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DISCRETE HYPERGEOMETRIC FUNCTIONS
AND THEIR PROPERTIES

1. Introduction

The study of basic hypergeometric series (also called g-hypergeometric
series or g-series) acquired an independent status, when Heine [10] in 1878
converted a simple observation that limg_1[(1 — ¢%)/(1 — ¢)] = @ into a
systematic investigation of the basic hypergeometric series defined by

T e @)
(11 (e Bimiz) = 14 =5y

(1—¢*)(1 - ¢**t1)(1 - ¢%)(1 - qﬁ+1)z2 .
(1-9)(1-¢*)(1-¢P)1-g+)

which is a g-analogue of the classical Gauss hypergeometric series since

(1.2) ,}Lml 201(e, B57; 2) = 2 Fi(e, By ;5 2).

A life long program of developing the theory of basic hypergeometric se-
ries in a systematic manner, studying ¢-differentiation and g¢-integration
and deriving g-analogues of the hypergeometric summation theorems and
transformation formulas that were discovered by A. C. Dixon, J. Dougall,
L. Saalachiitz, F. J. W. Whipple and others was gathered by F. H. Jackson
(see for example [11]-[16]).

The g¢-different functions are essentially those involving arguments of
multiplicative rather than additive character. For example

(1.3) Ay f(z) = f(z) — f(qz), q a parameter (or ’base’);

is a g-difference operator. A very extensive development of the theory of ¢-
difference equations was carried out from 1909-1950 by F. H. Jackson (see for
example [11]-[14], [16]). In 1910 he introduced the concept of g-integration
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which he defined as the inverse of the g-difference operator

_ f(z) - f(g=)
(1.4) D, f(z) = T lol # 1,
and denoted by
(1.5) D' f(z) = Sf(w)d(q,w)
It is obvious that, if f is dlﬁerentlable, then
. d
(1.6) lim Dy f(a) = 2

Harman (7] in 1978, introduced the concept of g-analyticity of a function
by replacing derivatives by g-difference operators D, . and D, , defined as

f(z) - flgz,y)

(1.7 D, (e = LD L),
(18) Dyl = AL,

where f is a discrete function.
The two operators involve a basic triad of points denoted by

(1.9) T(z) = {(z,),(g2,9),(z, q¥)}-

Let D be a discrete domain. Then a discrete function f is said to be
g-analytic at z € D, if

(1.10) Dy [f(2)] = Dq4[f(2)].

If an addition (1.10) holds for every z € D such that T(z) C D, then f is
said to be g-analytic in D. In this case, for simplicity, the common operator
D, is used, where

(1.11) Dy= Dy =Dy,
The function 2" is of basic importance in complex analytic, since its use
in infinite series leads to the Weierstrassian concept of an analytic function.

Harman [8] defined, for a non-negative integer n, a g-analytic function z(*)
to denote the discrete analogue of 2", if it satisfies the following conditions

1 _ '3
(1.12) D, [#™] = 1—qz(”-1>, =1, 0™W=0 n>o0

The operator Cy given by

(1.13) c, = -9 ;ip

q)J
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when applied to the real function z™, yields 2(™. In fact, Harman [8] defined
2(™) | with a non-negative integer n, by

(1.14) M = Cy(z™) = Z q) (y)’ ARCIOH

which, on simplification, yields

(1.15) 2" = i [7]qz"'j(iy)j,

j=0 J

n

(1.16) M=% [?]qzj(iy)"'j.

=0

where

or, alternatively,

To justify that 2( is a proper analogue of 2", Harman [8] proved that
#(" is a g-analytic function and satisfies the three requirements of (1.12).

