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1. Introduction 
We consider the following boundary-initial value problem 

(1.1) utt - Au + f{u, ut) = 0, 0 < i < 1, 0 < f < T , 

(1.2) u x (0 , i ) = # ( « ( 0 , 0 ) + $(*). 
(1.3) u ( l , t ) = 0, 
(1.4) u(x ,0) = u0(x), ut(x,0) = u^x). 

The boundary condition (1.2) is nonlinear, in general nonhomogeneous, and 
the term H(u(0, t)) is supposed to be of the same sign as u(0, t). The nonlin-
ear term f(u, ut) is supposed to be Holder continuous with respect to every 
variable and non-decreasing with respect to the second variable. 

The equation (1.1) has the same form as that from [3], but the smooth-
ness of the nonlinear term f(u, ut) and that of the initial values uo(x), u\(x) 
are less than in [3]. Then the linearization method used for the problems 
from [3],[7] cannot be here used. In [1] is given a theorem of existence and 
uniqueness of a global solution of the problem (1.1)—(1.4) in the case of 
H = 0 and 

(1.5) f(u,ut) = 0 < a < 1. 

Such a problem governs the motion of a linear viscoelastic bar with non-
linear elastic constraints. In [4] we consider the existence, uniqueness and 
continuous dependence (with respect to the parameter h) of the solution to 
the problem (1.1)—(1.4) with 

( 1 . 6 ) H(s) = hs, h > 0. 

In this paper, we consider two main parts. The first deals with the global 
existence and the uniqueness of the solution to the problem (1.1)—(1.4). 
Sometimes some hypotheses on / are abandoned comparing to [4]. The main 
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tool is the Galerkin method associated with a nonlinear integral equation of 
Volterra type and the monotone operator generated by the nonlinear term 
f(u,ut). In the second part we consider the problem (1.1)-(1.4) with the 
linear boundary condition 

(1.7) u*(0, t) = hu(0, t) + g(t), h> 0, 
instead of (1.2), afterwards, we study the behavior of the solution to such a 
problem as h tends to 0 + . In section 4 we present some numerical results. 

2. The existence and uniqueness theorem 
In this paper, we consider the equation (1.1) as an ordinary differential 

equation in the Banach space for u{t) which stands for u(x,t) so that we 
shall write 

, du „ d2u 
u =ut = - , u =uu = w . 

Put ft = (0,1), Qt = i i x ( 0 , T ) , T > 0 , ¿9 = ¿"(ft), H 1 = JT^fl), 
where H 1 is the usual Sobolev space on Q; denote by (.,.) the scalar product 
m L2 or dual product of a continuous linear functional with an element of a 
corresponding function space, by ||.|| the norm in L2, by ||.||x the norm in 
Banach space X and by X' dual of X. Denote by Lp(0,T; X), 1 < p < oo, 
the space of measurable real functions / : (0,T) —»• X such that 

/T U / p 
I I / | | L P ( O , T ; X ) = J \\m\\x d t ) < oo for 1 < p < CX) 

or 

l™(o,t-,x) = ess sup | | / ( f ) I U for p = oo. 
0 <t<T 

Let 

(2.1) V = {veH1/v{ 1) = 0}, 

(2.2) a(u, v) — / —, — \ = I ——dx. 
y ' y ' ; \ d x d x j \dxdx 

The following lemma is easy to prove. 

L E M M A 2 . 1 . | M | c o ( n ) < for all v e V. 

We admit the following hypotheses: 

(A) u0 e H1, ux G L2, 
(G) G -ff1(0,T) for all T > 0 and #(0) exists, 
(H) H € C1(E), ^ ( 0 ) = 0, sH{s) > 0 for all a / 0, 

/ : R2 —> M satisfies the condition 
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(Fx) f ( 0 , 0 ) = 0 , { f { u , v ) - f { u , v ) ) ( v - v ) > 0 f o r a l l u,v,v £ R , 

and there exist constants a,(3 £ (0,1] and two continuous functions B\,B2 : 
R+ R + such that 

(F2) B\ is non-decreasing function, 
(F3) B2(\V\) £ L2{QT), f o r a l l v £ L2(QT) a n d T > 0 , 

(F4) \ f ( u , v ) ~ f ( u , v \ < B i ( \ u \ ) \ v - v \ a f o r a l l u,v,v £ R , 

( F 5 ) \ f { u , v ) ~ f ( u , v ) \ < B 2 ( \ v \ ) \ u - u f f o r a l l u,u,v £ R . 

