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SOME ESTIMATIONS ON ENERGY
IN THERMOELASTICITY OF MICROPOLAR BODIES

1. Introduction

Our purpose is to study the asymptotic partition of total energy for the
solutions of the mixed initial boundary value problem within the context
of the thermoelasticity of micropolar bodies. The asymptotic equipartition
property is a familiar notion in the theory of differential equations. In short,
this means that the kinetic and the potential energy of a classical solution
with finite energy become asymptotically equal in mean as time tends to
infinity. We find such a property in various papers for physical systems go-
verned by nondissipative hyperbolic partial differential equations or systems
of such equations. Our purpose is to study the asymptotic partition of total
energy for the solutions of the mixed initial boundary value problem within
the context of the linear thermoelasticity of micropolar bodies.

The system of equations governing this problem consists of hyperbolic
equations with dissipation and, therefore, does not belong to one of the
categories considered previously in literature on subject. By using the dissi-
pative mechanism of the system, we can prove that the equipartition occurs
between the mean kinetic and strain energies. Instead of abstracted version
of this question, we prefer to emphasize the technique itself on the thermoe-
lasticity of micropolar bodies.

The plane of the paper is following one. We first write down the mixed
initial boundary value problem within context of thermoelasticity of micro-
polar bodies. Then we establish some Lagrange type identities and also we
introduce the Cesaro means of various parts of the total energy associated
to the solutions. Finally, we establish, basing on previous estimations, the
relations that describe the asymptotic behaviour of the mean energies.

It should be noted that there are many papers which employ the various
refinements of the Lagrange identity as Levine (1977), Rionero and Chirita
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(1987), Marin (1994), Gurtin (1993). We find also many papers that use the
Cesaro means, as Day (1980), Levine (1977) for instance.

2. Basic equations

Let B be an open set domain of three-dimensional Euclidean space occu-
pied by the reference configuration of a homogeneous micropolar body. We
assume that B is regular and finite region with boundary 0B and we denote
the closure of B by B. We use a fixed system of rectangular Cartesian axes
and adopt Cartesian tensor notation. Points in B are denoted by xz; and
t € [0,00) is temporal variable. Also, the spatial argument and the time ar-
gument of a function will be omitted when there is no likehood of confusion.
In the absence of the body force, body couple force and heat supply fields,
the field for linear thermoelasticity of micropolar bodies are, (see, [7])

(1) tijj = oty  Mij; + €ijitik = LijBi,
(2) —qii = 067, (z,t) € B x[0,00).

The relations (1) are the motion equations and (2) is the energy equation.
In (1), (2) we use the following notations: u;- components of displacement,
p;-components of microrotatia, ¢;;-components of stress, m;;-components
of couple stress, g;-components of the heat conduction vector, n-the specific
entropy, o-the constant reference density, 6y-the constant reference temper-
ature, I;;-components of inertia and ¢;;,-the alternating symbol.

A superposed dot denotes the differentiation with respect to time ¢, and
a subscript preceded by a comma denotes the diferentiation with respect to
the corresponding spatial variable. When the reference solid has a centre of

symmetry at each point, but is otherwise non-isotropic, then the constitutive
equations are

tij = Aijmnsmn + Bijmn')’mn + Dij(e + aé),
mi; = Bmm‘jsmn + Cijmn’)’mn + Eij(g + aé),
(3) .
g = —0oK;;0,;,
on=a+dd+ hé — Dyjei; — Eijvij, (2,t) € B x [0, 00).
In the above equations we use the following geometrical equations
(4) €ij = Uji +EjikPk,  Vij = Pii-

The tensor coefficients in (3) are constants subject to the symmetry
conditions

(5) Az’jmn = Amm’jv Cijmn = Cmnija-[{ij = I(ji‘



Some estimations on energy 521
The density g, the coeflicients of inertia I;; and temperature 6 are given
constants which satisfy the conditions
(6) 0>0, 6,>0, I;;>0.
From the entropy production inequality we obtain the following conditions
(7) da—h2>0, K;;&62>0, V.

