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THE SEMILINEAR WAVE EQUATION ASSOCIATED
WITH A NONLINEAR BOUNDARY

1. Introduction
We consider the following boundary-initial value problem

(1.1) g — Au+ flu,u) =0, 0<z<1l, 0<t<T,
(1.2) uz(0,t) = H(u(0,1)) + (1),

(1.3) u(1,t) =0,

(1.4) u(z,0) = uo(z), wu(z,0)= us(z).

The boundary condition (1.2) is nonlinear, in general nonhomogeneous, and
the term H (u(0,t))is supposed to be of the same sign as u(0,t). The nonlin-
ear term f(u,u;) is supposed to be Holder continuous with respect to every
variable and non-decreasing with respect to the second variable.

The equation (1.1) has the same form as that from [3], but the smooth-
ness of the nonlinear term f(u,u;) and that of the initial values ug(z), u;(z)
are less than in [3]. Then the linearization method used for the problems
from [3],[7] cannot be here used. In [1] is given a theorem of existence and
uniqueness of a global solution of the problem (1.1)-(1.4) in the case of
H =0 and
(15) f(u,ut) = Iutlo‘_lut, O<ax<l.

Such a problem governs the motion of a linear viscoelastic bar with non-
linear elastic constraints. In [4] we consider the existence, uniqueness and
continuous dependence (with respect to the parameter k) of the solution to
the problem (1.1)-(1.4) with

(1.6) H(s)=hs, h>0.

In this paper, we consider two main parts. The first deals with the global
existence and the uniqueness of the solution to the problem (1.1)-(1.4).
Sometimes some hypotheses on f are abandoned comparing to {4]. The main
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tool is the Galerkin method associated with a nonlinear integral equation of
Volterra type and the monotone operator generated by the nonlinear term
f(u,u;). In the second part we consider the problem (1.1)-(1.4) with the
linear boundary condition

(1.7) uz(0,t) = hu(0,t) + ¢(t), h >0,

instead of (1.2), afterwards, we study the behavior of the solution to such a
problem as h tends to 0. In section 4 we present some numerical results.

2. The existence and uniqueness theorem
In this paper, we consider the equation (1.1) as an ordinary differential
equation in the Banach space for u(t) which stands for u(z,t) so that we

shall write
v =u _du v =u :B_Zu_
t at 9 tt at2 .

Put Q= (0,1), Qr=9x(0,T),T>0, LI=1L%Q), H'=HY(Q),
where H1 is the usual Sobolev space on 2; denote by (., .) the scalar product
in L? or dual product of a continuous linear functional with an element of a
corresponding function space, by ||.|| the norm in L%, by ||.||x the norm in
Banach space X and by X' dual of X. Denote by LP(0,T;X),1 < p < oo,
the space of measurable real functions f :(0,7) — X such that

T 1/p
wmmmm=(hmm&m) coo for 1<p< o
0

or
| Fllzooo,r;x) = ess sup ||f(¥)||x for p= co.
0<t<T
Let
(2.1) V = {ve H'/v(1) =0},
Ju 0v ¢ Ou O
(2.2) afu, 0) = <(9_m’(?_z> _{qudey,

0
The following lemma is easy to prove.
LEMMA 2.1. ||v]lgoqy < [fvllv for allv € V.
We admit the following hypotheses:
(A) wup € HY, wuy€lL?
(G) ge HY(0,T) forall T >0 and g(0) exists,
(H) HeCYR), H(0)=0, sH(s)>0 forall s3#0,
f : R? — R satisfies the condition
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(Fl) f(OaO) = 0,(f(u,v)— f('uﬂ{)))(lv - {’) 2 0 for all u7v7% € Ra
and there exist constants o, 3 € (0,1} and two continuous functions By, By :
R4 — Ry such that

(F2) By is non-decreasing function,

(F3) By(jv]) € L*(Qr), forall ve L*(Q7) and T >0,

(Fy) |f(u,v)— f(u, 8] < Bi(|u])lv—9|* for all u,v,? € R,

(F5) |f(u,v) = f(@,v)] < Ba(|v])ju—~ @l for all u,@,v € R.
Then, we have the following theorem.

THEOREM 2.2. Suppose that (A), (G), (H), (F) hold. Then, for T > 0
the boundary initial value problem (1.1)-(1.4) has at least a weak solution u
on (0,T) such that

(2.3) u € L*(0,T;V),

(2.4) ug € L°(0,T;L%) and u,(0,t) € L*(0,T).