Then, we have the following theorem. 

T H E O R E M 2 . 2 . Suppose that (G), ( H ) , ( F ) hold. Then, for T > 0 

the boundary initial value problem (1.1)—(1.4) has at least a weak solution ii 

on ( 0 , T ) such that 

( 2 . 3 ) u£Lco( 0,T;V), 

(2.4) u t £ L°°(0,T-L2) and ut(0,t) £ £ 2 (0 ,T ) . 

Furthermore, if ¡3 = 1 in (F5) and the function H satisfies, in addition, 

[HX) H £ C2(K),H'(s) > - 1 / o r all s £ R , 

i/ien the problem (1.1)—(1.4) /ias </ie only solution satisfying (2.3), (2.4). 

R e m a r k . This result is stronger than that in [4]. Indeed,the following 
assumptions - made in [4] for the problem (1.1)—(1.4) with (1.6) - are not 
needed here: 
(2 5) ^ i ( M ) £ L2Kl~a\QT) for all u £ X°°(0 ,T;F) and T > 0, 

\ (H) B2 is a non-decreasing function. 

P r o o f of T h e o r e m 2 . 2 . . The first step ( the Galerkin approx-
imation). Consider a special base in V 

/ 2 x 
= \ TT>?- c o s ( A ^ ) ' x i = ~ ' J G N ' 

d2 

constructed by the eigenfunctions of the Laplacian operator A = 'q~2-

Considering (1.1) as an ordinary differential equation with unknown 
function w(i), put 

n 

( 2 . 6 ) u n ( t ) = c n j ( t ) w j , 

3=1 

where cnj satisfy the following system of nonlinear differential equation 

( 2 . 7 ) (u'»{t), W j ) + «(«„(<), W j ) + (H(un(0, t ) ) + g(t))Wj(0) 

-(- ( f { u n ( t ) , u'n(t)), W j ) = 0 , 1 < j < n , 
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with conditions 

( 0 O N J «»(0) = «On 
\t i 'n(0) = uXn, 

where 
( u0n - a njWj —• «0 in H 1 strongly, 
\ «In = E j = i PnjWj —»• «1 in L2 strongly. 

For fixed T > 0, by the hypotheses of the theorem, the problem (2.7), (2.8) 
has the solution un(t) on an interval [0, Tn). Owing to the estimations which 
will follow, we can take Tn — T for every n. 

The second step (the estimations a priori). Multiplying the j-th equa-
tion in (2.7) by c'nj(t), summing with respect to j, then integrating with 
respect to time variable from 0 to t, by (G), (Fi), we have 

( 2 . 1 0 ) Sn(t) < S n ( 0 ) + 2 5 ( 0 ) « O n ( 0 ) - 2g{t)un{Q,t) 
t t 

+ 2 \ g'(r)un(0, r)dr - 2 j < / ( u n ( r ) , 0), < ( r ) > dr, 
o o 

where 

(2.11) Sn(t) = | |<( / ) | | 2 + |M0II 2 v + 2^(ttn(0,i)) 
with 

v 
(2.12) H(7])=\H(s)ds. 

o 
Remark that the function (2.12) has the property 

(2.13) 0 < H(r}) < \i]\ max \H(s)\ for all 77 / 0. 

Then, using (2.9), (2.11), (2.13) and Lemma 2.1, we have 

(2.14) S„(0) + 2|5(0)«on| < for all n, 

where C\ is a constant depending on uq, Ui and H. We still use Lemma 2.1, 
then from (2.10), (2.14) and (Fs) we have 

t 
(2.15) Sn(t)<g(t) + \K(Sn(r))dT, 

o 
where 

t 
(2.16) g(t) = Ci+4g2(t) + \g'2(r)dT, 

o 
(2.17) K(s) = s + 45 2 (0 ) 5 ( 1 + ^ / 2 . 
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Because H1(0,T) <—C°([0,T]), the function g(t) is bounded almost every-
where on [0,T] by a constant Mr depending on T. Then, from (2.15) we 
have 

t 

(2.18) Sn(t) <Mt + \ K(Sn(T))dr, 0 < t < Tn = T. 

