

A. Pham Ngoc Dinh, Nguyen Thanh Long

THE SEMILINEAR WAVE EQUATION ASSOCIATED
WITH A NONLINEAR BOUNDARY

1. Introduction

We consider the following boundary-initial value problem

$$(1.1) \quad u_{tt} - \Delta u + f(u, u_t) = 0, \quad 0 < x < 1, \quad 0 < t < T,$$

$$(1.2) \quad u_x(0, t) = H(u(0, t)) + g(t),$$

$$(1.3) \quad u(1, t) = 0,$$

$$(1.4) \quad u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x).$$

The boundary condition (1.2) is nonlinear, in general nonhomogeneous, and the term $H(u(0, t))$ is supposed to be of the same sign as $u(0, t)$. The nonlinear term $f(u, u_t)$ is supposed to be Hölder continuous with respect to every variable and non-decreasing with respect to the second variable.

The equation (1.1) has the same form as that from [3], but the smoothness of the nonlinear term $f(u, u_t)$ and that of the initial values $u_0(x), u_1(x)$ are less than in [3]. Then the linearization method used for the problems from [3],[7] cannot be here used. In [1] is given a theorem of existence and uniqueness of a global solution of the problem (1.1)–(1.4) in the case of $H = 0$ and

$$(1.5) \quad f(u, u_t) = |u_t|^{\alpha-1} u_t, \quad 0 < \alpha < 1.$$

Such a problem governs the motion of a linear viscoelastic bar with nonlinear elastic constraints. In [4] we consider the existence, uniqueness and continuous dependence (with respect to the parameter h) of the solution to the problem (1.1)–(1.4) with

$$(1.6) \quad H(s) = hs, \quad h > 0.$$

In this paper, we consider two main parts. The first deals with the global existence and the uniqueness of the solution to the problem (1.1)–(1.4). Sometimes some hypotheses on f are abandoned comparing to [4]. The main

tool is the Galerkin method associated with a nonlinear integral equation of Volterra type and the monotone operator generated by the nonlinear term $f(u, u_t)$. In the second part we consider the problem (1.1)–(1.4) with the linear boundary condition

$$(1.7) \quad u_x(0, t) = hu(0, t) + g(t), \quad h > 0,$$

instead of (1.2), afterwards, we study the behavior of the solution to such a problem as h tends to 0_+ . In section 4 we present some numerical results.

2. The existence and uniqueness theorem

In this paper, we consider the equation (1.1) as an ordinary differential equation in the Banach space for $u(t)$ which stands for $u(x, t)$ so that we shall write

$$u' = u_t = \frac{\partial u}{\partial t}, \quad u'' = u_{tt} = \frac{\partial^2 u}{\partial t^2}.$$

Put $\Omega = (0, 1)$, $Q_T = \Omega \times (0, T)$, $T > 0$, $L^q = L^q(\Omega)$, $H^1 = H^1(\Omega)$, where H^1 is the usual Sobolev space on Ω ; denote by $\langle \cdot, \cdot \rangle$ the scalar product in L^2 or dual product of a continuous linear functional with an element of a corresponding function space, by $\|\cdot\|$ the norm in L^2 , by $\|\cdot\|_X$ the norm in Banach space X and by X' dual of X . Denote by $L^p(0, T; X)$, $1 \leq p \leq \infty$, the space of measurable real functions $f : (0, T) \rightarrow X$ such that

$$\|f\|_{L^p(0, T; X)} = \left(\int_0^T \|f(t)\|_X^p dt \right)^{1/p} < \infty \quad \text{for } 1 \leq p < \infty$$

or

$$\|f\|_{L^\infty(0, T; X)} = \text{ess} \sup_{0 < t < T} \|f(t)\|_X \quad \text{for } p = \infty.$$

Let

$$(2.1) \quad V = \{v \in H^1 / v(1) = 0\},$$

$$(2.2) \quad a(u, v) = \left\langle \frac{\partial u}{\partial x}, \frac{\partial v}{\partial x} \right\rangle = \int_0^1 \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx.$$

The following lemma is easy to prove.

LEMMA 2.1. $\|v\|_{C^0(\bar{\Omega})} \leq \|v\|_V$ for all $v \in V$.

We admit the following hypotheses:

- (A) $u_0 \in H^1$, $u_1 \in L^2$,
- (G) $g \in H^1(0, T)$ for all $T > 0$ and $g(0)$ exists,
- (H) $H \in C^1(\mathbb{R})$, $H(0) = 0$, $sH(s) > 0$ for all $s \neq 0$,
- $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ satisfies the condition

$$(F_1) \quad f(0,0) = 0, (f(u,v) - f(u,\tilde{v}))(v - \tilde{v}) \geq 0 \quad \text{for all } u, v, \tilde{v} \in \mathbb{R},$$

and there exist constants $\alpha, \beta \in (0, 1]$ and two continuous functions $B_1, B_2 : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that

$$(F_2) \quad B_1 \text{ is non-decreasing function,}$$

$$(F_3) \quad B_2(|v|) \in L^2(Q_T), \quad \text{for all } v \in L^2(Q_T) \quad \text{and } T > 0,$$

$$(F_4) \quad |f(u,v) - f(u,\tilde{v})| \leq B_1(|u|)|v - \tilde{v}|^\alpha \quad \text{for all } u, v, \tilde{v} \in \mathbb{R},$$

$$(F_5) \quad |f(u,v) - f(\tilde{u},v)| \leq B_2(|v|)|u - \tilde{u}|^\beta \quad \text{for all } u, \tilde{u}, v \in \mathbb{R}.$$

Then, we have the following theorem.

