

Mumtaz Ahmad Khan

DISCRETE HYPERGEOMETRIC FUNCTIONS
 AND THEIR PROPERTIES

1. Introduction

The study of basic hypergeometric series (also called q -hypergeometric series or q -series) acquired an independent status, when Heine [10] in 1878 converted a simple observation that $\lim_{q \rightarrow 1} [(1 - q^a)/(1 - q)] = a$ into a systematic investigation of the *basic hypergeometric series* defined by

$$(1.1) \quad {}_2\varphi_1(\alpha, \beta; \gamma; z) = 1 + \frac{(1 - q^\alpha)(1 - q^\beta)}{(1 - q)(1 - q^\gamma)} z + \frac{(1 - q^\alpha)(1 - q^{\alpha+1})(1 - q^\beta)(1 - q^{\beta+1})}{(1 - q)(1 - q^2)(1 - q^\beta)(1 - q^{\gamma+1})} z^2 + \dots$$

which is a q -analogue of the classical Gauss hypergeometric series since

$$(1.2) \quad \lim_{q \rightarrow 1} {}_2\varphi_1(\alpha, \beta; \gamma; z) = {}_2F_1(\alpha, \beta; \gamma; z).$$

A life long program of developing the theory of basic hypergeometric series in a systematic manner, studying q -differentiation and q -integration and deriving q -analogues of the hypergeometric summation theorems and transformation formulas that were discovered by A. C. Dixon, J. Dougall, L. Saalachütz, F. J. W. Whipple and others was gathered by F. H. Jackson (see for example [11]–[16]).

The q -different functions are essentially those involving arguments of multiplicative rather than additive character. For example

$$(1.3) \quad \Delta_q f(x) = f(x) - f(qx), \quad q \text{ a parameter (or 'base');}$$

is a q -difference operator. A very extensive development of the theory of q -difference equations was carried out from 1909–1950 by F. H. Jackson (see for example [11]–[14], [16]). In 1910 he introduced the concept of q -integration

which he defined as the inverse of the q -difference operator

$$(1.4) \quad D_q f(x) = \frac{f(x) - f(qx)}{(1 - q)x}, \quad |q| \neq 1,$$

and denoted by

$$(1.5) \quad D_q^{-1} f(x) = \frac{1}{1 - q} \int f(x) d(q, x).$$

It is obvious that, if f is differentiable, then

$$(1.6) \quad \lim_{q \rightarrow 1} D_q f(x) = \frac{df}{dx}.$$

Harman [7] in 1978, introduced the concept of q -analyticity of a function by replacing derivatives by q -difference operators $D_{q,x}$ and $D_{q,y}$ defined as

$$(1.7) \quad D_{q,x}[f(z)] = \frac{f(z) - f(qx, y)}{(1 - q)x},$$

$$(1.8) \quad D_{q,y}[f(z)] = \frac{f(z) - f(x, qy)}{(1 - q)iy},$$

where f is a discrete function.

The two operators involve a *basic triad* of points denoted by

$$(1.9) \quad T(z) = \{(x, y), (qx, y), (x, qy)\}.$$

Let D be a discrete domain. Then a discrete function f is said to be q -analytic at $z \in D$, if

$$(1.10) \quad D_{q,x}[f(z)] = D_{q,y}[f(z)].$$

If an addition (1.10) holds for every $z \in D$ such that $T(z) \subseteq D$, then f is said to be q -analytic in D . In this case, for simplicity, the common operator D_q is used, where

$$(1.11) \quad D_q \equiv D_{q,x} \equiv D_{q,y}.$$

The function z^n is of basic importance in complex analytic, since its use in infinite series leads to the Weierstrassian concept of an analytic function. Harman [8] defined, for a non-negative integer n , a q -analytic function $z^{(n)}$ to denote the discrete analogue of z^n , if it satisfies the following conditions

$$(1.12) \quad D_q[z^{(n)}] = \frac{1 - q^n}{1 - q} z^{(n-1)}, \quad z^{(0)} = 1, \quad 0^{(n)} = 0, \quad n > 0.$$