o 

The function I((s) is continuous and non-decreasing for s > 0, hence 

(2.19) Sn(t)<S(t), « i € [ 0 , T ] , * T > 0 , 

where S(t) is the maximal solution of the Volterra integral equation 
t 

(2.20) S ( t ) = MT + \ K(S(T))dr 
o 

with the kernel K non-decreasing on the interval [0,T] (see [6]). 
Now we need an estimation of the term |u^(0 , r ) | 2 dr . Put 

( 2 . 2 D K M = ± ^ M , 
j=i 3 

n 
(2.22) 7 » ( 0 = X > i ( 0 ) 

j=l 
n t 

, . s . sin(A,t) 
anj cos(A j t ) + pnj — 

j=i o 
t 

(2.23) 6n(t) = 2 J Kn(t - r)H(un(0, r))dr. 
o 

Then un(0,t) can be rewritten as 
t 

(2.24) «„(0, t ) = 7 n ( t ) - 6n(t) - 2 J Kn(t - r)<7(r)cfr. 
o 

To prove Theorem 2.2 we need the following lemmas. 

L E M M A 2.3 ( s ee [1]). There exist a constant C<i > 0 and such a function 
D(t) continuous, positive and independent of n that 

t t 
(2.25) J h'n(r)\2dr < C2 + D(t) J ||/(U»(R), < ( R ) ) | | 2 d r , 

o o 
€ [0,T], V T > 0. 
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L E M M A 2 . 4 (see [4] , Lemma 2 ) . There exists a constant M^ > 0 de-
pending on T such that 

t s 

(2.26) J \ K ' n ( s - T ) g ( r ) d T 

0 0 

2 

ds < \ wf £ [0, T], * T > 0. 

L E M M A 2.5. There exist two positive constants \ M^ such that 

(2.27) \K(r)\2dr < M<?> + M<?> J ds J |<(0, r)\2dr, 
0 0 0 

G [0,T], > 0. 
P r o o f of L e m m a 2 .5. . From (2.23) we have 

t 

(2.28) S'n(t) = 2Kn(t)H(u0nm + 2 J Kn(t - r)H'(un(0, r ) ) < ( 0 , r)dr. 
o 

Since uon uo strongly in H 1 , we have 

(2.29) |«o»(0)| < ||«on||co(0) < C3, yn. 
Consequently 

(2.30) |#(uO7l(0))|2 < max H2(s) = C4, 
\S\<C3 

Besides, from (2.19)) we have the inequalities 

(2.31) K(0,r)| < ||«n(r)|k < ^l™<?TS(t) = M t \ 

(2.32) |-ff'(uo„(0,r))|2 < max \H\s)\2 = , 
\s\<M<f> 

where M ^ are constants depending on T. From (2.28), (2.30), (2.32) 
we obtain after some rearrangements 

t T 

(2.33) J l ^ l ^ S C ^ A ' 2 ^ 
0 0 

T < s 
R(5) +8il45) \K2n(T)dr\ds\\u'n(0,T)\2dT, 

0 0 
and (2.27) follows since Kn —> K in L2(0,T) strongly for every T > 0. 

L E M M A 2.6. There exists M t > 0 such that 
T 

(2.34) \\u'n(0,r)\2dr<MT, > 0. 
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P r o o f o f L e m m a 2 . 6 . From (2.24) we have 
t t t 

(2.35) J K ( 0 , s)\2ds < 3 J | 7 » | 2 d s + 3 \ \6'n(s)\2ds 
0 0 0 

t s 

+ 12\ds \K'n(s-T)g(r)dT 
0 0 

Besides, from the hypotheses ( F 2 ) - (F5) and (2.19) we have 

(2.36) ||/(«n(i),<(i))ll2 < 2 B i ( y f S i T ) ) S a ( t ) + 25|(0 )5^(0 . 