THEOREM 2.2. *Suppose that (A), (G), (H), (F) hold. Then, for $T > 0$ the boundary initial value problem (1.1)–(1.4) has at least a weak solution u on $(0, T)$ such that*

$$(2.3) \quad u \in L^\infty(0, T; V),$$

$$(2.4) \quad u_t \in L^\infty(0, T; L^2) \quad \text{and} \quad u_t(0, t) \in L^2(0, T).$$

Furthermore, if $\beta = 1$ in (F_5) and the function H satisfies, in addition,

$(H_1) \quad H \in C^2(\mathbb{R}), H'(s) > -1 \quad \text{for all } s \in \mathbb{R},$
 then the problem (1.1)–(1.4) has the only solution satisfying (2.3), (2.4).

Remark. This result is stronger than that in [4]. Indeed, the following assumptions – made in [4] for the problem (1.1)–(1.4) with (1.6) – are not needed here:

$$(2.5) \quad \begin{cases} (i) \quad B_1(|u|) \in L^{2/(1-\alpha)}(Q_T) \text{ for all } u \in L^\infty(0, T; V) \text{ and } T > 0, \\ (ii) \quad B_2 \text{ is a non-decreasing function.} \end{cases}$$

Proof of Theorem 2.2.. The first step (the Galerkin approximation). Consider a special base in V

$$w_j(x) = \sqrt{\frac{2}{1 + \lambda_j^2}} \cos(\lambda_j x), \quad \lambda_j = (2j - 1)\frac{\pi}{2}, \quad j \in \mathbb{N},$$

constructed by the eigenfunctions of the Laplacian operator $\Delta = \frac{\partial^2}{\partial x^2}$.

Considering (1.1) as an ordinary differential equation with unknown function $u(t)$, put

$$(2.6) \quad u_n(t) = \sum_{j=1}^n c_{nj}(t)w_j,$$

where c_{nj} satisfy the following system of nonlinear differential equation

$$(2.7) \quad \begin{aligned} \langle u_n''(t), w_j \rangle + a(u_n(t), w_j) + (H(u_n(0, t)) + g(t))w_j(0) \\ + \langle f(u_n(t), u_n'(t)), w_j \rangle = 0, \quad 1 \leq j \leq n, \end{aligned}$$

with conditions

$$(2.8) \quad \begin{cases} u_n(0) = u_{0n} \\ u'_n(0) = u_{1n}, \end{cases}$$

where

$$(2.9) \quad \begin{cases} u_{0n} = \sum_{j=1}^n \alpha_{nj} w_j \rightarrow u_0 \text{ in } H^1 \text{ strongly,} \\ u_{1n} = \sum_{j=1}^n \beta_{nj} w_j \rightarrow u_1 \text{ in } L^2 \text{ strongly.} \end{cases}$$

For fixed $T > 0$, by the hypotheses of the theorem, the problem (2.7), (2.8) has the solution $u_n(t)$ on an interval $[0, T_n]$. Owing to the estimations which will follow, we can take $T_n = T$ for every n .

The second step (the estimations a priori). Multiplying the j -th equation in (2.7) by $c'_{nj}(t)$, summing with respect to j , then integrating with respect to time variable from 0 to t , by (G), (F_1), we have

$$(2.10) \quad \begin{aligned} S_n(t) &\leq S_n(0) + 2g(0)u_{0n}(0) - 2g(t)u_n(0, t) \\ &\quad + 2 \int_0^t g'(\tau)u_n(0, \tau)d\tau - 2 \int_0^t \langle f(u_n(\tau), 0), u'_n(\tau) \rangle d\tau, \end{aligned}$$

where

$$(2.11) \quad S_n(t) = \|u'_n(t)\|^2 + \|u_n(t)\|_V^2 + 2\hat{H}(u_n(0, t))$$

with

$$(2.12) \quad \hat{H}(\eta) = \int_0^\eta H(s)ds.$$

Remark that the function (2.12) has the property

$$(2.13) \quad 0 < \hat{H}(\eta) \leq |\eta| \max_{|s| \neq |\eta|} |H(s)| \quad \text{for all } \eta \neq 0.$$

Then, using (2.9), (2.11), (2.13) and Lemma 2.1, we have

$$(2.14) \quad S_n(0) + 2|g(0)u_{0n}| \leq \frac{1}{2}C_1 \quad \text{for all } n,$$

where C_1 is a constant depending on u_0, u_1 and H . We still use Lemma 2.1, then from (2.10), (2.14) and (F_5) we have

$$(2.15) \quad S_n(t) \leq \tilde{g}(t) + \int_0^t \tilde{K}(S_n(\tau))d\tau,$$

where

$$(2.16) \quad \tilde{g}(t) = C_1 + 4g^2(t) + \int_0^t g'^2(\tau)d\tau,$$

$$(2.17) \quad \tilde{K}(s) = s + 4B_2(0)s^{(1+\beta)/2}.$$

Because $H^1(0, T) \hookrightarrow C^0([0, T])$, the function $\tilde{g}(t)$ is bounded almost everywhere on $[0, T]$ by a constant M_T depending on T . Then, from (2.15) we have

$$(2.18) \quad S_n(t) \leq M_T + \int_0^t \tilde{K}(S_n(\tau))d\tau, \quad 0 \leq t < T_n = T.$$

The function $\tilde{K}(s)$ is continuous and non-decreasing for $s \geq 0$, hence

$$(2.19) \quad S_n(t) \leq S(t), \quad \forall t \in [0, T], \quad \forall T > 0,$$

where $S(t)$ is the maximal solution of the Volterra integral equation

$$(2.20) \quad S(t) = M_T + \int_0^t \tilde{K}(S(\tau))d\tau$$

with the kernel \tilde{K} non-decreasing on the interval $[0, T]$ (see [6]).