The operator C_y given by

$$(1.13) \quad C_y \equiv \sum_{j=0}^{\infty} \frac{(1 - q)^j}{(1 - q)_j} (iy)^j D_{q,x}^j,$$

when applied to the real function x^n , yields $z^{(n)}$. In fact, Harman [8] defined $z^{(n)}$, with a non-negative integer n , by

$$(1.14) \quad z^{(n)} \equiv C_y(x^n) = \sum_{j=0}^{\infty} \frac{(1-q)^j}{(1-q)_j} (iy)^j D_{q,x}^j(x^n),$$

which, on simplification, yields

$$(1.15) \quad z^{(n)} = \sum_{j=0}^{\infty} \begin{bmatrix} n \\ j \end{bmatrix}_q x^{n-j} (iy)^j,$$

where

$$\begin{bmatrix} n \\ j \end{bmatrix}_q = \frac{[n]!}{[j]![n-j]!},$$

or, alternatively,

$$(1.16) \quad z^{(n)} = \sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix}_q x^j (iy)^{n-j}.$$

To justify that $z^{(n)}$ is a proper analogue of z^n , Harman [8] proved that $z^{(n)}$ is a q -analytic function and satisfies the three requirements of (1.12).

We shall also use the following notations due to Hahn [3]. Let

$$(1.17) \quad f(x) = \sum_{r=0}^{\infty} a_r x^r$$

be a power series in x . Then

$$(1.18) \quad f([x-y]) = \sum_{r=0}^{\infty} a_r (x-y)_r,$$

$$(1.19) \quad f\left(\frac{t}{[x-y]}\right) = \sum_{r=0}^{\infty} a_r \frac{t^r}{(x-y)_r},$$

where

$$(1.20) \quad (x-y)_{\alpha} = x^{\alpha} \prod_{n=0}^{\infty} \left\{ \frac{1 - (y/x)q^n}{1 - (y/x)q^{\alpha+n}} \right\}.$$

For various other definitions, notations and results used in this paper one is referred to remarkable books on q -hypergeometric series by Exton [1], Gasper and Rahman [2] and Slater [19].

2. Discrete hypergeometric functions

Using Harman's discrete analogue $z^{(n)}$ for the classical function z^n , we now introduce a discrete analogue ${}_rM_s[(a_r); (b_s); q, z]$ of the q -hypergeometric function ${}_r\varphi_s^{(q)}[(a_r); (b_s); z]$. It is well known that

$$D_q \{{}_r\varphi_s^{(q)}[(a_r); (b_s); x]\} = \frac{(1 - q^{a_1}) \dots (1 - q^{a_r})}{(1 - q)(1 - q^{b_1}) \dots (1 - q^{b_s})} {}_r\varphi_s^{(q)}[1 + (a_r); 1 + (b_s); x],$$

and so it seems reasonable to assume that, for a non-negative integer n , a q -analytic function ${}_rM_s[(a_r); (b_s); q, z]$ will denote the discrete analogue of ${}_r\varphi_s^{(q)}[(a_r); (b_s); z]$, if it satisfies the following conditions

$$(2.1) \quad \left\{ \begin{array}{l} \text{(i)} \quad D_q \{{}_rM_s[(a_r); (b_s); q, z]\} \\ \quad = \frac{(1 - q^{a_1}) \dots (1 - q^{a_r})}{(1 - q)(1 - q^{b_1}) \dots (1 - q^{b_s})} {}_rM_s[1 + (a_r); 1 + (b_s); q, z], \\ \text{(ii)} \quad \text{the first term of the series is 1,} \\ \text{(iii)} \quad {}_rM_s[(a_r); (b_s); q, 0] = 1. \end{array} \right.$$

Such a function is obtained by applying the operator C_y defined in (1.13) to the q -hypergeometric function ${}_r\varphi_s[(a_r); (b_s); x]$ with real number x . In fact ${}_rM_s[(a_r); (b_s); q, z]$ is defined by

$$(2.2) \quad {}_rM_s[(a_r); (b_s); q, z] \equiv C_y \{{}_r\varphi_s^{(q)}[(a_r); (b_s); x]\} = \sum_{n=0}^{\infty} \frac{(q^{(a_r)})_n z^{(n)}}{(q)_n (q^{(b_s)})_n} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(q^{(a_r)})_{n+k} x^n (iy)^k}{(q)_n (q)_k (q^{(b_s)})_{n+k}}.$$

The following theorem shows that ${}_rM_s[(a_r); (b_s); q, z]$ satisfies (2.1) and hence can be taken as a discrete analogue of ${}_r\varphi_s^{(q)}[(a_r); (b_s); z]$.