Furthermore, tf 8 = 1 in (Fs) and the function H satisfies, in addition,
(Hy) He€C*R),H'(s)>-1 forall seR,

then the problem (1.1)-(1.4) has the only solution satisfying (2.3), (2.4).

Remark. This result is stronger than that in [4]. Indeed,the following
assumptions — made in [4] for the problem (1.1)-(1.4) with (1.6) — are not
needed here:

(2.5) (i)  Bi(|u}) € L*/(=)(Q7) for all w € L*®(0,T;V) and T > 0,
(1) B; is a non-decreasing function.

Proof of Theorem 2.2.. The first step (the Galerkin approx-
imation). Consider a special base in V

2 ) T :
wj(z) = 72 cos(Ajz), Aj= (25— 1)5, JEN,
J

2

constructed by the eigenfunctions of the Laplacian operator A = et
T
Considering (1.1) as an ordinary differential equation with unknown
function u(t), put

n

(2.6) un(t) = Y enj(t)wj,

Jj=1
where c,; satisfy the following system of nonlinear differential equation
(2.7) (U (), w5) + a(un(t), ;) + (H(a(0,2)) + g(t))w;(0)
+ <f(’ltn(t), u;,(t))’ wJ) =0, 1<j<n,



560 A. Pham Ngoc Dinh, Nguyen Thanh Long

with conditions
un(O) = Ugn

(2.8) { ! (0) = uyn,
where

Ugn = Z;;l anjw; — ugp in H' strongly,
(2.9) o« o in L2 st 1

Uip = zj=l Bnjw; — w1 in L* strongly.
For fixed T > 0, by the hypotheses of the theorem, the problem (2.7), (2.8)
has the solution u,(t) on an interval [0, T,]. Owing to the estimations which
will follow, we can take T, = T for every n.

The second step (the estimations a priori). Multiplying the j-th equa-
tion in (2.7) by c;,;(t), summing with respect to j, then integrating with
respect to time variable from 0 to t, by (G), (F1), we have
(2°10) Sn(t) < Sn(o) + 2g(o)u0n(0) - 2g(t)un(0,t)

¢

+2{g'(")un(0,7)dr ~ 2| < f(un(7),0),up(r) > dr,

0

where
(2.11) Sn() = @I + llua()l} + 28 (ua(0,2))
with

R n
(2.12) H(n) = | H(s)ds.

0
Remark that the function (2.12) has the property
(2.13) 0 < H(n) < Inl max |H(s) forall n#0.
sl#|n

Then, using (2.9), (2.11), (2.13) and Lemma 2.1, we have
(2.14) Sn(0) + 2[g(0)uon| < 1C; forall =,

where (] is a constant depending on ug, u; and H. We still use Lemma 2.1,
then from (2.10), (2.14) and (Fs) we have
¢

(2.15) Sa(t) < §(2) + [ K (Sa(r))dr,
0

where

(2.16) g(t) = Cy +4g*(t) + | g"*(r)dr,

(2.17) K(s) = s + 4By(0)s+9)/2,
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Because H1(0,7T") — C°([0,T)), the function §(t) is bounded almost every-
where on [0,T] by a constant My depending on T. Then, from (2.15) we
have

(2.18) Sa(t) < My + \K(Sa(r))dr, 0<t<T,=T.

O(_’!-b.

The function K (8) is continuous and non-decreasing for s > 0, hence
(2.19) Sa(t) < S(t), Ytel0,T], YT >0,

where S(t) is the maximal solution of the Volterra integral equation
t

(2.20) S(t) = Mr + | K(S(r))dr
0
with the kernel K non-decreasing on the interval [0, T] (see [6]).
Now we need an estimation of the term S(t) lu! (0, 7)|%dr. Put
- sin(At)
(2.21) Kn(t)=) Y

i=1

Sinf\/\jt)]

J

(222) ()= wi(0) [am- cos(Ast) + fnj

j=1

-ViY, M{f(un(r),u;(r)),ﬁfﬁ>dr

(2.23) 8n(t) = 2\ Kpu(t — 7)H (un(0,7))dr.

Then u,(0,t) can be rewritten as

(2.24) Un(0,8) = Yn(t) = 8n(t) — 2| Kn(t — T)g(7)dr.
0

To prove Theorem 2.2 we need the following lemmas.