At last from Lemmas 2.3-2.5 and (2.35), (2.36) we obtain the inequality 
t t s 

(2.37) J K ( 0 , s)\2ds < M^ + 3 i l4 3 ) J ds j |<(0, r)\2dr 
0 0 0 

which implies (2.34), by Gronwall's lemma. 
The third step (passing to limit). Owing to (2.19), (2.36) and (2.34), 

{un} has a subsequence still denoted { « n } such that 

(2.38) u n - + u in X°°(0 ,T; V") weak*, 
(2.39) i n L°°(0,T;L2) weak*, 

(2.40) u n ( 0 , i ) - » u ( 0 , i ) in ¿°°(0,r) weak*, 
(2.41) u'n(0,t) u ' (0 , t ) in l 2 ( 0 , T ) weak, 
(2.42) f ( u n , u ' n ) - > X in L°°(0,T\L2) weak*. 

Owing to (2.19) and (2.34), and besides, by (2.38) and (2.39), we can extract 
from {un} a subsequence still denoted { u n } such that (see [5]) 

(2.43) u n ( 0 , i ) -»• u(0,t) uniformly in C o ( [0 ,T] ) , 

(2.44) un —• u strongly in L2(QT). 

Since H is continuous, from (2.43) we have 

(2.45) ff(un(0,t)) -> ff(u(0,t)) uniformly in C°([0,T]) . 

Owing to (2.38), (2.39), (2.42), (2.45) and passing to limit in (2 .7 ) , we have 
u(t) satisfying the equation 

(2.46) = « ( « ( 0 , + ( # ( « ( 0 , « ) ) + S ( 0 ) » ( 0 ) 

+ ( X ( i ) , v ) = 0, 

We can prove in a similar manner as in [4] that 

(2.47) u(0) = «o, u'(0) = tti. 



564 A. P h a m N g o c Dinh, N g u y e n T h a n h Long 

To prove the existence of solution u, we have to show that X = f(u, u'). 
Then we need the following lemma (see [1]) . 

L E M M A 2.7. Suppose that u is a solution of the problem 

(2.48) utt - Aw + X = 0, 
(2.49) ux(0,t) = H{u{0,t)) + g(t), t i ( l , i ) = 0, 

(2.50) u(x, 0) = fio(aO> «*(»,()) = ui(®) 

with 

(2.51) u 6 L°°(0,T]V) and ut 6 L°°(0,T;L2). 

Then we have 

(2.52) ± | K ( i ) | | + h\u(t)fv + j r ) ) + i ( r ) ] «f (0, r)dr 
z * o 

* 1 1 
+ 5 ( X ( r ) , U ' ( r ) ) d r > - | K | | 2 + - | |Uo | |2y for a.e. t G (0 ,T) . 

0 z z 

R e m a r k . If uq = U\ — 0, then the equality occurs in (2.52). Now, from 
(2.7), (2.8) we have 

(2.53) S < / ( M r ) , < ( r ) ) > t . U r ) > r f r = i | | t t l B | | 3 + i||f«on||av 

-^IKWII2 - \\\un{t)W2v ~ \{H(un(0,T)) + 9(r)}u'n(0,r)dT. 

Passing to limit and then using (2.52), we get 

(2.54) lim sup j ( / K ( r ) , < ( r ) ) , < ( r ) ) d r < i | K | | 2 + h u 0 \ \ 2
v Yl ^ OO ¿i 

o 

- ^ « ' ( O l l 2 - - j [ t f M 0 > r ) ) + * ( T ) ] t * ( 0 , T ) r f r 
/ z o 

t 
<\{X(T),u'(T))dT a.e. t € ( 0 , T ) . 

o 
By using the same arguments as in [4], we can show that X = /(«,«') 

a.e. in Qt- The existence of the solution to the problem ( l . l ) - (1 .4) is proved. 
The fourth step ( the uniqueness) . Having now = 1 in (F5) and H 

satisfying (Hi), suppose that u, v are two solutions of the boundary-initial 
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value problem (1.1)-(1.4) satisfying u,veL°°(Q,T; V), ut, vt£L°°(0, T; L2), 
ut(0,t),vt(0,t) e L2(0,T). Then w = u - v satisfies the problem 

- wtt - Aw + = 
U * ( o , 0 = # i ( 0 , « ; ( i , o = o, 
H i , o ) = «),(I iO) = Oi 

. w 6 L°°(0,T;V), wt € L°°(0,T] L2), wt(0,t) 6 L2(0,T) 

with 

(0 j Xi = f ( u , u t ) - f ( v , v t ) , 
\ 5 i = J T ( u ( 0 , 0 ) - W 0 , 0 ) . 