In concordance with the conditions (7) we assume that A;jmn, Cijmn, Kij
are positive definite tensors, i.e.

Aiimnbijmn > koirbix, ko >0, VE&; =i,

(8) Cijmn&ij€mn > k1&ix&ix, k1 >0, V&; = &,
K685 > ka&iki, ky >0, V¢

Moreover, according to (Green, Lindsay, 1972), we can assume that

(9) a>0, h>0, da—-h>0.

Now, we admit the following precsribed boudary conditions
u;i =0o0n 8By x[0,00), tijn; =0 on dBf x [0,00),
(10) @i = 0on 0B; x [0,00), m;jn; =0 on dB; X [0,00),
6 =0 on dB3 X [0,0), ¢n; =0 on dB5 x [0,00),

where 0B;,8B,,0B3 and 8B5,0B§, 0B are subsets of 0B and their com-
plements with respect to 9B, and n; are the components of the unit outward
normal to B. Introducing (3) in (1) and (2), we obtain the following system

0iii = AijmnEmn,j + BijmnYmn,; + Dij(6; + 08 ;),
(11)  Lij$i = Bunij€mn,i + CijmnYmn,; + Eij(6,; + b, ;)
+ ei5k(AjkmnEmn + BikmnYmn + Dix(0 + b)),
(12) h8 = —dB + D;jéi; + Eijyi; + Kij8i5, (z,t) € B x [0,00).
Furthermore, we put the following initial conditions
ui(z,0) = wi(z), wi(2,0)=4}(z), ¢i(z,0)=¥i(2),
i(2,0) = ¢¥(z), 6(2,0)=6z), 6(x,0)= ().

By a solution of the mixed initial boundary value problem of the micro-
polar thermoelasticity in the cylinder Qg = B X [0,00) we mean an ordered
array (u, @;,d) which satisfies the system (11), (12) for all (z,t) € Qo, the
boundary conditions (10) and the intial conditions (13).

(13)
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We observe that if meas 8B; = 0 and meas 8 B; = 0, then there exists
a family of rigid motions and null temperature which satisfy the equations

(11), (12) and the boundary conditions (10). For this reason we decompose

the initial data u?, ¢?, 4?, @9, as follows

(14) W =u+0U), W=ul+0), @ =0f+9?, & =¢;+e],
where u}, f, u}, ¢} are so determined that U?, &9, U;* , <I>;“ satisfy

{ovtav =0, |eoleijez;UL+@%)av =0,

(15) 5 B o
[ oU2av =0, | o(eijnz; UL+ &%)V = 0.
B B

If meas 8B; = 0 and meas 3B, # 0, then we have the restriction

{oUfdv =0, {oUfav =o.
B B
Finally, if meas B3 = 0, then there exists a family of constant temperatures

and null motion, which satisfy the equations (11), (12) and the boundary
conditions (10). Therefore, we decompose the initial data 6°,6° as follows

(16) 6 =6*+T° 6°=¢*+7°,

where * and 6* are costants so determined that

(17) {1V =0, {7%dV =0.
B B

3. Specific notations

We denote by C™(B) the class of scalar fields possessing derivatives up
to the m-th order in B which are continuous on B. For f € C™(B) we define
the norm

HENCEDIEDD max | fi, .l

k=011 ,i0,...,ix

By C™(B) we denote the class of vector fields with six components. For
w € C™(B) we define the norm

6
Iwlicm) = > llwilloms)-
i=1
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By W,.(B) we denote the Hilbert space obtained as the completion of
C™(B) by means of the norm ||.||w,,(p) induced by the inner product

(f,9)WaiB) = D, | firinin i dV.

k=0B

By W,,(B) we denote the completion of C™(B) by means of the norm
lllw,.(B) induced by the inner product

6
(w,w)w,(B) = Z('wi,wi)wm(B)-
im1

We will use as norm in Cartesian product of the normed spaces the sum of
the norms of the factor spaces. Let us introduce the following notations
CY(B) = {x € CY(B) : x = 0 on dB; if meas B3 = 0, then |, xdV = 0};
CY(B) = {(v;,¥;) € CY{(B): v; = 0 on 8By, %; = 0 on OBy;
if meas 0B; =meas 0By = 0, then

| ovidv =0, | olesjkzivx +:)dV = 0;