Now we need an estimation of the term $\int_0^t |u'_n(0, \tau)|^2 d\tau$. Put

$$(2.21) \quad K_n(t) = \sum_{j=1}^n \frac{\sin(\lambda_j t)}{\lambda_j},$$

$$(2.22) \quad \gamma_n(t) = \sum_{j=1}^n w_j(0) \left[\alpha_{nj} \cos(\lambda_j t) + \beta_{nj} \frac{\sin(\lambda_j t)}{\lambda_j} \right] - \sqrt{2} \sum_{j=1}^n \int_0^t \frac{\sin[\lambda_j(t-\tau)]}{\lambda_j} \left\langle f(u_n(\tau), u'_n(\tau)), \frac{w_j}{\|w_j\|} \right\rangle d\tau,$$

$$(2.23) \quad \delta_n(t) = 2 \int_0^t K_n(t-\tau) H(u_n(0, \tau)) d\tau.$$

Then $u_n(0, t)$ can be rewritten as

$$(2.24) \quad u_n(0, t) = \gamma_n(t) - \delta_n(t) - 2 \int_0^t K_n(t-\tau) g(\tau) d\tau.$$

To prove Theorem 2.2 we need the following lemmas.

LEMMA 2.3 (see [1]). *There exist a constant $C_2 > 0$ and such a function $D(t)$ continuous, positive and independent of n that*

$$(2.25) \quad \int_0^t |\gamma'_n(\tau)|^2 d\tau \leq C_2 + D(t) \int_0^t \|f(u_n(\tau), u'_n(\tau))\|^2 d\tau, \quad \forall t \in [0, T], \forall T > 0.$$

LEMMA 2.4 (see [4], Lemma 2). *There exists a constant $M_T^{(1)} > 0$ depending on T such that*

$$(2.26) \quad \int_0^t \left| \int_0^s K'_n(s-\tau)g(\tau)d\tau \right|^2 ds \leq M_T^{(1)}, \quad \forall t \in [0, T], \quad \forall T > 0.$$

LEMMA 2.5. *There exist two positive constants $M_T^{(2)}, M_T^{(3)}$ such that*

$$(2.27) \quad \int_0^t |\delta'_n(\tau)|^2 d\tau \leq M_T^{(2)} + M_T^{(3)} \int_0^t ds \int_0^s |u'_n(0, \tau)|^2 d\tau, \\ \forall t \in [0, T], \quad \forall T > 0.$$

Proof of Lemma 2.5. . From (2.23) we have

$$(2.28) \quad \delta'_n(t) = 2K_n(t)H(u_{0n}(0)) + 2 \int_0^t K_n(t-\tau)H'(u_n(0, \tau))u'_n(0, \tau)d\tau.$$

Since $u_{0n} \rightarrow u_0$ strongly in H^1 , we have

$$(2.29) \quad |u_{0n}(0)| \leq \|u_{0n}\|_{C^0(\bar{\Omega})} \leq C_3, \quad \forall n.$$

Consequently

$$(2.30) \quad |H(u_{0n}(0))|^2 \leq \max_{|s| \leq C_3} H^2(s) = C_4, \quad \forall n.$$

Besides, from (2.19)) we have the inequalities

$$(2.31) \quad |u_n(0, \tau)| \leq \|u_n(\tau)\|_V \leq \sqrt{\max_{0 \leq t \leq T} S(t)} = M_T^{(4)}, \quad \forall n,$$

$$(2.32) \quad |H'(u_{0n}(0, \tau))|^2 \leq \max_{|s| \leq M_T^{(4)}} |H'(s)|^2 = M_T^{(5)}, \quad \forall n,$$

where $M_T^{(4)}, M_T^{(5)}$ are constants depending on T . From (2.28), (2.30), (2.32) we obtain after some rearrangements

$$(2.33) \quad \int_0^t |\delta'_n(s)|^2 ds \leq 8C_4 \int_0^T K_n^2(s)ds \\ + 8M_T^{(5)} \int_0^T K_n^2(\tau)d\tau \int_0^t ds \int_0^s |u'_n(0, \tau)|^2 d\tau,$$

and (2.27) follows since $K_n \rightarrow K$ in $L^2(0, T)$ strongly for every $T > 0$.

LEMMA 2.6. *There exists $M_T > 0$ such that*

$$(2.34) \quad \int_0^T |u'_n(0, \tau)|^2 d\tau \leq M_T, \quad \forall T > 0.$$

Proof of Lemma 2.6. From (2.24) we have

$$(2.35) \quad \int_0^t |u'_n(0, s)|^2 ds \leq 3 \int_0^t |\gamma'_n(s)|^2 ds + 3 \int_0^t |\delta'_n(s)|^2 ds \\ + 12 \int_0^t ds \left| \int_0^s K'_n(s - \tau) g(\tau) d\tau \right|^2.$$

Besides, from the hypotheses $(F_2) - (F_5)$ and (2.19) we have

$$(2.36) \quad \|f(u_n(t), u'_n(t))\|^2 \leq 2B_1^2(\sqrt{S(t)})S^\alpha(t) + 2B_2^2(0)S^\beta(t).$$

At last from Lemmas 2.3–2.5 and (2.35), (2.36) we obtain the inequality

$$(2.37) \quad \int_0^t |u'_n(0, s)|^2 ds \leq M_T^{(6)} + 3M_T^{(3)} \int_0^t ds \int_0^s |u'_n(0, \tau)|^2 d\tau$$

which implies (2.34), by Gronwall's lemma.