Applying Lemma 2.7 (see Remark) , we have 

(2.57) J | K ( 0 H 2 + 5 l K 0 H a v + j ^ i ( r K ( 0 , r ) d r 
z * o 
t 

+ J ( X i ( r ) , to ' ( r ) )d r = 0 for a.e. f e (0, T). 
o 

Pu t 

(2.58) a(t) = | | ^ ( 0 | | 2 + M O I I l r . 

Since the function / is monotonically increasing with respect to the second 
variable, we obtain 

t t 

(2.59) - S (X 1 ( r ) , W ' ( r ) )< i r < - \(f(u(r),v'(r)) - f(v(r),v'(r)),w'(r))dr 
o o 

t 
< - j || f ( u ( r ) , V'(T)) - f(v(R), v'(T))\\.\\W'(r)\\dr. 

o 

Using the hypothesis ( ) with /? = 1, we have 

(2.60) \\f(u,v')-f(v,v')\\<\\B2(\v'\)\\.\W\v. 

Consequently, from (2.57)-(2.60) we get 
t t 

(2.61) <7(0 + 2 J HI(T)W'(0, r)dr < \ | | 5 2 ( | t ; ' ( r ) | ) | | a ( r ) d r . 
0 0 

Pu t 
M = max{| | t i | |Loc ( 0 i T ; V ) , ||v||i,~(o,T;V)}, 

(2.62) 
m\ = m i n H'(s), 

|s|<A/ v ' 
m 2 = max |/T"(.s)|. 

|s|<Ai 
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From the hypothesis (Hi) we have 

(2.63) mi > - 1 . 

From (2.56) we obtain 
t 

(2.64) 2 j HI(T)W'(0, r)dr 
o 

* r i d 
= 2j \-H(v(Q,r) + 9w(0,r))d9 

o "-0 
wt(0,T)di 

= w2(0, r ) \ H'(v(0, i ) + 0 w ( O , i))d9 

o 
i 1 

- \ w2(0, T)dT 5 H"{v{0, T) + 9w{0, r))(t><(0, r ) + 9wt(0, T))M 
0 0 

t 

> miw2(0,t) - m2 \ w2(0,r)(|Ui(0,r)| + |Vi(0,r)|)dr, 
o 

by using integration by parts and (2.62). From (2.61), (2.64) we have 
i 

(2.65) a(t) + mlW2( 0, t) < m2\ u>2(0, r)(|ttt(0, t)| + |v«(0, r)\)dr 
o 

+ j | | B a ( K r ) l ) H r ) d r . 
o 

We remark that, by (2.58), 

(2.66) ™ 2 (0 , i )< IHOIIv <a(t). 

Consequently 

(2.67) (1 + mi)w 2 (0 , i ) < a(t) + miw 2(0, i ) . 

Multiplying two members of (2.67) by a number k > 0 and adding to (2.65), 
we have 

(2.68) (r(t) + [mi + Jfc(l + mi)]w;2(0, i) 
t 

< (1 + k)m2 J ™2(0, t)(|u<(0, t)| + |t>,(0, r)|)dr 
o 
t 

+ ( l + fc)S||52(Mr)l)Hr)dr. 
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Choose 

(2.70) q(t) = (1 + k) [m2(\ut(0, i)| + M O , 01) + 

Then from (2.68)-(2.70) we have 
t 

(2.71) a(t) + w2(0, t) < \ g(r)[<r(r) + w\0, r)]dr. 
o 

This implies a(t) + w2{0,t) = 0 and w = 0 by the definition (2.58) of a(t). 
This ends the proof of Theorem 2.2. 

A special case of H gives us the following result which is stronger than 
that in [4] about the global existence, the hypotheses on the function / being 
less. 

THEOREM 2.8. Suppose that (.A), (G), (F), (1.6) hold. Then for every 
T > 0 the problem (1.1)—(1.4) has at least a weak solution u on (0,T) satis-
fying (2.3), (2.4). Furthermore, if ¡3 — 1, then this solution is unique. 