LEMMA 2.3 (see [1]). There ezist a constant C2 > 0 and such a function
D(t) continuous, positive and independent of n that

(2.25) Vivn()Pdr < Cy + D) || f(un(r), ul(7))]Pdr,

vt € [0,T), T > 0.
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LEMMA 2.4 (see (4], Lemma 2). There ezists a constant M}l) > 0 de-
pending on T such that

t)s 2
(2.26) S SI(;,_(S —1)g(r)dr| ds < M}l), Yt € [0,T], YT >0.
olo
LEMMA 2.5. There ezist two positive constants M'g), Mrfpa) such that
t i s
(2.27) {1 (rPdr < MP + MY {ds | [y (0,7) %dr,
0 0 0

Yt € {0,T], ¥T > 0.
Proof of Lemma 2.5.. From (2.23) we have

(2.28)  6,,(t) = 2K, (t)H (uon(0)) + 2 S K, (t — 7)H'(un(0,7))u;, (0, 7)dr.

Since  upn — ug strongly in H', we have

(2.29) [uon(0)f < fluonllcoq) < C3,  ¥n.

Consequently

(2.30) [H (u0n(0))]? < ‘Ir|1<a,é< H*(s)=Cy4, “n.
§|150C3

Besides, from (2.19)) we have the inequalities

(231)  un(0,7)] < flun(r)llv < [ max S(1) = Mz", vm,

(2.32) ' (w0n(0, ) < max [H'(s)]* = Mp), “,
T

fsl<

where M:(p4), ;5) are constants depending on T'. From (2.28), (2.30), (2.32)
we obtain after some rearrangements

t T
(2.33)  {16,(s)|°ds < 8Cy | K2(s)ds
0 0
T t s
+8ME) | K2(r)dr | ds{|ul, (0, 7)|%dr,
0 0 0

and (2.27) follows since K, — K in L%(0,T) strongly for every T > 0.

LEMMA 2.6. There exists Mt > 0 such that
T
(2.34) {lur(0,7)%dr < Mr, vT > 0.
0
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Proof of Lemma 2.6. From (2.24) we have

t t ¢
(2.35) {1ur(0,5)%ds < 3\ |75 (s)1%ds + 3{16.(s)17ds
0 0 0
t s 2
+ 12 S ds SK,’L(S - 1)g(r)dr| .
o o
Besides, from the hypotheses (F3) — (F5) and (2.19) we have
(2.36) [1f (ua(t), un (I < 2BF(V/S(1)S°(1) + 2B3(0)S(2).
At last from Lemmas 2.3-2.5 and (2.35), (2.36) we obtain the inequality
t t s
(2.37) Jlun (0, 8)1%ds < MY +3ME {ds | |uly(0, 7) %dr
0 0 0

which implies (2.34), by Gronwall’s lemma.
The third step (passing to limit). Owing to (2.19), (2.36) and (2.34),
{u,} has a subsequence still denoted {u,} such that

(2.38) 4y —u in L®(0,T;V) weak™,
(2.39) ul =o' in L®(0,T;L?) weak®,
(2.40) un(0,t) = u(0,t) in L*(0,T) weak™,
(2.41) ul(0,t) —» 4'(0,¢) in L%*(0,T) weak,
(2.42) f(tn,ul) = X in L®(0,T;L%) weak*.

Owing to (2.19) and (2.34), and besides, by (2.38) and (2.39), we can extract
from {u,} a subsequence still denoted {u,} such that (see [5])

(2.43) un(0,t) — u(0,t) uniformly in C°([0,T)),

(2.44) un, — u strongly in L*(Q7).

Since H is continuous, from (2.43) we have

(2.45) H(un(0,t)) > H(u(0,t)) uniformly in C°([0,T]).

Owing to (2.38), (2.39), (2.42), (2.45) and passing to limit in (2.7) , we have

u(t) satisfying the equation

(2.46) %(U'(t), v) = a(u(?),v) + (H(u(0,1)) + g(£))v(0)
+(X(t),v)=0, YveV.

We can prove in a similar manner as in [4] that

(2.47) u(0) = uo, u'(0) = u;.
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To prove the existence of solution u, we have to show that X = f(u,u').
Then we need the following lemma (see [1]) .

LeEMMA 2.7. Suppose that u is a solution of the problem

(2.48) uy — Au+ X =0,

(2.49) uz(0,t) = H(u(0,2))+ ¢(t), u(1,t)=0,
(2.50) u(z,0) = up(z), uz,0)=u1(z)

with

(2.51) u € L°(0,T;V) and u; € L%(0,T; L?).