The third step (passing to limit). Owing to (2.19), (2.36) and (2.34), $\{u_n\}$ has a subsequence still denoted $\{u_n\}$ such that

$$(2.38) \quad u_n \rightarrow u \quad \text{in } L^\infty(0, T; V) \quad \text{weak}^*,$$

$$(2.39) \quad u'_n \rightarrow u' \quad \text{in } L^\infty(0, T; L^2) \quad \text{weak}^*,$$

$$(2.40) \quad u_n(0, t) \rightarrow u(0, t) \quad \text{in } L^\infty(0, T) \quad \text{weak}^*,$$

$$(2.41) \quad u'_n(0, t) \rightarrow u'(0, t) \quad \text{in } L^2(0, T) \quad \text{weak},$$

$$(2.42) \quad f(u_n, u'_n) \rightarrow X \quad \text{in } L^\infty(0, T; L^2) \quad \text{weak}^*.$$

Owing to (2.19) and (2.34), and besides, by (2.38) and (2.39), we can extract from $\{u_n\}$ a subsequence still denoted $\{u_n\}$ such that (see [5])

$$(2.43) \quad u_n(0, t) \rightarrow u(0, t) \quad \text{uniformly in } C^\circ([0, T]),$$

$$(2.44) \quad u_n \rightarrow u \quad \text{strongly in } L^2(Q_T).$$

Since H is continuous, from (2.43) we have

$$(2.45) \quad H(u_n(0, t)) \rightarrow H(u(0, t)) \quad \text{uniformly in } C^\circ([0, T]).$$

Owing to (2.38), (2.39), (2.42), (2.45) and passing to limit in (2.7), we have $u(t)$ satisfying the equation

$$(2.46) \quad \frac{d}{dt} \langle u'(t), v \rangle = a(u(t), v) + (H(u(0, t)) + g(t))v(0) \\ + \langle X(t), v \rangle = 0, \quad \forall v \in V.$$

We can prove in a similar manner as in [4] that

$$(2.47) \quad u(0) = u_0, \quad u'(0) = u_1.$$

To prove the existence of solution u , we have to show that $X = f(u, u')$. Then we need the following lemma (see [1]) .

LEMMA 2.7. *Suppose that u is a solution of the problem*

$$(2.48) \quad u_{tt} - \Delta u + X = 0,$$

$$(2.49) \quad u_x(0, t) = H(u(0, t)) + g(t), \quad u(1, t) = 0,$$

$$(2.50) \quad u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x)$$

with

$$(2.51) \quad u \in L^\infty(0, T; V) \quad \text{and} \quad u_t \in L^\infty(0, T; L^2).$$

Then we have

$$(2.52) \quad \begin{aligned} \frac{1}{2} \|u'(t)\|^2 + \frac{1}{2} \|u(t)\|_V^2 + \int_0^t [H(u(0, \tau)) + g(\tau)] u_t(0, \tau) d\tau \\ + \int_0^t \langle X(\tau), u'(\tau) \rangle d\tau \geq \frac{1}{2} \|u_1\|^2 + \frac{1}{2} \|u_0\|_V^2 \quad \text{for a.e. } t \in (0, T). \end{aligned}$$

Remark. If $u_0 = u_1 = 0$, then the equality occurs in (2.52). Now, from (2.7), (2.8) we have

$$(2.53) \quad \begin{aligned} \int_0^t \langle f(u_n(\tau), u'_n(\tau)), u'_n(\tau) \rangle d\tau = \frac{1}{2} \|u_{1n}\|^2 + \frac{1}{2} \|u_{0n}\|_V^2 \\ - \frac{1}{2} \|u'_n(t)\|^2 - \frac{1}{2} \|u_n(t)\|_V^2 - \int_0^t [H(u_n(0, \tau)) + g(\tau)] u'_n(0, \tau) d\tau. \end{aligned}$$

Passing to limit and then using (2.52), we get

$$(2.54) \quad \begin{aligned} \lim_{n \rightarrow \infty} \sup \int_0^t \langle f(u_n(\tau), u'_n(\tau)), u'_n(\tau) \rangle d\tau \leq \frac{1}{2} \|u_1\|^2 + \frac{1}{2} \|u_0\|_V^2 \\ - \frac{1}{2} \|u'(t)\|^2 - \frac{1}{2} \|u(t)\|_V^2 - \int_0^t [H(u(0, \tau)) + g(\tau)] u_t(0, \tau) d\tau \\ \leq \int_0^t \langle X(\tau), u'(\tau) \rangle d\tau \quad \text{a.e. } t \in (0, T). \end{aligned}$$

By using the same arguments as in [4], we can show that $X = f(u, u')$ a.e. in Q_T . The existence of the solution to the problem (1.1)–(1.4) is proved.

