

Josip Pečarić, Ilko Brnetić

NOTE ON GENERALIZATION
 OF GODUNOVA-LEVIN-OPIAL INEQUALITY

1. Introduction

In 1967 E. K. Godunova and V. I. Levin [3] proved the following theorem:

THEOREM A. *Let u be real-valued absolutely continuous function defined on $[a, b]$ with $u(a) = 0$. Let F be real-valued convex, increasing function on $[0, \infty)$ with $F(0) = 0$. Then, the following integral inequality holds*

$$\int_a^b F'(|u(t)|)|u'(t)|dt \leq F\left(\int_a^b |u'(t)|dt\right).$$

This theorem is a generalization of the well known Opial inequality [5]. The multidimensional generalization is given in 1993 by J. Pečarić [10]:

THEOREM B. *Let u_i , $i = 1, \dots, n$ be real-valued absolutely continuous functions defined on $[a, b]$ with $u_i(a) = 0$, $i = 1, \dots, n$. Let F be nondecreasing function on $[0, \infty)^n$ with $F(0, \dots, 0) = 0$ such that all its first partial derivatives F'_i , $i = 1, \dots, n$ are nondecreasing functions. Then, the following integral inequality holds*

$$\int_a^b \left(\sum_{i=1}^n F'_i(|u_1(t)|, \dots, |u_n(t)|)|u'_i(t)|dt \right) \leq F\left(\int_a^b |u'_1(t)|dt, \dots, \int_a^b |u'_n(t)|dt\right).$$

In [10] J. Pečarić also proved the following generalization of Theorem B :

THEOREM C. *Let F , F'_i , u_i , $i = 1, \dots, n$ be defined as in Theorem B. Let p_i , $i = 1, \dots, n$ be real-valued positive functions defined on $[a, b]$ and $\int_a^b p_i(t)dt = 1$, $i = 1, \dots, n$. Let h_i , $i = 1, \dots, n$ be real-valued positive convex and increasing functions on $(0, \infty)$. Then, the following integral inequality*

holds

$$\begin{aligned} & \int_a^b \left(\sum_{i=1}^n F'_i \left(|u_1(t)|, \dots, |u_n(t)| \right) |u'_i(t)| \right) dt \\ & \leq F \left(h_1^{-1} \left(\int_a^b p_1(t) h_1 \left(\frac{|u'_1(t)|}{p_1(t)} \right) dt \right), \dots, h_n^{-1} \left(\int_a^b p_n(t) h_n \left(\frac{|u'_n(t)|}{p_n(t)} \right) dt \right) \right). \end{aligned}$$

Some special cases of this theorem are proved in [7] and [8] by B. G. Pachpatte. For example, if we take $F(x_1, \dots, x_n) = \prod_{i=1}^n f_i(x_i)$ and $h_i = h$, for each $i = 1, \dots, n$, we obtain the most general of mentioned results in [7] and [8].

An interesting generalization of Theorem A is given in 1972 by G. I. Rozanova [11]:

THEOREM D. *Let u, F be defined as in Theorem A. Let φ be real-valued convex increasing function on $(0, \infty)$. Let $r(x) \geq 0$, $r'(x) > 0$, $r(a) = 0$. Then, the following integral inequality holds*

$$\int_a^b F' \left(r(t) \varphi \left(\frac{|u(t)|}{r(t)} \right) \right) r'(t) \varphi \left(\frac{|u'(t)|}{r'(t)} \right) dt \leq F \left(\int_a^b r'(t) \varphi \left(\frac{|u'(t)|}{r'(t)} \right) dt \right).$$

The aim of present note is to generalize above mentioned inequalities.

2. The main results

THEOREM 1. *Let u_i , $i = 1, \dots, n$ be real-valued absolutely continuous functions defined on $[a, b]$ with $u_i(a) = 0$, $i = 1, \dots, n$. Let φ_i , $i = 1, \dots, n$ be real-valued positive, convex and increasing functions on $(0, \infty)$. Let $r_i(x) \geq 0$, $r'_i(x) > 0$, $r_i(a) = 0$, $i = 1, \dots, n$. Let F be real-valued nonnegative and continuous function on $[0, \infty)^n$ with $F(0, \dots, 0) = 0$ such that all its first partial derivatives F'_i , $i = 1, \dots, n$ are nonnegative and nondecreasing on $[0, \infty)^n$. Then, the following integral inequality holds*

$$\begin{aligned} (1) \quad & \int_a^b \left(\sum_{i=1}^n F'_i \left(r_1(t) \varphi_1 \left(\frac{|u_1(t)|}{r_1(t)} \right), \dots, r_n(t) \varphi_n \left(\frac{|u_n(t)|}{r_n(t)} \right) \right) r'_i(t) \varphi_i \left(\frac{|u'_i(t)|}{r'_i(t)} \right) \right) dt \\ & \leq F \left(\int_a^b r'_1(t) \varphi_1 \left(\frac{|u'_1(t)|}{r'_1(t)} \right) dt, \dots, \int_a^b r'_n(t) \varphi_n \left(\frac{|u'_n(t)|}{r'_n(t)} \right) dt \right). \end{aligned}$$