THEOREM 1. ${}_rM_s[(a_r); (b_s); q, z]$ is q -analytic and satisfies the requirements of (2.1).

Proof. We have

$$\begin{aligned} {}_rM_s[(a_r); (b_s); q, z] &= \sum_{n=0}^{\infty} \frac{(q^{(a_r)})_n z^{(n)}}{(q)_n (q^{(b_s)})_n} \\ &= \sum_{n=0}^{\infty} \frac{(q^{(a_r)})_n}{(q)_n (q^{(b_s)})_n} \sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix}_q x^{n-j} (iy)^j, \end{aligned}$$

and hence

$$\begin{aligned}
D_{q,x} \{ {}_r M_s [(a_r); (b_s); q, z] \} &= \sum_{n=0}^{\infty} \frac{(q^{(a_r)})_n}{(q)_n (q^{(b_s)})_n} \sum_{j=0}^{n-1} \begin{bmatrix} n \\ j \end{bmatrix}_q \frac{1 - q^{n-j}}{1 - q} x^{n-j-1} (iy)^j \\
&= \frac{1}{1 - q} \sum_{n=1}^{\infty} \frac{(q^{(a_r)})_n z^{(n-1)}}{(q)_{n-1} (q^{(b_s)})_n} \\
&= \frac{(1 - q^{a_1}) \dots (1 - q^{a_r})}{(1 - q)(1 - q^{b_1}) \dots (1 - q^{b_s})} {}_r M_s [1 + (a_r); 1 + (b_s); q, z].
\end{aligned}$$

Similarly,

$$\begin{aligned}
D_{q,y} \{ {}_r M_s [(a_r); (b_s); q, z] \} &= \frac{(1 - q^{a_1}) \dots (1 - q^{a_r})}{(1 - q)(1 - q^{b_1}) \dots (1 - q^{b_s})} {}_r M_s [1 + (a_r); 1 + (b_s); q, z].
\end{aligned}$$

Hence ${}_r M_s [(a_r); (b_s); q, z]$ is q -analytic and satisfies the condition (i) of (2.1). Since $z^{(0)} = 1$ and $0^n = 0$, $n > 0$, by definition, so ${}_r M_s [(a_r); (b_s); q, z]$ satisfies (ii) and (iii) of (2.1). This proves Theorem 1.

It is of interest to note the similarity of ${}_r M_s [(a_r); (b_s); q, z]$ to the function ${}_r \varphi_s^{(q)} [(a_r); (b_s); [x + y]]$ defined by Jackson [15] as follows

$$\begin{aligned}
(2.3) \quad {}_r \varphi_s^{(q)} [(a_r); (b_s); [x + y]] &= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(q^{(a_r)})_{m+n} x^m (iy)^n q^{\frac{1}{n} n(n-1)}}{(q)_m (q)_n (q^{(b_s)})_{m+n}} \\
&= \sum_{N=0}^{\infty} \frac{(q^{(a_r)})_N}{(q)_N (q^{(b_s)})_N} (x + iy)(x + iqy) \dots (x + iq^{N-1}y).
\end{aligned}$$

The discrete hypergeometric function defined in (2.2) can be written in one of the following forms

$$(2.4) \quad {}_r M_s [(a_r); (b_s); q, z] = \sum_{n=0}^{\infty} \frac{(q^{(a_r)})_n (iy)^n}{(q)_n (q^{(b_s)})_n} {}_r \varphi_s^{(q)} [(a_r) + n; (b_s) + n; x],$$

$$(2.5) \quad {}_r M_s [(a_r); (b_s); q, z] = \sum_{n=0}^{\infty} \frac{(q^{(a_r)})_n x^n}{(q)_n (q^{(b_s)})_n} {}_r \varphi_s^{(q)} [(a_r) + n; (b_s) + n; iy].$$

We observe that, from (2.4) and (2.5), a discrete hypergeometric function can be regarded as a generating function for the q -hypergeometric functions of the form

$${}_r \varphi_s^{(q)} [(a_r) + n; (b_s) + n; x] \text{ or } {}_r \varphi_s^{(q)} [(a_r) + n; (b_s) + n; iy].$$

We further observe that for $x = 0$, the function ${}_rM_s[(a_r); (b_s); q, z]$ is reduced to ${}_r\varphi_s^{(q)}[(a_r); (b_s); iy]$, while for $y = 0$ it becomes ${}_r\varphi_s^{(q)}[(a_r); (b_s); x]$.