The fourth step (the uniqueness). Having now $\beta = 1$ in (F_5) and H satisfying (H_1) , suppose that u, v are two solutions of the boundary-initial

value problem (1.1)–(1.4) satisfying $u, v \in L^\infty(0, T; V)$, $u_t, v_t \in L^\infty(0, T; L^2)$, $u_t(0, t), v_t(0, t) \in L^2(0, T)$. Then $w = u - v$ satisfies the problem

$$(2.55) \quad \begin{cases} w_{tt} - \Delta w + X_1 = 0, \\ w_x(0, t) = H_1(t), \quad w(1, t) = 0, \\ w(x, 0) = w_t(x, 0) = 0, \\ w \in L^\infty(0, T; V), \quad w_t \in L^\infty(0, T; L^2), \quad w_t(0, t) \in L^2(0, T) \end{cases}$$

with

$$(2.56) \quad \begin{cases} X_1 = f(u, u_t) - f(v, v_t), \\ H_1 = H(u(0, t)) - H(v(0, t)). \end{cases}$$

Applying Lemma 2.7 (see Remark), we have

$$(2.57) \quad \begin{aligned} & \frac{1}{2} \|w'(t)\|^2 + \frac{1}{2} \|w(t)\|_V^2 + \int_0^t H_1(\tau) w'(0, \tau) d\tau \\ & + \int_0^t \langle X_1(\tau), w'(\tau) \rangle d\tau = 0 \quad \text{for a.e. } t \in (0, T). \end{aligned}$$

Put

$$(2.58) \quad \sigma(t) = \|w'(t)\|^2 + \|w(t)\|_V^2.$$

Since the function f is monotonically increasing with respect to the second variable, we obtain

$$(2.59) \quad \begin{aligned} - \int_0^t \langle X_1(\tau), w'(\tau) \rangle d\tau & \leq - \int_0^t \langle f(u(\tau), v'(\tau)) - f(v(\tau), v'(\tau)), w'(\tau) \rangle d\tau \\ & \leq - \int_0^t \|f(u(\tau), v'(\tau)) - f(v(\tau), v'(\tau))\| \cdot \|w'(\tau)\| d\tau. \end{aligned}$$

Using the hypothesis (F_5) with $\beta = 1$, we have

$$(2.60) \quad \|f(u, v') - f(v, v')\| \leq \|B_2(|v'|)\| \cdot \|w\|_V.$$

Consequently, from (2.57)–(2.60) we get

$$(2.61) \quad \sigma(t) + 2 \int_0^t H_1(\tau) w'(0, \tau) d\tau \leq \int_0^t \|B_2(|v'(\tau)|)\| \sigma(\tau) d\tau.$$

Put

$$(2.62) \quad \begin{cases} M = \max\{\|u\|_{L^\infty(0, T; V)}, \|v\|_{L^\infty(0, T; V)}\}, \\ m_1 = \min_{|s| \leq M} H'(s), \\ m_2 = \max_{|s| \leq M} |H''(s)|. \end{cases}$$

From the hypothesis (H_1) we have

$$(2.63) \quad m_1 > -1.$$

From (2.56) we obtain

$$\begin{aligned}
 (2.64) \quad & 2 \int_0^t H_1(\tau) w'(0, \tau) d\tau \\
 &= 2 \int_0^t \left[\int_0^1 \frac{d}{d\theta} H(v(0, \tau) + \theta w(0, \tau)) d\theta \right] w_t(0, \tau) d\tau \\
 &= w^2(0, \tau) \int_0^1 H'(v(0, t) + \theta w(0, t)) d\theta \\
 &\quad - \int_0^t w^2(0, \tau) d\tau \int_0^1 H''(v(0, \tau) + \theta w(0, \tau))(v_t(0, \tau) + \theta w_t(0, \tau)) d\theta \\
 &\geq m_1 w^2(0, t) - m_2 \int_0^t w^2(0, \tau) (|u_t(0, \tau)| + |v_t(0, \tau)|) d\tau,
 \end{aligned}$$

by using integration by parts and (2.62). From (2.61), (2.64) we have

$$\begin{aligned}
 (2.65) \quad & \sigma(t) + m_1 w^2(0, t) \leq m_2 \int_0^t w^2(0, \tau) (|u_t(0, \tau)| + |v_t(0, \tau)|) d\tau \\
 &\quad + \int_0^t \|B_2(|v'(\tau)|)\| \sigma(\tau) d\tau.
 \end{aligned}$$

We remark that, by (2.58),

$$(2.66) \quad w^2(0, t) \leq \|w(t)\|_V^2 \leq \sigma(t).$$

Consequently

$$(2.67) \quad (1 + m_1) w^2(0, t) \leq \sigma(t) + m_1 w^2(0, t).$$

Multiplying two members of (2.67) by a number $k > 0$ and adding to (2.65), we have

$$\begin{aligned}
 (2.68) \quad & \sigma(t) + [m_1 + k(1 + m_1)] w^2(0, t) \\
 &\leq (1 + k) m_2 \int_0^t w^2(0, \tau) (|u_t(0, \tau)| + |v_t(0, \tau)|) d\tau \\
 &\quad + (1 + k) \int_0^t \|B_2(|v'(\tau)|)\| \sigma(\tau) d\tau.
 \end{aligned}$$

Choose

$$(2.69) \quad k > \max \left\{ 0, \frac{1 - m_1}{1 + m_1} \right\}$$

and denote

$$(2.70) \quad q(t) = (1 + k) [m_2(|u_t(0, t)| + |v_t(0, t)|) + \|B_2(|v_t(t)|)\|].$$

Then from (2.68)–(2.70) we have

$$(2.71) \quad \sigma(t) + w^2(0, t) \leq \int_0^t q(\tau)[\sigma(\tau) + w^2(0, \tau)]d\tau.$$

This implies $\sigma(t) + w^2(0, t) \equiv 0$ and $w \equiv 0$ by the definition (2.58) of $\sigma(t)$. This ends the proof of Theorem 2.2.