B B
if meas 9By = 0 and meas 3B, # 0, then |, pv;dV = 0};
W1(B) = the completion of C'(B) by means of - lwaBy;
W1(B) = the completion of C!(B) by means of -lw.(B)-
In these relations W,,(B) represents the familiar Sobolev space, [1], and

W.n(B) = [Wn(B)]®. We note that hypothesis (8) assures that the following
Korn’s inequality, [4], holds for all (v,%) € W1(B),

(18) S [Aijmngij(v’ ¢)5mn(v7 ¢) + 2Bijmn5ij(va ¢)7mn(v1 ¢)
B

+ Cijmn7ij(v, ¢)7mn(v, 'I,[))]dV

> my {(vivi + 0300 + Yiths + i j9i,5)dV,
B
where my > 0,m; = const. and €;;(v,¥) = vj; + €5ikPx, 7ij(v, V) = ;.
Under the hypothesis (8), for all x € Wy(B) the following Poincare’s in-
equality holds

(19) | Kijx.x.idV > ma | x*dV,my > 0.
B B

If meas 0B; = 0 and meas 0B, = 0, then we shall find it is a convenient
practice to decompose the solution (u;, ¢;, ) in the form
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(20) u~=u‘-‘+t12‘3‘+¢,-, wi =90:+t90:‘+¢1’ 0=Xa

where ((v;, %), x) € W1(B) x WI(B) represents the solution of (1) (2), (10)

with the initial conditions v; = UP, #; = UD, ¢; = @9, ¢; = @9, x = 6°,
x=6%o0nB,att=0.

Let us now consider that B3 = 0. Then we use the relations (16), (17)
and (2) in order to decompose the solution ((u;,®;),0) in the form

h dt. ..
(21) ui =vi, @i =Y, =0+ J[1—exp(~3-)l6" +x,
where ((v;,:), X) € W1(B) x W;(B) represents the solution of (1), (2), (10)
with the initial conditions

vi=u?’ 'biz'[l/?a 1/)1':50?, 1/’1“—‘95?, X=T07 X=T0,0nB7 att = 0.

4. Some preliminary identities

In this section we shall establish some evolutionary integral identities
which are essentially in proving the relations that express the asymptotic
partition of energy. The first theorem presents a conservation law of total
energy.

THEOREM 4.1. Let ((u;, ¢;),8) be a solution of the initial boundary value
problem defined by (11), (12), (10) and (13). We assume that

(u?,?) € Wi(B), (i, #?) € Wo(B),6° € Wi(B),8° € Wy(B).

Then the following energy conservation law holds
1 C v } .
(22) ()= 5 {[00(t)ia() + Ligil)pi(t) + Aijmneii(Demn(?)
B

+ Bijmn&ii(t)Tmn(t) + CijmnVij(8)Yma(t) + aKi;0,:(2)8 ;(2)
+ d6?(t) + ah®(t) + 2h6()8(1)

+ | {[K:6,:(5)8,5(s) + (do ~ h)§*(s)]dVds = E(s),
0B

for t € [0,00).

Proof. In view of equations (11) we get
1d. .. - . . .
(23) 5 g;ledits + Lijpips] = (uitsi + pimii),j — AjimnEmné ji

—Bijmn(Ymnji + Imn€ji) = CijmnYmn¥ji — Dji(0 + a8)é i — E;i(6 + af)¥;;.
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On the other hand, by using the energy equation (12), we obtain
(24)  Dji(8+ af)éji + Esi(8 + a)iji = —[Ki6 ;0 + b))
+—-—[d02 + K00 ; + ah@® +200) + K;0 0 ; + (da — h)6?,

such that from (23) and (24), by integrating over B X (0,t) and by using the
boundary conditions (10) and the initial conditions (13), we arrive at the
desired result (22).