Proof. From the assumptions of Theorem 1, we have

$$(2) \quad u_i(t) = \int_a^t u'_i(s) ds, \quad t \in [a, b], \quad i = 1, \dots, n.$$

and

$$(3) \quad r_i(t) = \int_a^t r'_i(s) ds, \quad t \in [a, b], \quad i = 1, \dots, n.$$

From the assumptions of Theorem 1 and from (2) we have

$$(4) \quad |u_i(t)| \leq \int_a^t |u'_i(s)| ds, \quad t \in [a, b], \quad i = 1, \dots, n.$$

Since φ_i , $i = 1, \dots, n$ are increasing on $(0, \infty)$, from (3) and (4), we have

$$(5) \quad \varphi_i\left(\frac{|u_i(t)|}{r_i(t)}\right) \leq \varphi_i\left(\frac{\int_a^t \frac{r'_i(s)|u'_i(s)|}{r'_i(s)} ds}{\int_a^t r'_i(s) ds}\right), \quad i = 1, \dots, n.$$

Using Jensen's inequality [2, p. 133] we obtain from (5) that

$$(6) \quad \varphi_i\left(\frac{|u_i(t)|}{r_i(t)}\right) \leq \frac{1}{r_i(t)} \int_a^t r'_i(s) \varphi_i\left(\frac{|u'_i(s)|}{r'_i(s)}\right) ds, \quad i = 1, \dots, n.$$

Since F'_i , $i = 1, \dots, n$ are nondecreasing, from (6), for each $t \in [a, b]$, we have

$$(7) \quad \begin{aligned} & \int_a^b \sum_{i=1}^n F'_i\left(r_1(t)\varphi_1\left(\frac{|u_1(t)|}{r_1(t)}\right), \dots, r_n(t)\varphi_n\left(\frac{|u_n(t)|}{r_n(t)}\right)\right) r'_i(t) \varphi_i\left(\frac{|u'_i(t)|}{r'_i(t)}\right) dt \\ & \leq \int_a^b \sum_{i=1}^n \left(F'_i\left(\int_a^t r'_1(s) \varphi_1\left(\frac{|u'_1(s)|}{r'_1(s)}\right) ds, \dots, \right. \right. \\ & \quad \left. \left. \dots, \int_a^t r'_n(s) \varphi_n\left(\frac{|u'_n(s)|}{r'_n(s)}\right) ds\right) r'_i(t) \varphi_i\left(\frac{|u'_i(t)|}{r'_i(t)}\right) \right) dt. \end{aligned}$$

The right-hand side of the inequality (7) is equal to

$$\begin{aligned} & \int_a^b \frac{d}{dt} F\left(\int_a^t r'_1(s) \varphi_1\left(\frac{|u'_1(s)|}{r'_1(s)}\right) ds, \dots, \int_a^t r'_n(s) \varphi_n\left(\frac{|u'_n(s)|}{r'_n(s)}\right) ds\right) dt \\ & = F\left(\int_a^b r'_1(t) \varphi_1\left(\frac{|u'_1(t)|}{r'_1(t)}\right) dt, \dots, \int_a^b r'_n(t) \varphi_n\left(\frac{|u'_n(t)|}{r'_n(t)}\right) dt\right). \end{aligned}$$

which gives us required inequality (1).

More general result is established in the following theorem:

THEOREM 2. *Let F , F'_i , φ_i , u_i , r_i , $i = 1, \dots, n$ be defined as in Theorem 1. Let p_i , $i = 1, \dots, n$ be real-valued positive functions defined on $[a, b]$ and $\int_a^b p_i(t) dt = 1$, $i = 1, \dots, n$. Let h_i , $i = 1, \dots, n$ be real-valued positive,*

convex and increasing functions on $(0, \infty)$. Then, the following integral inequality holds

$$(8) \quad \begin{aligned} & \int_a^b \left(\sum_{i=1}^n F'_i \left(r_1(t) \varphi_1 \left(\frac{|u_1(t)|}{r_1(t)} \right), \dots, r_n(t) \varphi_n \left(\frac{|u_n(t)|}{r_n(t)} \right) \right) r'_i(t) \varphi_i \left(\frac{|u'_i(t)|}{r'_i(t)} \right) \right) dt \\ & \leq F \left(h_1^{-1} \left(\int_a^b p_1(t) h_1 \left(\frac{r'_1(t) \varphi_1 \left(\frac{|u'_1(t)|}{r'_1(t)} \right)}{p_1(t)} \right) dt \right), \dots \right. \\ & \quad \left. \dots, h_n^{-1} \left(\int_a^b p_n(t) h_n \left(\frac{r'_n(t) \varphi_n \left(\frac{|u'_n(t)|}{r'_n(t)} \right)}{p_n(t)} \right) dt \right) \right). \end{aligned}$$