The following theorem is a generalization of the result in [1]. 

THEOREM 2.9. Suppose that (A), (G), (H), (1.5) hold. Then for every 
T > 0 the problem (1.1)-(1.4) has at least a weak solution u on (0,T) sat-
isfying (2.3), (2.4). Furthermore, if H satisfies (H\) , then this solution is 
unique. 

3. The continuous dependence of solution 
In this section we study the problem (1.1)-(1.4) with linear boundary 

condition 

(replacing (1.3)), and we also study the behavior of solution as h —> 0+. Sup-
pose that, in addition, ß — 1 and (1.6) holds. Such a problem, by Theorem 
2.8, has the only solution 

This result generalizes those of [1], [4]. At first, for every T > 0 we put 

(3.1) ux(0,t) = hu(0, t) + g(t), h> 0, 

(3.2) u(x,t) = Uh(x,t), h> 0. 

(3.3) W{QT) = { " ? L°°(0, T; V)/vt E I°°( 0, T; L2)} . 

W(QT) is Banach space with respect to norm (see [5]) 
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Further, we want to prove that the family of solutions {uh}h>o converges 
strongly in W(QT) to a function U which is the only solution of the problem 
(1.1)-(1.4) with H = 0. We admit following hypothesis on the function B2 
occuring in (F) 

(F&) B2 : L2 L2 maps bounded sets into bounded sets. 
T H E O R E M 3 . 1 . Suppose that (A), ( G ) , ( # 2 ) , F, (F6) hold and that ¡3 = 1. 

Then 
(i) for every T > 0 the problem (1.1)—(1.4) with H = 0 has the only 

solution u(x,t) satisfying 
(3.5) u e L°°(0,T;V), ut € L°°(0,T;L2), ut(0,t) € £2(0,T), 

(ii) the solution UH(X,t) converges strongly in W(QT) to u(x,i) as h —» 
0+. Furthermore, we have an estimation 
(3.6) ||Uh, - W||W(Qt) < Cxh for h > 0 small. 

P r o o f , (i) Case H = 0. We prove in the same manner as in the case of 
Theorem 2.2 that the following estimations a priori hold 

(3.7) \\u'n(t)\\2 + \\un(t)\\2
v<MT, * i e [ 0 , T ] , w r > 0, 

T 
(3.8) \\u'n(0,t)\2dt<MT, * / i € [ 0 ,T ] , w r > 0 , 

0 
and that the limit u of the sequence {u/i} defined by (2.6), (2.7), (2.8) 
satisfies (3.5) and the equation (1.1) with the boundary conditions 

(3.9) ux(0,t) = g(t), u( l , i ) = 0 
and the initial conditions 
(3.10) U(x, 0) = UQ(X), Ut{x, 0) = ui(a;). 
Besides, this solution u is unique. 

(ii) Consider ho > 0 fixed, and two parameters h, h' 6 (0, ho). Let Uh 
and UH,< be solutions of the boundary-initial value problem (1.1)—(1.4) cor-
responding to the parameters h and h', respectively. Then Z = Uh — u^ 
satisfies 

' Ztt -AZ + X1=0, 
Zx(0,t) = hZ(p,t) + huh>(0,t), 

(3.11) Z(l,t) = 0, 
Z(x,0)= Zt(x,0) = 0, 

. Z e X°°(0, T; V), Zt e L°°(0, T- L2), Zt(0, t) € L2(0, T), 
where 

(3.12) Xi = f(uh,u'h) - f(uh>,u'h,), h = h-ti. 
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Proving in the same manner as in the case of Theorem 2.2 with H(s) = hs, 

0 < h < ho, we have the following result: 

the sequences {u/j}, and are bounded in 
¿°° (0, T ; V), 2/°°(0, T; L2) and £ 2 ( 0 ,T ) , respectively, 
by a constant independent of h (depending on T,ho). 

(3.13) 

Put 

(3.14) <T1(t) = \\Z'(t)\\i + \\Z{t)\&. 