We shall also use the following notations due to Hahn [3]. Let

[o.o]

(1.17) fa)=> a.a"
r=0
be a power series in . Then
(1.18) fz-y) =) ar(e—y)r,
r=0
t = tr
(1) (=)= Lo

where

(1.20) (- v)o= 2] {—EM}

- +n
L T (/)

For various other definitions, notations and results used in this paper
one is referred to remarkable books on g-hypergeometric series by Exton [1],
Gasper and Rahman [2] and Slater [19].
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2. Discrete hypergoemetric functions

Using Harman’s discrete analogue z{™ for the classical function 2", we
now introduce a discrete analogue . M;[(a,); (bs); ¢, 2] of the ¢g-hypergeometz-

ic function rcpf)[(ar) (bs); 2]. It is well known that

Dq{r‘igsq)[(ar); (bs); 2]}
(1-¢*)...(1—¢*) (@)
- 1 14 (bs);
(1-g)(1—gb)...(1- qb,)T(PS (14 (ar); 1+ (bs); ],
and so it seems reasonable to assume that, for a non-negative integer n, a
q- analytic function M;{(a,);(b;); g, 2] will denote the discrete analogue of
oD [(ar); (bs); 2], if it satisfies the following conditions

(1) Do{rM;[(ar); (bs); 4, 2]}
__(-¢m)...(1-g>)
(2.1) (1-¢)(1-¢")...(1—¢")

(ii) the first term of the series is 1,
(i) »M;s[(ar); (bs); ¢,0] = 1.

Such a function is obtained by applying the operator C defined in (1.13)
to the g-hypergeometric function ,¢;[(a,); (b;); z] with real number z. In fact
+M;[(ar); (bs); q, 2] is defined by

(2'2) rMs[(ar); (bs); q,2] = Cy{rﬁps(q)[(ar)' (bs); :I:]}
_ o (@)™ o (@) nase™ (i)
- :L:B (@)n(g*))n =22 (D Dr(g®)npr”

n=0 n=0

TM_s[l + (a'r); 1+ (bs)v q, Z]7

The following theorem shows that ,M,{(a,); (bs) g, z] satisfies (2.1) and
hence can be taken as a discrete analogue of ,(ps [(ar) (bs); 2.

THEOREM 1. ,M,[(a,); (bs);q, 2] is g-analytic and satisfies the require-
ments of (2.1).

Proof. We have

o (ar) nz(n)
Ml 80, = o

: o q(ar))7l (i)
_,;,(Q)(‘I(b)) E[] (),

and hence
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Dq,r{rMS[(ar)§(bS);q’z]}
oo n-1 _
(q(ar))n [n] 1—q™9 __ i1 ;
=) o | (¢y)
Z(q)n(q("’))n.Z ily 1-4

n=0 7=0

Z(q(ar)) z(n 1)
T 1= ¢ & (@n1(¢®))n

- _(lq)—(fa_l)q'b;')(_ ) _—(f_r)qb,)rMs[l +(ar); 1+ (bs); 0, 2)-

Similarly,

Dy ,y{rM;[(ar); (bs); ¢, 2]}
(1-g")...(1-¢%)
= M1+ (ar); 1+ (bs); q, 2].
== ). (= gy Bt )it (G2
Hence .M;[(a,); (bs); q, 2] is g-analytic and satisfies the condition (i) of
(2.1). Since 2(® =1 and 0™ = 0, n > 0, by definition, so . M[(a,); (bs); ¢, 2]
satisfies (ii) and (iii) of (2.1). This proves Theorem 1.

It is of interest to note the similarity of . M;[(a,); (bs); ¢, 2] to the function
¢s{D[(a,); (bs); [z + y]] defined by Jackson [15] as follows

(2.3) r<r°s(q)[(ar)' (s )‘ [z + 9]
(@) mena™(ig) g+ Y)
an_: (Dm(Dn(@®)min

o0

(gl
E Q)J(IV(Q“’)I;,) (= +iy)(z + iqy)...(z +ig"y).