A special case of H gives us the following result which is stronger than that in [4] about the global existence, the hypotheses on the function f being less.

THEOREM 2.8. *Suppose that (A), (G), (F), (1.6) hold. Then for every $T > 0$ the problem (1.1)–(1.4) has at least a weak solution u on $(0, T)$ satisfying (2.3), (2.4). Furthermore, if $\beta = 1$, then this solution is unique.*

The following theorem is a generalization of the result in [1].

THEOREM 2.9. *Suppose that (A), (G), (H), (1.5) hold. Then for every $T > 0$ the problem (1.1)–(1.4) has at least a weak solution u on $(0, T)$ satisfying (2.3), (2.4). Furthermore, if H satisfies (H_1) , then this solution is unique.*

3. The continuous dependence of solution

In this section we study the problem (1.1)–(1.4) with linear boundary condition

$$(3.1) \quad u_x(0, t) = hu(0, t) + g(t), \quad h > 0,$$

(replacing (1.3)), and we also study the behavior of solution as $h \rightarrow 0_+$. Suppose that, in addition, $\beta = 1$ and (1.6) holds. Such a problem, by Theorem 2.8, has the only solution

$$(3.2) \quad u(x, t) = u_h(x, t), \quad h > 0.$$

This result generalizes those of [1], [4]. At first, for every $T > 0$ we put

$$(3.3) \quad W(Q_T) = \{v \in L^\infty(0, T; V) / v_t \in L^\infty(0, T; L^2)\}.$$

$W(Q_T)$ is Banach space with respect to norm (see [5])

$$(3.4) \quad \|v\|_{W(Q_T)} = \left(\|v\|_{L^\infty(0, T; V)}^2 + \|v_t\|_{L^\infty(0, T; L^2)}^2 \right)^{1/2}.$$

Further, we want to prove that the family of solutions $\{u_h\}_{h>0}$ converges strongly in $W(Q_T)$ to a function \tilde{u} which is the only solution of the problem (1.1)–(1.4) with $H \equiv 0$. We admit following hypothesis on the function B_2 occurring in (F)

$$(F_6) \quad B_2 : L^2 \rightarrow L^2 \text{ maps bounded sets into bounded sets.}$$

THEOREM 3.1. *Suppose that (A) , (G) , (H_2) , F , (F_6) hold and that $\beta = 1$. Then*

(i) *for every $T > 0$ the problem (1.1)–(1.4) with $H \equiv 0$ has the only solution $\tilde{u}(x, t)$ satisfying*

$$(3.5) \quad \tilde{u} \in L^\infty(0, T; V), \quad \tilde{u}_t \in L^\infty(0, T; L^2), \quad \tilde{u}_t(0, t) \in L^2(0, T),$$

(ii) *the solution $u_h(x, t)$ converges strongly in $W(Q_T)$ to $\tilde{u}(x, t)$ as $h \rightarrow 0_+$. Furthermore, we have an estimation*

$$(3.6) \quad \|u_h - \tilde{u}\|_{W(Q_T)} \leq C_T h \quad \text{for } h > 0 \text{ small.}$$

Proof. (i) Case $H \equiv 0$. We prove in the same manner as in the case of Theorem 2.2 that the following estimations a priori hold

$$(3.7) \quad \|u'_n(t)\|^2 + \|u_n(t)\|_V^2 \leq M_T, \quad \forall t \in [0, T], \quad \forall T > 0,$$

$$(3.8) \quad \int_0^T |u'_n(0, t)|^2 dt \leq M_T, \quad \forall t \in [0, T], \quad \forall T > 0,$$

and that the limit \tilde{u} of the sequence $\{u_h\}$ defined by (2.6), (2.7), (2.8) satisfies (3.5) and the equation (1.1) with the boundary conditions

$$(3.9) \quad \tilde{u}_x(0, t) = g(t), \quad \tilde{u}(1, t) = 0$$

and the initial conditions

$$(3.10) \quad \tilde{u}(x, 0) = u_0(x), \quad \tilde{u}_t(x, 0) = u_1(x).$$

Besides, this solution \tilde{u} is unique.

(ii) Consider $h_0 > 0$ fixed, and two parameters $h, h' \in (0, h_0)$. Let u_h and $u_{h'}$ be solutions of the boundary-initial value problem (1.1)–(1.4) corresponding to the parameters h and h' , respectively. Then $Z = u_h - u_{h'}$ satisfies

$$(3.11) \quad \begin{cases} Z_{tt} - \Delta Z + \tilde{X}_1 = 0, \\ Z_x(0, t) = hZ(0, t) + \tilde{h}u_{h'}(0, t), \\ Z(1, t) = 0, \\ Z(x, 0) = Z_t(x, 0) = 0, \\ Z \in L^\infty(0, T; V), Z_t \in L^\infty(0, T; L^2), Z_t(0, t) \in L^2(0, T), \end{cases}$$

where

$$(3.12) \quad \tilde{X}_1 = f(u_h, u'_h) - f(u_{h'}, u'_{h'}), \quad \tilde{h} = h - h'.$$

Proving in the same manner as in the case of Theorem 2.2 with $H(s) = hs$, $0 < h < h_0$, we have the following result:

$$(3.13) \quad \begin{cases} \text{the sequences } \{u_h\}, \{u'_h\} \text{ and } \{u'_h(0, t)\} \text{ are bounded in} \\ L^\infty(0, T; V), L^\infty(0, T; L^2) \text{ and } L^2(0, T), \text{ respectively,} \\ \text{by a constant independent of } h \text{ (depending on } T, h_0\text{).} \end{cases}$$