3. Particular cases

As particular cases of (2.4) and (2.5) we have the following interesting results

$$(3.1) \quad {}_0M_0[-; -; q, z] = e_q(x)e_q(iy),$$

$$(3.2) \quad {}_2M_1[a, b; c; q, z]$$

$$= \frac{1}{(1-x)_{a+b-c}} \sum_{n=0}^{\infty} \frac{(q^a)_n (q^b)_n (iy)^n}{(q)_n (q^c)_n (xq^{a+b-c})_n} {}_2\varphi_1 \left[\begin{matrix} q^{c-a}, q^{c-b}; xq^{a+b-c+n} \\ q^{c+n}; \end{matrix} q \right],$$

$$(3.3) \quad {}_0M_1[-; a; q, z] = (q)_{a-1} \left(-\frac{1}{\sqrt{x}} \right)^{a-1} \sum_{n=0}^{\infty} \frac{(y/\sqrt{x})^n}{(q)_n} {}_0j_{a+n-1}(2i\sqrt{x}).$$

Further, summing up the ${}_r\varphi_s$ -functions by means of known summation theorems, we have

$$(3.4) \quad {}_1M_0[a; -; q, z] = \frac{1}{(1-x)_a} {}_1\varphi_0 \left[q^a; -; \frac{iy}{[1-xq^a]} \right],$$

$$(3.5) \quad {}_1M_0[a; -; q, z] = \frac{1}{(1-x)_a} {}_1\varphi_1[q^a; xq^a; iy],$$

$$(3.6) \quad {}_1M_0[a; -; q, z] = \frac{1}{(1-iy)_a} {}_1\varphi_0 \left[q^a; -; \frac{x}{[1-iyq^a]} \right],$$

$$(3.7) \quad {}_1M_0[a; -; q, z] = \frac{1}{(1-iy)_a} {}_1\varphi_1[q^a; iyq^a; x],$$

$$(3.8) \quad {}_2M_1[a, -n; b; q, (q, y)] = \frac{(q^{b-a})_n q^{an}}{(q^b)_n} {}_2\varphi_1 \left[\begin{matrix} q^a, q^{-n}; -iyq^{1-b} \\ q^{1+a-b-n}; q^{-1} \end{matrix} \right].$$

4. Integral representations

We also note the following simple integral representations

(4.1)

$${}_2M_1[a, b; c; q, z] = \frac{\Gamma_q(c)}{\Gamma_q(b)\Gamma_q(c-b)} \int_0^1 t^{b-1} (1-qt)_{c-b-1} {}_1M_0[a; -; q, zt] d(t; q),$$

provided $Reb > 0$, $|x| < 1$, $|y| < 1$, and

$$(4.2) \quad {}_3M_2[a, b, c; d, e; q, z] = \frac{\Gamma_q(d)\Gamma_q(e)}{\Gamma_q(b)\Gamma_q(c)\Gamma_q(d-b)\Gamma_q(e-c)} \times \int_0^1 \int_0^1 t^{b-1} (1-qt)_{d-b-1} v^{c-1} (1-qv)_{e-c-1} {}_1M_0[a; -; ztv] d(t; q) d(v; q),$$

provided $Reb > 0$, $Rec > 0$, $|x| < 1$, $|y| < 1$.

One can similarly write down the integral representation for ${}_rM_s$ -function.

5. Contiguous discrete hypergeometric functions

Any two discrete hypergeometric functions ${}_rM_s[(a_r);(b_s);q,z]$ and ${}_rM_s[(a'_r);(b'_s);q,z]$ are said to be contiguous, when all their parameters are equal except one pair and this pair of the parameters differs only by unity.