Using again Lemma 2.7, we have 
t 

(3.15) ax{t) + hZ2(0,t) < 2\h\MT\\Z\\L-(0tTiV) + J ||5 2 (|t i ' f c l ( r )|)||ai ( r )dr, 

o 

where Mt is a constant independent of h, h' and satisfying 

T 

( 3 . 1 6 ) I M U ~ ( O , T ; V ) + \ K ' ( 0 , r ) | d r < MT. 
o 

Using the hypothesis (F&) and (3.13), we have 

(3-17) l|52 (K'(r)|)|| < C ( t \ 

where C jP is a constant depending only on T. Afterwards, owing to (3.15)-
(3.17) and the Gronwall's lemma, we obtain 

(3.18) a1(t)<2\h\MT\\Z\\L~i0iT.v}exp(TCP), "te[0,T\. 

This implies 

(3.19) \\uh-uh,\\w(QT)<CT\h-h'\, yh,h' e (0,/io). 

Suppose that {/in } is a sequence of real numbers such that hn > 0 and 
hn 0+, as n —»• oo. From (3.19) we deduce that is a Cauchy 
sequence in W{Qt)- Consequently there exists u* € W(Qj) such that 

(3.20) Uhn —• u* strongly in W(Qt) as n —• oo. 

By passing to limit similarly as in the proof of Theorem 2.2, we conclude 
that u* satisfies the equation 

(3.21) jtM,v) + a(u*(t), v) + g(t)v(0) + </(»*, <), v) = 0, 

wv 6 V and for a.e. t € (0, T ) , 

and the initial conditions 

(3.22) u*(0) = wq, u*(0) = « i . 
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From the uniqueness of solution we have 

(3.23) u* = ü. 

Consequenlty (3.20) is correct for every sequence of positive numbers {hn} 
such that hn —• 0+ which implies that 

(3.24) Uh ü strongly in W(Qt),as h 0+. 

Furthermore, if in (3.19) we suppose that h' —> 0+, we have (3.6), and the 
theorem is proved completely. 

4. Numerical results 
Consider the problem 

(4.1) utt- Au + f(u,ut) = F(x,t), 0 < a; < 1, 
(4.2) w*(0, t) = i«(0, t) + g(t), tt(l, t) = 0, 
(4.3) u(x, 0) = cos f x , Ut(x, 0) = — cos f x , 

where g{t) = - i C - * ( 9 i 2 + 1), f(u, ut) = \ut\xl2sgn{ut). 
To solve numerically the problem (4.1)-(4.3) we consider the system of 

non-linear differential equations 

{ duk _ 
dt Vk' 

dvk uk+1 + «fe-1 - 2uk -¿j- = ^ f(uk,vk) + F(xk,t), 
with initial conditions 

(4.5) Wfc(0) = cos fkh, Ufc(0) = - cos fkh, k = 0 , 1 , . . . , N - 1, 

where uk(t) = u{xk,t), vk(t) = xk,t), xk = kh, h = 1 ¡N are unknown. 
To solve (4.4) at the time t = to + At we use the following linear recursive 

scheme generated by the non-linear term 

(4.6) 

du 

i[n\t0) = akito, vin\t0) = pk,t0, k = 0,1,.. .,N — 1. 
The linear system (4.6) is solved by searching its eigenvalues and eigen-
functions. We study the problem (4.1)-(4.3) in the two following cases with 
respect to the function F(x,t): 

(i) F(x,t) = e_ i{cos f x + (x - 1 )2(t2 - 4t + 2) + ^ cos f x - 212} + 
|u f |1 / 2sgnu t , with ut = e _ < [ - cos f x - t2(x - l)2 + 2 t(x - l)2]. For such a 
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HYPERBOLIC 
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function F(x,t) the exact solution of the problem (4.1)-(4.3) is u(x,t) = 
e~t[cosjx + t2(x - l)2]. With a step h = 1/40 we obtain the curves in 
Fig. 1 for the approximated solution Uk(t) and the exact solution for k = 
0 ,1 , . . . , 39 and for the times T = 1/20,1/2,1 . The corresponding error is 
equal to . 

(ii) F(x,t) = 0. Always with a step h = 1/40 on the interval [0,1] and 
for T G [0; 0,7] we have drawn the corresponding surface solution: (x, t) —• 
u(x, t) in Fig. 2. 

Acknowledgements. The authors wish to thank the referee for his 
suggestions leading to the present improved version of our paper. 
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