

Nicolae A. Soare

ON THE DERIVATIONS IN THE DEFORMATION
ALGEBRA OF TWO LINEAR CONNECTIONS

Introduction

In this note we study the derivations in a Weyl algebra and the derivations in deformation algebras associated to the tangent bundle TM and to the tangent bundles of order r , $T_r(M)$, of a differentiable manifold M . Manifolds, mappings, tensor fields and connections we discuss here are always assumed to be C^∞ .

Let M be an n -dimensional manifold. We denote by $\mathfrak{S}_s^r(M)$ the module of all tensor fields of type (r, s) in M over $F(M)$ —the ring of all real functions on M .

Let ∇ and $\bar{\nabla}$ be two linear connections on M and $A = \bar{\nabla} - \nabla \in \mathfrak{S}_2^1(M)$.

Defining the product of two vector fields X and Y as

$$(0.1) \quad X \star Y = A(X, Y)$$

we can easily verify that the module $\mathfrak{S}_0^1(M)$ becomes an algebra over $F(M)$. This algebra is called the deformation algebra of the pair of connections $(\nabla, \bar{\nabla})$ and is denoted by $U(M, A)$ [7].

DEFINITION. An element $F \in \mathfrak{S}_1^1(M)$ is called derivation in the $U(M, A)$ algebra if

$$(0.2) \quad F(A(X, Y)) = A(F(X), Y) + A(X, F(Y)) \quad \forall X, Y \in \mathfrak{S}_0^1(M).$$

1. Derivations in a Weyl algebra

Let g be a Riemannian metric on a differentiable manifold M and let \hat{g} be the conformal structure generated by g , that is

$$(1.1) \quad \hat{g} = \{e^u g \mid u \in F(M)\}.$$

Let W be a Weyl structure on the conformal manifold (M, \hat{g}) , that is a mapping

$$W : \hat{g} \longrightarrow \mathfrak{S}_1^0(M)$$

which verifies [1]

$$(1.2) \quad W(e^u g) = W(g) - du, \quad \forall u \in F(M).$$

Let us consider the Weyl manifold (M, \hat{g}, W) . A linear connection ∇ on M is called compatible with the Weyl structure W if for every $X \in \mathfrak{S}_0^1(M)$ we have [1] : $\nabla_X g + W(g)(X)g = 0$.

It is known there is the only one symmetric linear connection ∇ on M compatible with the Weyl structure W . The connection ∇ is given by the formula [1]

$$(1.3) \quad \begin{aligned} 2g(\nabla_X Y, Z) &= X(g(Y, Z)) + Y(g(X, Z)) - Z(g(X, Y)) \\ &+ Wg(X)g(Y, Z) + Wg(Y)g(X, Z) - Wg(Z)g(X, Y) \\ &+ g([X, Y], Z) + g([Z, X], Y) - g([Y, Z], X) \end{aligned}$$

for every $X, Y, Z \in \mathfrak{S}_0^1(M)$. Let $\dot{\nabla}$ be the Levi-Civita connection associated to g and let ∇ be the symmetric connection of Weyl, given by the formula (1.3). We denote by $A = \nabla - \dot{\nabla}$ the deformation tensor associated to the pair $(\dot{\nabla}, \nabla)$. The algebra $U(M, A)$ is called Weyl algebra [6].

THEOREM 1.1. *Let us consider the Weyl algebra $U(M, A)$, where $n \geq 3$. Let us suppose that M is connected. Thus the following statements are equivalent:*

- 1) *All the elements of the $F(M)$ -module $\mathfrak{S}_1^1(M)$ are derivations in the Weyl algebra $U(M, A)$. (Remark. This holds if and only if $A = 0$.)*
- 2) *$\dot{\nabla}$ and ∇ determine the same curvature tensor, if the Ricci tensor of the metric g is nondegenerate.*

P r o o f. The implication $1) \Rightarrow 2)$ is obvious.

$2) \Rightarrow 1)$. Let R , respectively \dot{R} , be the curvature tensor of the connection ∇ , respectively $\dot{\nabla}$. From the equality $R = \dot{R}$ we have

$$(1.4) \quad (\dot{\nabla}_X R)(Y, Z, V) = (\dot{\nabla}_X \dot{R})(Y, Z, V), \quad \forall X, Y, Z, V \in \mathfrak{S}_0^1(M).$$

Since $A = \nabla - \dot{\nabla}$, using (1.4) it follows

$$(1.5) \quad \begin{aligned} (\nabla_X R)(Y, Z, V) - A(X, R(Y, Z)V) + R(A(X, Y), Z)V \\ + R(Y, A(X, Z))V + R(Y, Z)A(X, V) = \\ = (\dot{\nabla}_X \dot{R})(Y, Z, V), \quad \forall X, Y, Z, V \in \mathfrak{S}_0^1(M). \end{aligned}$$