If we use the notations

$$(\alpha_r, +i)_n = (\alpha_1)_n(\alpha_2)_n \dots (\alpha_{i-1})_n(\alpha_i + 1)_n(\alpha_{i+1})_n \dots (\alpha_r)_n$$

and

$$(\alpha_r, -i)_n = (\alpha_1)_n(\alpha_2)_n \dots (\alpha_{i-1})_n(\alpha_i - 1)_n(\alpha_{i+1})_n \dots (\alpha_r)_n,$$

for $1 \leq i \leq r$, and similar notations for (β_s) , we have

$$(5.1) \quad {}_rM_s[(\alpha_r, +i); (\beta_s); q, z]$$

$$= \frac{1}{1 - q^{\alpha_i}} \{ {}_rM_s[(\alpha_r); (\beta_s); q, z] - q^{\alpha_i} {}_rM_s[(\alpha_r); (\beta_s); q, qz] \},$$

$$(5.2) \quad {}_rM_s[(\alpha_r, -i); (\beta_s); q, z]$$

$$= (1 - q^{\alpha_i - 1}) \sum_{n=0}^{\infty} q^{n(\alpha_i - 1)} {}_rM_s[(\alpha_r); (\beta_s); q, q^n z],$$

$$(5.3) \quad {}_rM_s[(\alpha_r); (\beta_s, +j); q, z] = (1 - q^{\beta_j}) \sum_{n=0}^{\infty} q^{n\beta_j} {}_rM_s[(\alpha_r); (\beta_s); q, q^n z],$$

$$(5.4) \quad {}_rM_s[(\alpha_r); (\beta_s, -j); q, z]$$

$$= \frac{1}{1 - q^{\beta_j - 1}} \{ {}_rM_s[(\alpha_r); (\beta_s); q, z] - q^{\beta_j - 1} {}_rM_s[(\alpha_r); (\beta_s); q, qz] \}.$$

References

- [1] H. Exton, *q-Hypergeometric Functions and Applications*, John Wiley and Sons (Halsted Press), New York; Ellis Horwood, Chichester, 1983.
- [2] G. Gasper, M. Rahman, *Basic Hypergeometric Series*, Encyclopedia of Mathematics and its Applications, vol. 35. Cambridge University Press, 1990.
- [3] W. Hahn, *Beiträge zur Theorie der Heineschen Reihen, die 24 Integrale der hypergeometrischen q-Differenzengleichung, Das q-Analogon der Laplace Transformation*, Math. Nahr. 2(1949), 340–379.
- [4] C. J. Harman, *A note on a discrete analytic function*, Bull. Austral. Math. Soc. 10 (1974), 123–134.
- [5] C. J. Harman, *A new definition of discrete analytic functions*, Bull. Austral. Math. Soc. 10 (1974), 281–291.

- [6] C. J. Harman, *Polynomial in discrete geometric function theory*, Ganita 29 (1978), 93–101.
- [7] C. J. Harman, *Discrete geometric function theory I*, Appl. Anal. 7 (1977), 315–336.
- [8] C. J. Harman, *Discrete geometric function theory II*, Appl. Anal. 9 (1979), 191–203.
- [9] C. J. Harman, *Discrete analysis on a radial lattice*, J. Math. Anal. and Appl., 79 (1981), 323–330.
- [10] E. Heine, *Handbuch der Theorie der Kugelfunktionen*, vol. 1 Berlin 1878.
- [11] F. H. Jackson, *On q -functions and certain difference operator*, Trans. Roy. Soc. Edinburgh 46 (1908), 253–281.
- [12] F. H. Jackson, *q -Form of Taylor's series*, Messenger of Math. 38 (1909), 57–61.
- [13] F. H. Jackson, *q -Difference equations*, Amer. J. Math. 32 (1910), 305–314.
- [14] F. H. Jackson, *On q -definite integrals*, Quart. J. of Pure and Applied Math. 41 (1910), 193–203.
- [15] F. H. Jackson, *On basic double hypergeometric functions*, Quart. J. Math. Oxford 15 (1944), 49–61.
- [16] F. H. Jackson, *Basic integration*, Quart. J. Math., 2 (1951), 1–16.
- [17] M. A. Khan, *Contribution to the theory of basic hypergeometric series*, Ph. D. Thesis, University of Lucknow, 1977.
- [18] M. A. Khan, *Transformations of discrete hypergeometric functions*, Math. Balkanica 6 (1992), 199–206.
- [19] L. J. Slater, *Generalized Hypergeometric Functions*, Cambridge University Press, 1966.

DEPARTMENT OF APPLIED MATHEMATICS
 Z. H. COLLEGE OF ENGG. AND TECHNOLOGY
 FACULTY OF ENGINEERING
 ALIGARH MUSLIM UNIVERSITY
 ALIGARH-202002, U.P. INDIA

Received December 4, 1995.