Put

$$(3.14) \quad \sigma_1(t) = \|Z'(t)\|^2 + \|Z(t)\|_V^2.$$

Using again Lemma 2.7, we have

$$(3.15) \quad \sigma_1(t) + hZ^2(0, t) \leq 2|\tilde{h}|\widetilde{M}_T\|Z\|_{L^\infty(0, T; V)} + \int_0^t \|B_2(|u'_{h'}(\tau)|)\|\sigma_1(\tau)d\tau,$$

where \widetilde{M}_T is a constant independent of h, h' and satisfying

$$(3.16) \quad \|u_{h'}\|_{L^\infty(0, T; V)} + \int_0^T |u'_{h'}(0, \tau)|d\tau \leq \widetilde{M}_T.$$

Using the hypothesis (F_6) and (3.13), we have

$$(3.17) \quad \|B_2(|u'_{h'}(\tau)|)\| \leq C_T^{(1)},$$

where $C_T^{(1)}$ is a constant depending only on T . Afterwards, owing to (3.15)–(3.17) and the Gronwall's lemma, we obtain

$$(3.18) \quad \sigma_1(t) \leq 2|\tilde{h}|\widetilde{M}_T\|Z\|_{L^\infty(0, T; V)} \exp(TC_T^{(1)}), \quad \forall t \in [0, T].$$

This implies

$$(3.19) \quad \|u_h - u_{h'}\|_{W(Q_T)} \leq C_T|h - h'|, \quad \forall h, h' \in (0, h_0).$$

Suppose that $\{h_n\}$ is a sequence of real numbers such that $h_n > 0$ and $h_n \rightarrow 0_+$, as $n \rightarrow \infty$. From (3.19) we deduce that $\{u_{h_n}\}$ is a Cauchy sequence in $W(Q_T)$. Consequently there exists $u^* \in W(Q_T)$ such that

$$(3.20) \quad u_{h_n} \rightarrow u^* \text{ strongly in } W(Q_T) \text{ as } n \rightarrow \infty.$$

By passing to limit similarly as in the proof of Theorem 2.2, we conclude that u^* satisfies the equation

$$(3.21) \quad \frac{d}{dt}\langle u_t^*, v \rangle + a(u^*(t), v) + g(t)v(0) + \langle f(u^*, u_t^*), v \rangle = 0, \\ \forall v \in V \quad \text{and for a.e. } t \in (0, T),$$

and the initial conditions

$$(3.22) \quad u^*(0) = u_0, \quad u_t^*(0) = u_1.$$

From the uniqueness of solution we have

$$(3.23) \quad u^* = \tilde{u}.$$

Consequently (3.20) is correct for every sequence of positive numbers $\{h_n\}$ such that $h_n \rightarrow 0_+$ which implies that

$$(3.24) \quad u_h \rightarrow \tilde{u} \text{ strongly in } W(Q_T), \text{ as } h \rightarrow 0_+.$$

Furthermore, if in (3.19) we suppose that $h' \rightarrow 0_+$, we have (3.6), and the theorem is proved completely.

4. Numerical results

Consider the problem

$$(4.1) \quad u_{tt} - \Delta u + f(u, u_t) = F(x, t), \quad 0 < x < 1,$$

$$(4.2) \quad u_x(0, t) = \frac{1}{4}u(0, t) + g(t), \quad u(1, t) = 0,$$

$$(4.3) \quad u(x, 0) = \cos \frac{\pi}{2}x, \quad u_t(x, 0) = -\cos \frac{\pi}{2}x,$$

where $g(t) = -\frac{1}{4}e^{-t}(9t^2 + 1)$, $f(u, u_t) = |u_t|^{1/2} \operatorname{sgn}(u_t)$.

To solve numerically the problem (4.1)–(4.3) we consider the system of non-linear differential equations

$$(4.4) \quad \begin{cases} \frac{du_k}{dt} = v_k, \\ \frac{dv_k}{dt} = \frac{u_{k+1} + u_{k-1} - 2u_k}{h^2} - f(u_k, v_k) + F(x_k, t), \end{cases}$$

with initial conditions

$$(4.5) \quad u_k(0) = \cos \frac{\pi}{2}kh, \quad v_k(0) = -\cos \frac{\pi}{2}kh, \quad k = 0, 1, \dots, N-1,$$

where $u_k(t) = u(x_k, t)$, $v_k(t) = \frac{du}{dt}(x_k, t)$, $x_k = kh$, $h = 1/N$ are unknown.

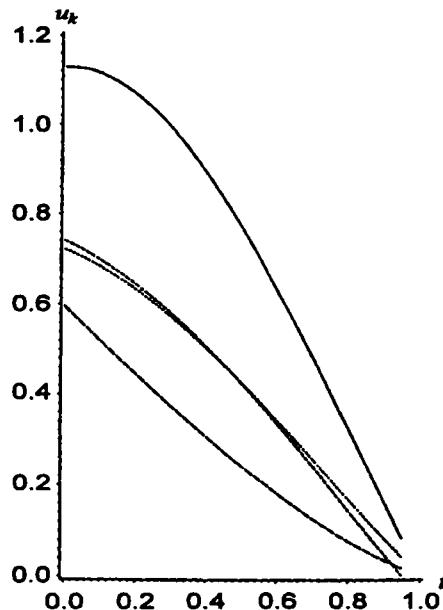
To solve (4.4) at the time $t = t_0 + \Delta t$ we use the following linear recursive scheme generated by the non-linear term

$$(4.6) \quad \begin{cases} \frac{du_k^{(n)}}{dt} = v_k^{(n)}, \\ \frac{dv_k^{(n)}}{dt} = \frac{u_{k+1}^{(n)} + u_{k-1}^{(n)} - 2u_k^{(n)}}{h^2} - f(u_k^{(n-1)}, v_k^{(n-1)}) + F(x_k, t), \\ u_k^{(n)}(t_0) = \alpha_{k,t_0}, \quad v_k^{(n)}(t_0) = \beta_{k,t_0}, \quad k = 0, 1, \dots, N-1. \end{cases}$$