Using the identities of Bianchi, from (1.5) we obtain

$$(1.6) \quad \begin{aligned} & A(X, \dot{R}(Y, Z)V) + A(Y, \dot{R}(Z, X)V) + A(Z, \dot{R}(X, Y)V) \\ & = \dot{R}(Y, Z)A(X, V) + \dot{R}(Z, X)A(Y, V) \\ & + \dot{R}(X, Y)A(Z, V), \quad \forall X, Y, Z, V \in \mathfrak{S}_0^1(M). \end{aligned}$$

Let A_{jk}^i , respectively \dot{R}_{jkl}^i , be the components of A , respectively of R , in a local coordinates system. Then the relation (1.6) becomes:

$$(1.6') \quad A_{is}^r \dot{R}_{hjk}^s + A_{js}^r \dot{R}_{hki}^s + A_{ks}^r \dot{R}_{hij}^s = A_{ih}^s \dot{R}_{sjk}^r + A_{jh}^s \dot{R}_{ski}^r + A_{kh}^s \dot{R}_{sij}^r.$$

Let g_{ij} be the local components of g . In local coordinates, the relation (1.3) can be written as

$$(1.7) \quad A_{jk}^i = \delta_j^i \psi_k + \delta_k^i \psi_j - g_{jk} \psi_i$$

where $2\psi_k$ are the local coordinates of the 1-form Wg , and $\psi^i = g^{ij} \psi_j$. From (1.7) and (1.6'), we have

$$(1.8) \quad (g_{jr} \dot{R}_{skh}^i + g_{jk} \dot{R}_{shr}^i + g_{jh} \dot{R}_{srk}^i + \delta_r^i \dot{R}_{sjkh} + \delta_k^i \dot{R}_{sjhr} + \delta_h^i \dot{R}_{sjrk}) \psi^s = 0$$

where $\dot{R}_{ijkh} = g_{is} \dot{R}_{jkh}^s$. If we transveit the relation (1.8) with g^{jr} , we obtain

$$(1.9) \quad (n-3) \dot{R}_{skh}^i \psi^s + (\delta_k^i \dot{R}_{hs} - \delta_h^i \dot{R}_{ks}) \psi^s = 0$$

where $\dot{R}_{ij} = \dot{R}_{ikj}^k$ are the components of the Ricci tensor associated to g . Contracting (1.9) with respect to i and k , we obtain

$$(1.10) \quad (n-2) \dot{R}_{sk} \psi^s = 0.$$

Because $n \geq 3$ and $\det(\dot{R}_{sk}) \neq 0$, (1.10) results $\psi^s = 0$; and by (1.7) we have $A_{jk}^i = 0$. Therefore $A = 0$, which implies that all the elements of the $F(M)$ -module $\mathfrak{S}_1^1(M)$ are derivations in the Weyl algebra $U(M, A)$.

2. Derivations on the tangent bundle

Let M be an n -dimensional differentiable manifold and $T_p(M)$ the tangent space at a point p of M . A system of coordinates (U, x^h) which covers the base space M , induces on the tangent bundle $TM = \bigcup_{p \in M} T_p(M)$ a sys-

tem of coordinates $(\pi^{-1}(U), x^h, y^h)$, where $\pi : TM \rightarrow M$ is the natural projection (cf. e.g. [8]).

Let ∇ be a connection on M , with local components Γ_{jk}^i .

A vector field X on M , having the local components X^h , induces on TM three vector fields [8]:

- 1) the vertical lift $X^v = (0, X^i)$;
- 2) the complete lift $X^c = (X^i, y^i \frac{\partial X^h}{\partial x^i})$;
- 3) the horizontal lift $X^H = (X^h, -y^h \Gamma_{hj}^i X^j)$.

The connection ∇ on M induces on TM two connections [8]:

1) the complete lift ∇^c , so that

$$(2.1) \quad \begin{aligned} \nabla_{X^c}^c Y^c &= (\nabla_X Y)^c, \nabla_{X^v}^c Y^v = 0, \\ \nabla_{X^v}^c Y^v &= (\nabla_X Y)^v, \nabla_{X^v}^c Y^c = (\nabla_X Y)^v, (\forall) X, Y \in \mathfrak{S}_0^1(M). \end{aligned}$$

2) the horizontal lift ∇^H , so that

$$(2.2) \quad \begin{aligned} \nabla_{X^H}^H Y^H &= (\nabla_X Y)^H, \nabla_{X^H}^H Y^v = (\nabla_X Y)^v, \\ \nabla_{X^v}^H Y^H &= 0, \nabla_{X^v}^H Y^v = 0, \forall X, Y \in \mathfrak{S}_0^1(M). \end{aligned}$$