Then we have

(252) IO + Sl + | Hw(0, 1)+ gD w0, 7)dr
0

t
1 1

+ S(X(T),u'(r))d‘r > §||u1||2 + 5”“0”%/ for a.e. t € (0,7).

0

Remark. If ug = u3 = 0, then the equality occurs in (2.52). Now, from
(2.7), (2.8) we have

t
(2:53)  §{f(un(r), wp(r)), wh(r))dr = Sl + 3 uonlly
0

t

O = Slun — [ (ua(0,7)) + g(r)] (0, ).
0

Passing to limit and then using (2.52), we get

t
(254)  Tim_sup {(/(un(r), (7)), wp(r))dr < Slhall? + 5ol
0

t

~SIW@I? = S ~ [ (0, 7)) + g(r)] (0, 7)ar
0

< VX(r),v/(r))dr ae. te(0,T).

© vt o

By using the same arguments as in [4], we can show that X = f(u,u’)
a.e.in Q7. The existence of the solution to the problem (1.1)-(1.4)is proved.
The fourth step (the uniqueness). Having now 8 = 1in (F5) and H
satisfying (H;), suppose that u,v are two solutions of the boundary-initial
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value problem (1.1)-(1.4) satisfying u,v€L*>(0,T;V), ug, v,€L>(0,T; L?),
u4(0,1),v4(0,2) € L*(0,T). Then w = u — v satisfies the problem
wtt—Aw-}-Xl =0,

wy(0,t) = Hy(t), w(l,t)=0,

(2.55) w(z,0) = wy(z,0) = 0,
we L0, T; V), w; € L°(0,T; L2), w(0,¢) € L*(0,T)
with
Xy = f('u', ut) - f(vv vt)7
(2.56) { Hy = H(u(0,1)) - H(v(0,1)).

Applying Lemma 2.7 (see Remark), we have

(2.57) S O + Sl + § i (r)w'(0,7)dr

+{(X1(r), w'(r))dr =0 fora.e. t € (0,T).
0

Put
(2.58) a(t) = [’ @I + llwl}-

Since the function f is monotonically increasing with respect to the second
variable, we obtain

(259) = \(X1(r), w'(r))dr < = {(f(u(r), V(7)) = f(o(r),v(7)), w'(7))dr
0 0

< = iG(r),v'(r) = £(o(r), o' ()l |w'(7)l|dr.
Using the hypothesis (F3) with 8 = 1, we have
(2.60) 1f(u, 0" = f(w, ) < B2 (" D]l v
Consequently, from (2.57)—(2.60) we get
(2.61) a(t) + 2| Hi(7)w'(0, 7)dr < {{| Bo(Jo'(1))llo(7)dr.

0 0

Put

M= mafi{llulew(o,T;V), lolLeco,1;v) }s
(2.62) mi = min H'(s),

_ "
my = |£I|121)\(4|H (s)|.
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From the hypothesis (H;) we have
(263) m > —1.
From (2.56) we obtain

(2.64) 2\ Hy(r)w'(0,7)dr
0

=2 S [S %H(v(o, )+ Ow(O,T))dO] we(0, 7)dT
oto

= w?(0,7) | H'(v(0,1) + 6w(0,2))d6
0
t 1
= | w?(0, )dr { H"(v(0,7) + 8w(0, 7))(v:(0, 7) + Ow,(0,7))d6
0 0

> myw?(0,1) — mz {w?(0,7)(Jul0, 7)| + |vs(0, 7)])dr,
0

by using integration by parts and (2.62). From (2.61), (2.64) we have
t

(2.65)  o(t) + maw?(0,1) < my SwZ(O, 7)(lue(0, 7)| + |v:(0,7)|)dT
0
t

+ V1B (1o (1)) (7)dr.

0
We remark that, by (2.58),

(2.66) w2(0,2) < [} < o(t).
Consequently '
(2.67) (14 mp)w?(0,1) < o(t) + myw?(0,1).

Multiplying two members of (2.67) by a number £ > 0 and adding to (2.65),
we have

(2.68) o(t) + [m1 + k(1 + mp)]w?(0,1)

< (14 kymy [ w?(0, 7)(|ud(0, 7)) + l0e(0, 7)])dr

+ (L + k) {IIB2(1o'(m)Dllo(r)dr.
0
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Choose

(2.69) k > max {0, 1 ; Z; }

and denote

(2.70) q(t) = (1 + k) [ma(|ue(0,8)] + [0:(0,1)]) + || B2 (lo($)DII] -
Then from (2.68)—(2.70) we have

(2.71) o(t) + w’(0,8) < iq(r)[a(r) + w*(0,7)ldr.