The linear system (4.6) is solved by searching its eigenvalues and eigenfunctions. We study the problem (4.1)–(4.3) in the two following cases with respect to the function $F(x, t)$:

(i) $F(x, t) = e^{-t}\{\cos \frac{\pi}{2}x + (x-1)^2(t^2 - 4t + 2) + \frac{\pi^2}{4} \cos \frac{\pi}{2}x - 2t^2\} + |u_t|^{1/2} \operatorname{sgn} u_t$, with $u_t = e^{-t}[-\cos \frac{\pi}{2}x - t^2(x-1)^2 + 2t(x-1)^2]$. For such a

HYPERBOLIC



(1) continue line: appr. sol., $T = 0, 05$; (2) middle dashes: appr. sol., $T = 0, 5$;
 (3) short dashes: exact sol., $T = 0, 5$; (4) long dashes: appr. sol., $T = 1$.

Fig. 1

HYPERBOLIC

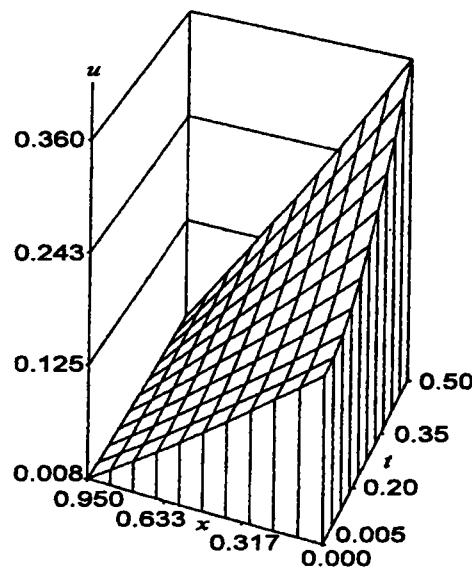


Fig. 2

function $F(x, t)$ the exact solution of the problem (4.1)–(4.3) is $u(x, t) = e^{-t}[\cos \frac{\pi}{2}x + t^2(x - 1)^2]$. With a step $h = 1/40$ we obtain the curves in Fig. 1 for the approximated solution $u_k(t)$ and the exact solution for $k = 0, 1, \dots, 39$ and for the times $T = 1/20, 1/2, 1$. The corresponding error is equal to $\frac{10^{-3}}{2}$.

(ii) $F(x, t) = 0$. Always with a step $h = 1/40$ on the interval $[0, 1]$ and for $T \in [0; 0, 7]$ we have drawn the corresponding surface solution: $(x, t) \rightarrow u(x, t)$ in Fig. 2.

Acknowledgements. The authors wish to thank the referee for his suggestions leading to the present improved version of our paper.

References

- [1] Dang Dinh Ang, A. Pham Ngoc Dinh, *Mixed problem for semi-linear wave equation with a nonhomogeneous condition*, Nonlinear Anal. 12 (1988), 581–592.
- [2] Dang Dinh Ang, A. Pham Ngoc Dinh, *On the strongly damped wave equation: $u_{tt} - \Delta u - \Delta u_t + f(u) = 0$* , SIAM, J. Math. Anal. 19 (1988), 1409–1418.
- [3] A. Pham Ngoc Dinh, Nguyen Thanh Long, *Linear approximation and asymptotic expansion associated to the nonlinear wave equation in one dimension*, Demonstratio Math. 19 (1986), 45–63.
- [4] Nguyen Thanh Long, A. Pham Ngoc Dinh, *On the quasilinear wave equation: $u_{tt} - \Delta u + f(u, u_t) = 0$ associated with a mixed nonhomogeneous condition*, Nonlinear Anal. 19 (1992), 613–623.
- [5] J. L. Lions, *Quelques méthodes de résolution des problèmes aux limites non-linéaires*, DUNOD, Gauthier-Villars, Paris, 1969.
- [6] V. Lakshmikantham, S. Leela, *Differential and Integral Inequalities*, Vol. 1, Academic Press, New York, 1969.
- [7] E. L. Ortiz, A. Pham Ngoc Dinh, *Linear recursive schemes associated with some nonlinear partial differential equations in one dimension and the Tau method*, SIAM, J. Math. Anal. 18 (1987), 452–464.

A. Pham Ngoc Dinh

URA 1803 – DÉPARTEMENT DE MATHÉMATIQUES
UNIVERSITÉ D'ORLÉANS – BP 6759
45067 ORLEANS CEDEX 2 – FRANCE

Nguyen Thanh Long

DÉPARTEMENT DE CALCUL ET D'INFORMATIQUE
ÉCOLE POLYTECHNIQUE
268 Ly Thuong Kiet
HO CHI MINH VILLE – VIET-NAM

Received February 7, 1996.