A tensor field F of type (1.1) on M induces on TM three fields [8] :

1) the complete lift F^c , so that

$$F^c(X^v) = (F(X))^v, F^c(X^c) = (F(X))^c,$$

2) the vertical lift F^v , so that

$$(2.3) \quad F^v(X^v) = 0, F^v(X^c) = F^v(X^H) = (F(X))^v,$$

3) the horizontal lift F^H , so that

$$F^H(X^v) = (F(X))^v, F^H(X^H) = (F(X))^H (\forall) X \in \mathfrak{S}_0^1(M).$$

A distribution D of dimension r on M , determined by the projection tensor $m \in \mathfrak{S}_1^1(M)$, $m^2 = m$, $m(TM) = D$ and the rank of m is r , induces two distributions in TM [8] :

- 1) the complete lift D^c , determined by the projection tensor m^c ;
- 2) the horizontal lift D^H , determined by the projection tensor m^H .

Let $\bar{\nabla}$ be a linear connection on M and D a distribution on M , so that $A(X, Y) \in D$, $(\forall) X, Y \in D$, where $A = \bar{\nabla} - \nabla$. The deformation algebra of the pair of connections $(\bar{\nabla}, \nabla)$ is denoted by $U(D, A)$.

PROPOSITION 2.1. *If F is a derivation in the algebra $U(D, A)$ then:*

- 1) F^H is a derivation in the algebra $U(D^H, \bar{\nabla}^H - \nabla^H)$;
- 2) F^v is a derivation in the algebra $U(D^c, \bar{\nabla}^c - \nabla^c)$;
- 3) F^c is a derivation in the algebra $U(D^c, \bar{\nabla}^c - \nabla^c)$.

P r o o f. In truth, because $A = \bar{\nabla} - \nabla$, we have the relation

$$(2.4) \quad F(A(X, Y)) = A(F(X), Y) + A(X, F(Y)), \quad (\forall) X, Y \in D$$

or

$$(2.4') \quad F(\bar{\nabla}_X Y) - F(\nabla_X Y) = \bar{\nabla}_{F(X)} Y - \nabla_{F(X)} Y + \bar{\nabla}_X F(Y) - \nabla_X F(Y)$$

for every $X, Y \in D$.

Taking into account that the horizontal lift D^H is generated by X^v and X^H , X being an arbitrary vector field of D , and $F^H, A^H = \bar{\nabla}^H - \nabla^H$ are

tensor fields, it is sufficient to verify the relation

$$(2.5) \quad F^H(A^H(U, V)) = A^H(F^H(U), V) + A^H(U, F^H(V))$$

where (U, V) is equal to (X^H, Y^H) or (X^H, Y^v) , (X^v, Y^H) , (X^v, Y^v) with $X, Y \in D$. For $(U, V) = (X^H, Y^H)$, the relation (2.5) is equivalent to the relation

$$F^H(\bar{\nabla}_{X^H}^H Y^H) - F^H(\nabla_{X^H}^H Y^H) = \bar{\nabla}_{F^H X^H}^H Y^H - \\ - \nabla_{F^H X^H}^H Y^H + \bar{\nabla}_{X^H}^H F^H Y^H - \nabla_{X^H}^H F^H Y^H$$

which follows from (2.4') and (2.2).

The other cases and the properties 2) and 3) can be demonstrated similarly, taking into account that the complete lift D^c of the distribution D is generated by X^v and X^c , where $X \in D$.

Remark. F^c is in general not a derivation in the algebra $U(D^H, \bar{\nabla}^H - \nabla^H)$ when F is a derivation in the algebra $U(D, \bar{\nabla} - \nabla)$ because from the relations [7]

$$F^c(X^H) = (FX)^H + (\nabla_\gamma F)X^H, \quad (\nabla_\gamma F)X^H \in TM, \quad X \in D$$

we obtain that $F^c X^H$ is not a field from D^H . Moreover F^v is not a derivation in $U(D^H, \bar{\nabla}^H - \nabla^H)$ in general.

3. Derivations in deformation algebras associated to the tangent bundle of order r

Let M be an n -dimensional differentiable manifold, R the real line, r a fixed integer so that $r \geq 1$. The tangent bundle $T_r(M)$ of order r over M is the set of all r -jets $j_p^r(f)$ determined by a mapping $F : R \rightarrow M$ so that $F(0) = p$ [2, 8].

