
nonempty open subset is of the second category. 

D E F I N I T I O N 2 . 9 . A mapping / : X —> Y is called ¿-open (cf.[3],p.45) if, 
for every nowhere dense subset N of Y, f~1(N) is a nowhere dense subset 
of X, or equivalently if, for every somewhere dense subset A of X , f(A) is 
somewhere dense subset of Y. 

T H E O R E M 2 . 6 . If f is a 8—open mapping from a space of second category 
X on a space Y, then Y is a space of second category (cf.[3'J, Proposition 
4-6 p.46)-
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3. Some Results 

THEOREM 3.1. If f : X —• Y is one-to-one feebly-continuous and 

almost-open mapping, then f is 6-open. 

P r o o f . Let A be somewhere dense of X. That is int(A) 0. Let us 
put G = int(j4). Hence G is regular-open subset of X. Since / is almost-
open, f(G) is nonempty open subset in Y , by Definition 2.1. On the other 
hand, since / is almost-continuous by Corallary 2.5, consequently / is semi-
continuous, by the case (i ) of Remark 2.3, then f(G) = f(int(A)) C f(A), 

by the case (iii) of Theorem 2.3. This shows that int(f(A)) 0. Hence / is 
¿-open. 

COROLLARY 3.2. If X is almost-regular and f : X —• Y is feebly-

continuous and weakly-open injection, then f is 6-open. 

The proof follows from Theorems 2.1 and 3.1. 

THEOREM 3.3. Let f be one-to-one feebly-continuous and almost-open 

mapping from a space X onto a space Y. If X is Baire space, then Y is 

Baire space. 

P r o o f . Suppose that Y is not a Baire space. Then there exists a non-
empty open first category subset B of X, by Definition 2.8. That is B = 

U^Li Bn where each Bn is nowhere dense subset in Y, by Definition 2.7. On 
the other hand, since / is ¿-open, by Theorem 3.1, f~1(B) = Un=i 

is of the first category subset of X , by Definition 2.9. Moreover, since / is 
feebly-continuous, i n t ( / - 1 ( 5 ) ) ± 0. Let us put G = in t (/ _ 1 ( £ ) ) . Thus G is 
an open first category subset in X . This contradicts the assumption that X 

is Baire space. 

COROLLARY 3.4. Let f be one-to-one feebly-continuous and weakly-open 

mapping from an almost-regular space X onto a space Y. If X is a Baire 

space, then Y is Baire space. 

The proof follows from Theorems 2.1 and 3.3. 
Note that Theorem 3.3 and Corollary 3.4 remain to be true if the state-

ment "if X is a Baire space, then Y is a Baire space" is substituted by "if 
X is a space of second category, then Y is a space of second category". For 
this case the proof follows from Theorem 2.6. 
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