0
This implies o(t) + w?(0,t) = 0 and w = 0 by the definition (2.58) of a(t).
This ends the proof of Theorem 2.2.
A special case of H gives us the following result which is stronger than
that in [4] about the global existence, the hypotheses on the function f being
less.

THEOREM 2.8. Suppose that (A), (G), (F), (1.6) hold. Then for every
T > 0 the problem (1.1)-(1.4) has at least a weak solution u on (0,T) satis-
fying (2.3), (2.4). Furthermore, if B = 1, then this solution is unique.

The following theorem is a generalization of the result in [1].

THEOREM 2.9. Suppose that (A), (G), (H), (1.5) hold. Then for every
T > 0 the problem (1.1)—(1.4) has at least a weak solution u on (0,T) sat-
isfying (2.3), (2.4). Furthermore, if H satisfies (H,) , then this solution is
unique.

3. The continuous dependence of solution
In this section we study the problem (1.1)-(1.4) with linear boundary
condition

(3.1) uz(0,1) = hu(0,1) + g(t), k>0,

(replacing (1.3)), and we also study the behavior of solution as h — 0. Sup-
pose that, in addition, 8 = 1 and (1.6) holds. Such a problem, by Theorem
2.8, has the only solution

(3.2) u(z,t) = up(z,t), h>0.
This result generalizes those of [1], [4]. At first, for every T > 0 we put
(3.3) W(Qr) = {v € L=(0,T;V) /v € L®(0,T; L*)} .

W (@) is Banach space with respect to norm (see [5])

/
(3.4) llwier = (||”||i°°(o,r;v) + ||”t|l%°°(o,T;L2)) :
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Further, we want to prove that the family of solutions {us}rs0 converges
strongly in W(Qr) to a function @ which is the only solution of the problem
(1.1)~(1.4) with H = 0. We admit following hypothesis on the function B,
occuring in (F)

(Fs) By :L? — L* maps bounded sets into bounded sets.

THEOREM 3.1. Suppose that (A), (G), (H), F, (Fs) hold and that 8 = 1.
Then

(i) for every T > 0 the problem (1.1)-(1.4) with H = 0 has the only
solution @(x,t) satisfying
(3.5) i€ L>(0,T;V), € L>(0,T;L?), :0,t)e L*0,T),

(ii) the solution up(z,t) converges strongly in W(Qr) to i(z,t) as h —
04+. Furthermore, we have an estimation
(3.6) Huh - ﬂ’”W(QT) <Crh forh>0 small

Proof. (i) Case H = 0. We prove in the same manner as in the case of
Theorem 2.2 that the following estimations a priori hold

B7) @I+ lua@l < Mz, Yt €[0,T], YT >0,
T

(38) Jlun(0,0)%dt < Mz, ¥t e[0,T], “T >0,
0

and that the limit 4 of the sequence {uj} defined by (2.6), (2.7), (2.8)
satisfies (3.5) and the equation (1.1) with the boundary conditions

(3.9) i:(0,0) = 9(t), (1,8)=0
and the initial conditions
(3.10) a(z,0) = uo(z), u(z,0)=ui(x).

Besides, this solution # is unique.

(ii) Consider ho > 0 fixed, and two parameters h,h’ € (0, ho). Let uy
and uy be solutions of the boundary-initial value problem (1.1)-(1.4) cor-
responding to the parameters h and h', respectively. Then Z = up — up
satisfies

Ztt—AZ'{'Xl :0, .
, Z5(0,t) = hZ(0,t) + hup(0,1),
(3.11) Z(1,t) =0,
Z(z,0) = Zy(z,0) = 0,
Ze€ LOO(O’T’ V)a Zt € Loo(()’ T1 L2)7 Zt(o, t) € LZ(OvT)’
where

(3.12) X1 = flun,uh) — flup,uh), h=h-".
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Proving in the same manner as in the case of Theorem 2.2 with H(s) = hs,
0 < h < hg, we have the following result:

the sequences {u}, {u},} and {u}(0,t} are bounded in
(3.13) L>(0,T;V),L*>(0,T; L?) and L%(0,T), respectively,
by a constant independent of h (depending on T, o).
Put
(3.14) a1(t) = 1Z'@)|1* + 121} -