For $\lambda = 0, 1, \dots, r$, the λ -lift of a vector field X on M is a vector field $X^{(\lambda)}$ on $T_r(M)$, and λ -lifts of a tensor field of type $(1,1)$ S in M is a tensor field $S^{(\lambda)}$ in $T_r(M)$, and we have

$$(3.1) \quad S^{(\lambda)} X^{(\mu)} = (SX)^{(\lambda+\mu-r)}, \quad \forall S \in \mathfrak{S}_1^1(M), \quad X \in \mathfrak{S}_0^1(M) \\ \text{and } \lambda, \mu = 0, 1, \dots, r.$$

An affine connection ∇ in M determines globally an affine connection in $T_r(M)$ which is called the lift of the affine connection ∇ and denoted by ∇^* . We have (see [2, 8])

$$(3.2) \quad \nabla_{X^{(\lambda)}}^* Y^{(\mu)} = (\nabla_X Y)^{(\lambda+\mu-r)}, \quad \forall X, Y \in \mathfrak{S}_0^1(M) \\ \text{and } \lambda, \mu = 0, 1, \dots, r.$$

PROPOSITION 3.1. *If S is a derivation in the algebra $U(TM, \bar{\nabla} - \nabla)$ then $S^{(\lambda)}$, for $\lambda = 0, 1, \dots, r$ is a derivation in algebra $U(T_r(M), \bar{\nabla}^* - \nabla^*)$.*

Proof. In truth, for every $X, Y \in \mathfrak{X}_0^1(M)$ the relation

$$S^{(\lambda)}(A^*(X^{(\mu)}, Y^{(\nu)}) = A^*(S^{(\lambda)}X^{(\mu)}, Y^{(\nu)}) + A^*(X^{(\mu)}, S^{(\lambda)}Y^{(\nu)}),$$

where $A^* = \bar{\nabla}^* - \nabla^*$ and $\lambda, \mu, \nu = 0, 1, \dots, r$, is equivalent to

$$\begin{aligned} S^{(\lambda)}(\bar{\nabla}_{X^{(\mu)}}^* Y^{(\nu)} - \nabla_{X^{(\mu)}} Y^{(\nu)}) \\ = A^*((SX)^{(\lambda+\mu-r)}, Y^{(\nu)}) + A^*(X^{(\mu)}, (SY)^{(\lambda+\nu-r)}) \end{aligned}$$

or

$$\begin{aligned} S^{(\lambda)}((\bar{\nabla}_X Y)^{(\mu+\nu-r)} - (\nabla_X Y)^{(\mu+\nu-r)}) \\ = \bar{\nabla}_{(SX)^{(\lambda+\mu-r)}}^* Y^{(\nu)} - \nabla_{(SX)^{(\lambda+\mu-r)}} Y^{(\nu)} \\ + \bar{\nabla}_{X^{(\mu)}}^* (SY)^{(\lambda+\nu-r)} - \nabla_{X^{(\mu)}} (SY)^{(\lambda+\nu-r)}. \end{aligned}$$

The last relation can be written

$$\begin{aligned} (S(\bar{\nabla}_X Y) - S(\nabla_X Y))^{(\lambda+\mu+\nu-2r)} \\ = (\bar{\nabla}_{SX} Y - \nabla_{SX} Y + \bar{\nabla}_X SY - \nabla_X (SY))^{(\lambda+\mu+\nu-2r)}, \end{aligned}$$

which follows from the relation (3.2).

References

- [1] M.J. Folland, *Weyl manifolds*, J. Diff. Geometry, 4 (1970), 145–153.
- [2] A. Morimoto, *Liftings of some types of tensor fields and connections to tangent bundles of p^r -velocities*, Nagoya Math. J., 40 (1970), 13–31.
- [3] L. Niculescu, *Quelques applications géométriques des dérivations dans l'algèbre de déformation*, Tensor N.S., 57 (1996), 27–37.
- [4] L. Niculescu, *Sur la géométrie de l'algèbre associée à un champ tensoriel du type (1,2)*, Tensor, N.S., 38 (1982), 235–241.
- [5] L. Niculescu, C. Udriste, *On the deformation algebra of two affine connections*, Bull. Math. Soc. Sci. Math. R.S.R., Tome 20 (68), 3–4 (1976), 311–323.
- [6] L. Niculescu, *Sur l'algèbre de déformation associée à une variété de Weyl*, Ann. Fac. Sci. Kinshasa, Zaire, Section Math. Phys., 3 (1977), 79–88.
- [7] I. Vaisman, *Sur quelques formules du calcul de Ricci global*, Comm. Math. Helv., 41 (1966–1967), 73–87.
- [8] K. Yano, S. Ishihara, *Tangent and Cotangent Bundles*, Marcel Dekker, Inc. New York (1975).

FACULTATEA DE MATEMATICA
Str. Academiei 14,
BUCURESTI 70109, ROMANIA

Received February 23, 1996.