THEOREM 4.2. Let ((u;, ¢;),0) be a solution of the initial boundary value
problem given by (10)—-(13). We assume that

(ud, ?) € Wi(B), (if,¢7) € Wo(B),0° € Wi(B),6° € Wo(B).

Then the following identity holds
(25) 2 [oui(t)i(t) + Lypu(D)es(D] 4V +2 {[(da — h)e*()
B

B
t

+ K (§o,,~(f>ds) ( 5)9,1(6)416) + 20K330,(1) (S 0.4(6)d€ ) av

=2

QO e

Voui(s)ii(s) + Lijpi(s)@5(s) — Aijmni;($)emn(s)
B

= 2Bijmn€j(8)¥mn(8) — Cijmn7ii(8)Ymn(s) — d8%(s) ~ 2h6(s)8(s)

— ahf?(s) — aK ;0 i(s)8 ;(s)]dV ds + 2 S [ouda? + I;;0? 0} dV
B

+ {(do = h)(6°)*(2)dV - 2 {(a - en®)[8(s) + ab(s)]dV ds,
B 0B

where pn° = a + d6° + h6® ~ Dijel; — Eijrlj, e = ul + €3, 10 = o3

Proof. First, by using the equations (11), we obtain
d ) .
(26)  —lowits + Lijpicps] = (witji + pimiji) 5 = AjimnEmnt i

- 2Bjimn7mneji ~ LjiimnTYmnYji — Dji(o + aé)eji
~ E;i(0 + af)yji + otits; + Li;pi;-
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On the other hand, by using the energy equation (12), we obtain

(27) Dji(0 + aé)ej,- + Eji(a + aé)‘yj,- = ak;; [é,i So,J(E)df + 0'1'0,]']
0

)t

— aKif:0,; + Kij(0,: + 0 ;)| 6,;(€)dé - [K,-j(o +ab) | o,j(g)dg] |
0 0

$

+ ak;; [ i16,(6)de+ 6.0, ] + (da — h)6
0

+ Kii0,:\6,;(6)de + d6® + ahb® + 2106 + (a — on°)(8 + ab).
0

From (26) and (27) it results

d . .
(28) lowiti + Lijpips) = (uitji + pimyi),;

- Ajimnem'n.eji - 2Bjimn7mn5ji - jimn'ymn'?ji

¥ oitsis + Iy pih; + [Kz-j(e +ab)| 0,j(£)d5]
0 ")
—(a— on°)(0 + ab) + aK ;0,0 ; — aK;; [Qi 59,j(€)d€ + 9,1'9,1]
0

— K0, {6,;(6)dE — d8? — ahb® — 2186 — (dox — h)66.
0

An integration of the identity (28) over B x (0,1), followed by the use of
the boundary conditions (10), the initial conditions (13) and the symmetry
relations (5), lead to the identity (25) and the proof of Theorem 4.2 is

complete.
THEOREM 4.3. Let ((u;, i), 0) be a solution of the initial boundary value
problem defined by (10)-(13), corresponding to the initial data
(uf, ¢?) € Wi(B), (i, 4%) € Wo(B),8° € W1(B),8° € Wo(B).
Then the following identity holds

(29) 2\ [oui(®)is(t) + Ljoi(t)p; ()] dV + | [(da = B)B2(2)
B B

+ Kz‘j(io,i(ﬁ)df) ( S o,j(f)ds) + 20K 8,0 ( | 0,j(£)d£)1dv

0
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= | oludui(2t) + ulus(20)] + L;;[$20;(2t) + p;(20)}dV
B
2t

+ {[(do - R)6%6(2t) + azs',-jo‘;-( ! Q,-({)df) Jdv
B 0

+{{(a- gn")(e(t +8)—0(t—s)+aff(t+s)—6(z ~ s)]> dVds.
0B

Proof. Let fi(z,s)and fi(z,s) be twice continuously differentiable func-
tions with respect to time variable s. It is easy to see that