Using again Lemma 2.7, we have
t

(3.15) o1(t) + hZ*(0,1) < 2/A| M| Z|| L= (0,7;v) + | I B2(Juhs (7)])l|ou(7)dr,
0

where HT is a constant independent of h,h’ and satisfying
T —
(3.16) el Lo 0,75v) + X |ugs (0, 7)|dT < M.
0

Using the hypothesis (F5) and (3.13), we have
(3.17) 1Ba(Jui (DIl < €,

where C'(T1 ) is a constant depending only on T. Afterwards, owing to (3.15)-
(3.17) and the Gronwall’s lemma, we obtain

(3.18) a1(t) < 2|h|Mr||Z|| Lo o, 1:vyexp(TCEY), ¥t € [0, T).
This implies
(3.19) ||uh - uh:HW(QT) < CTlh — h’l, ‘-"h,hl € (O,ho).

Suppose that {h,} is a sequence of real numbers such that A, > 0 and
h, — 04, as n — oo. From (3.19) we deduce that {uj, } is a Cauchy
sequence in W(Q 7). Consequently there exists u* € W(Qr) such that

(3.20) up, — u* strongly in W(Qr) as n — ooc.

By passing to limit similarly as in the proof of Theorem 2.2, we conclude
that u* satisfies the equation

(3.21) %(u?, v) + a(u™(t),v) + 9(1)v(0) + (f(u", 4),v) = 0,
Yv €V and fora.e. te(0,T),

and the initial conditions

(3.22) u*(0) = uo, u3(0)=uy.
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From the uniqueness of solution we have
(3.23) u* = 4.

Consequenlty (3.20) is correct for every sequence of positive numbers {h,}
such that h, — 04 which implies that

(3.24) up, — @ strongly in W(Qr),as h — 04.

Furthermore, if in (3.19) we suppose that h' — 0., we have (3.6), and the
theorem is proved completely.

4. Numerical results
Consider the problem

(4.1) uy — Au+ f(u,us) = Fz,t), 0<z<1,
(4.2) uz(0,1) = §u(0,t) + g(t),u(1,%) = 0,
(4.3) u(z,0) = cos Fx,us(z,0) = — cos Tz,

where  g(t) = —1e™H(98 + 1), f(u, ug) = |u/2sgn(u,).
To solve numerically the problem (4.1)-(4.3) we consider the system of
non-linear differential equations

duy, v
0 = Vk,
(4.4) d(f,t Uks1 + Ug—1 — 2u
dtk _ Ukt ;2-1 £~ fuk,vi) + F(zp,t),

with initial conditions

(4.5) ug(0) = cos Tkh,vx(0) = —cos Fkh, k=0,1,...,N -1,

where ux(t) = u(zk, t), vi(t) = %(z,t), 2 = kh, h = 1/N are unknown.
To solve (4.4) at the time t = ty + At we use the following linear recursive

scheme generated by the non-linear term

( 4.(n)
du, — M)
dt ko
(4.6)  { dvfc") "5:3-)1 + u’gcn—)l - 2"‘5:1) (n-1)  (n-1)
7 = 12 —f(uk ' U )+F($k,t),
u{(to) = argy 5V (t0) = Brtey k=0,1,...,N ~1.

The linear system (4.6) is solved by searching its eigenvalues and eigen-
functions. We study the problem (4.1)—(4.3) in the two following cases with
respect to the function F(z,t):

(i) F(z,t) = e7*{cos Tz + (z — 1)*(¢* — 4t + 2) + -’{}cos Tz — 2%} +
lug|'/2sgnue, with u, = e~[— cos Tz — t¥(z — 1)? + 2t(z — 1)?]. For such a
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function F(z,t) the exact solution of the problem (4.1)-(4.3) is u(z,t) =
e YeosZz + t*(z — 1)?]). With a step A = 1/40 we obtain the curves in
Fig. 1 for the approximated solution ux(t) and the exact solution for & =
0,1,...,39 and for the times T" = 1/20,1/2,1 . The corresponding error is

equal to 1—02_—3.

(ii) F(z,t) = 0. Always with a step h = 1/40 on the interval [0,1] and
for T € [0;0,7] we have drawn the corresponding surface solution: (z,t) —
u(z,t) in Fig. 2.
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