The discrete hypergeometric function defined in (2.2) can be written in
one of the following forms

(@) (i
(24) M,[(a); (bs)i,7] = Z%ﬁ 0:D[(ay) + mi (b5) + mi ],

(25) M,{(a); (ba)iq, 7] = Z (qﬁg’”,") v0uD[(a,) + m; (Bs) + ms iyl.

n—O

We observe that, from (2.4) and (2.5), a discrete hypergeometric function
can be regarded as a generating function for the ¢g-hypergeometric functions
of the form

05D [(ar) + n; (bs) + n; 2] or T%Q)[(ar) + n;(bs) + n; 1y
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We further observe that for z = 0, the function ,M;[(a,);(bs); g, 2] is re-
duced to 0,9 [(a,); (bs); iy], while for y = 0 it becomes ,¢,(9[(a,); (b,); z].

3. Particular cases
As particular cases of (2.4) and (2.5) we have the following interesting
results

(3.1)  oMpo[—;—;q,2] = eq(z)eq(iy),
(3.2)  aMla,b;c;q,2]

_ Z (q“)n(qb)n(iy)" "o [qc—a,qc—b; :L'qa+b—°+"]
(1= 2)atb—c = (Dn(q°)n(z¢*T0~)n q°tm;

(09 odil-iaiad = @on (-72) Z(%; D) atnnr(2iV/E).

Further, summing up the ,p,-functions by means of known summation
theorems, we have

(3.4) 1Mola;—;4q,2] = (—1—_1-x—):1800 [q“; -3 1 __”;qa]:l s

b

1 o 4.
(3.5) 1Mofa;—;q,2]= Wm[q ;2q"; 1Y),

1

a,_.___ %
(3.6) 1Mola;—;q,2]= ml% [q - iyqa]] ’

(3.7 1Mola;—;q,2] = ] 1¢9119% 1yq%; 7,

_ 1

(1 - iy a
b G Y S [ A e

(38) 2M1[a7_nvbvqa(Qay)]_ Wz 1 ql+a b— —n.g- 1 :

4. Integral representations
We also note the following simple integral representations

(4.1)

1
c -
2Mafa,b;c;q, 2] = T (b)I:I( ) Stb Y(1 - gt)e—s-11Mo[a; —; ¢, 21]d(2; q),
provided Reb > 0, |z| < 1, |y| < 1, and

Tg(d)Tq(e)

(42)  aMhla,bcidy€iq, 2] = Fm o r T BT (e =)

11

x § 325711 = g)acpo1v° 71 = qv)emem1 1 Mola; —; 2t0]d(t; g)d(v; ),
00
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provided Reb > 0, Rec > 0, |z| < 1, |y| < 1.
One can similarly write down the integral representation for . M,-func-
tion.

5. Contiguous discrete hypergeometric functions

Any two discrete hypergeometric functions ,M,[(a,);(bs);q,2] and
M;[(al); (bL); q, 2] are said to be contiguous, when all their parameters are
equal except one pair and this pair of the parameters differs only by unity.

If we use the notations

(ara +2)n = (al)n(a2)n . -(ai—l)n(ai + l)n(aH—l)n o (ar)n
and

(ar, =t)n = (a1)n(@2)n . . (@iz1)n(i = Dn(@it1)n .. . (@r)n,
for 1 < ¢ < r, and similar notations for (3;), we have
(5.1)  +M[(ar, +);(Bs); g, 2]
1 _lqo,,, {rMs[(@r); (Bs); 9, 2] — 4%+ Mis[(ar); (Bs); 9,921},
(5.2)  ~M[(er, ~1);(Bs); 0, 2]

=(1-g*™)) ¢V M,[(ar); (B5); 4,42,

n=0

(5.3) +M,[(cr); (Bsy+5)i 0 2] = (1= ¢%9) Y ¢ Ms[(er); (843 ¢, ¢™2,

(54) ,Ms[(a,-);(,@s, —j);(bz] )
= T——;m{rMs[(ar); (85); 4,2) — % 1 M[(r); (Bs); 4,42}
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