Proof. In order to prove Theorem 2, we first observe that having $\int_a^b p_i(t) dt = 1$, $i = 1, \dots, n$, we can write

$$(9) \quad \int_a^b r'_i(t) \varphi_i \left(\frac{|u'_i(t)|}{r'_i(t)} \right) dt = \frac{\int_a^b \frac{p_i(t) r'_i(t) \varphi_i \left(\frac{|u'_i(t)|}{r'_i(t)} \right)}{p_i(t)} dt}{\int_a^b p_i(t) dt}, \quad i = 1, \dots, n.$$

Since h_i , $i = 1, \dots, n$ are convex, from (9) and using Jensen's inequality for convex functions [2, p. 133], we obtain

$$h_i \left(\int_a^b r'_i(t) \varphi_i \left(\frac{|u'_i(t)|}{r'_i(t)} \right) dt \right) \leq \int_a^b p_i(t) h_i \left(\frac{r'_i(t) \varphi_i \left(\frac{|u'_i(t)|}{r'_i(t)} \right)}{p_i(t)} \right) dt, \quad i = 1, \dots, n.$$

which implies

$$(10) \quad \int_a^b r'_i(t) \varphi_i \left(\frac{|u'_i(t)|}{r'_i(t)} \right) dt \leq h_i^{-1} \left(\int_a^b p_i(t) h_i \left(\frac{r'_i(t) \varphi_i \left(\frac{|u'_i(t)|}{r'_i(t)} \right)}{p_i(t)} \right) dt \right), \quad i = 1, \dots, n.$$

Now using Theorem 1, the inequality (10) and the fact that F is nondecreasing, by assumption, we obtain the required inequality (8).

3. Examples

Now it is interesting how these two theorems include the theorems mentioned in our introduction.

For $n = 1$, Theorem 1 gives Theorem D.

If we put $\varphi_i(t) = t$ for each $i = 1, \dots, n$ in Theorem 1, we will obtain Theorem B.

If we put $\varphi_i(t) = t$ for each $i = 1, \dots, n$ in Theorem 2, we will obtain Theorem C.

For $n = 2$ we can obtain results of B. G. Pachpatte [9] by putting $F(x_1, x_2) = f(x_1) \cdot g(x_2)$.

References

- [1] R. P. Agarwal, P. Y. H. Pang, *Opial Inequalities with Applications in Differential and Difference Equations*, Kluwer Academic Publishers, Dordrecht, Boston, London, 1995.
- [2] A. Kufner, O. John and S. Fucik, *Function Spaces*, Noordhoff International Publishing, Leyden, 1977.
- [3] E. K. Godunova, V. I. Levin, *On an inequality of Maroni*, (Russian), Mat. Zametki, 2 (1967), 221-224.
- [4] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, *Inequalities Involving Functions and Their Integrals and Derivatives*, Kluwer Academic Publishers, Dordrecht, Boston, London, 1991.
- [5] Z. Opial, *Sur une inégalité*, Ann. Polon. Math., 8 (1960), 29-32.
- [6] C. Olech, *A simple proof of a certain result of Z. Opial*, Ann. Polon. Math., 8 (1960), 61-63.
- [7] B. G. Pachpatte, *On integral inequalities similar to Opial's inequality*, Demonstratio Math. 22 (1989), 21-27.
- [8] B. G. Pachpatte, *Some inequalities similar to Opial's inequality*, Demonstratio Math. 26 (1993), 643-647.
- [9] B. G. Pachpatte, *A note on generalized Opial type inequalities*, Tamkang J. Math., 24 (1993), 229-235.
- [10] J. Pečarić, *An Integral Inequality*, Hadronic Press, Palm Harbor, Florida (1993), 471-478.
- [11] G. I. Rozanova, *Integral inequalities with derivatives and with arbitrary convex functions* (Russian) Moskov. Gos. Ped. Inst. Vcen Zap., 460 (1972), 58-65.

Josip Pečarić

FACULTY OF TEXTILE TECHNOLOGY

UNIVERSITY OF ZAGREB

Pierottijeva 6

ZAGREB, CROATIA

Ilko Brnetić

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITY OF ZAGREB

Unska 3

ZAGREB, CROATIA

Received January 3, 1996.