S 1o(5(900) = 191 = el F)i(0) - F9i(o),

such that, by integrating over B x (0,1), it results

(30)  {elfi(®g:(t) - fig:®)AV = || ol fi(9)di(s) — fi(s)gi(s)ldVds
0B

B
+ § el£:(0)9:(0) — £:(0)g:(0)]aV.
B

By setting fi(z,7) = ui(z,t — 7),9i(z,7) = ui(z,t+ 7),7 € [0,1],1 € (0, 00),
the relation (30) becomes

(31) 2| owi(t)iu(t)dV = | o[udiss(2t) + iui(2t)]dV
B B

+ § S o[ui(t + s)ti(t — ) — ui(t — 8)u;(t + s)]dVds,
0B

for ¢ € (0, 00). Similarly, for ¢ € (0,00), we have

(32) 2| Ljoit)g;(t)aV = | Li[0d0;(2t) + ¢lp;(2t)]dV
B B

+ | § Liloit + 9)@5(t = 5) — @il — 8)@;(t + 9)]dV ds.
0B

We now eliminate the inertial terms in the last integrals in (31) and (32).
By (5), (11), we get
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(33) g[ui(t + s)il,-(t - 8)—u(t - S)ili(t + S)] + I,-j[cp,-(t + S)(,Bj(t - s)
— @i(t — 8)@;(t + 8)] = [wi(t + s)tji(t — 8) — wit — 8)t;i(¢ + 8)) ;

+ [pi(t + s)mji(t — 5) = @it — s)myi(t + 5)) ;
+ [Djieji(t — s) + Ejivji(t — $)(t + ) + af(t + 5)]
— [Djigjilt + s) + Ejivjilt + s)][0(t — ) + ab(t — s)].

On the other hand, in view of (12), we obtain
(34) [Djieji(t — 8) + Ejivji(t — )][0(t + s) + ab(t + 3)]
— [Djieji(t + 8) + Ejivji(t + 8)|[0(t — 5) + ab(t - 5)]
x (a—on®)[8(t — s) — 0(t + s) + a(é(t - 8)— 0(t + )]

+ (da — h)[8(t — $)6(t + s) — B(t + 5)0(t — s)]
t+s

RS04+ s)( 3 0,<s)df) 0t - s)( | 0.(6)a¢))

okt + s)( 5 o,j(e)ds) B4t~ 5)8(t + 5)]

t+s

oKt —s) ( S o,j<e)ds) 0,(t 4 5)0,5(t - )]
0

t+s

+ (K,-jw(t ~ )+ af(t - 5)] | 0,1(5)‘15)#
0

t—s

— (Haltte 4 9) +adlo-+ 9] § 0,00

0

We now substitute (34) into (33) and we use the boundary conditions (10)
in order to obtain the following identity

(35) 2 {loui(t)ai(t) + Ljpi(t)i (D]dV = {[o(ufii(2t) + #du;(2t))
B B

+ Lij(pi9(2t) + Giei(2t)))dV + § ﬂ(a ~ on’)[6(t + ) — 6(t ~ 5)

+a(f(t+ s) - 0(t — 5))]aVds + | {[(da - h)%(()(t +5)8(t — 5))
0B
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t+s t—s -8
+% (A,J } 6.:(e)ae | 01(5)«15) + akiif,i(t + 5) S 0,5(£)de

t+s
+aki8:(t—s) | 6;(&)deldVs.
0

Using the initial conditions (13) in (35), we arrive at the desired result (29)
and Theorem 4.3 is proved.

5. Asymptotic equipartition of energy

In this section we shall use the identities (22), (25) and (29) and under
the hypotheses made in Section 2 we establish the asymptotic partition
of total energy. First, we introduce the Cesaro means of various energies
contained in (22). Thus, we define

Ko(®) = 57 | Jloui()iu(s) + Lii()gs(s)dVids
0B

Le(t)= %S S[A,Jmné',] (8)emn(s) + 2B1_7mn51](3)7mn( s)
0B

1

(36)  +Cijmn7ij(8)Ymn(8)]dVds, Pc(t) = 57

O

SaIx i760,(s)8 ;(s)dVds,
B

To(t) = %g | d8*(s)avds, Tico(t) = .;_tg | ah?(s)dvds,
0B 0B
Se(t) = 5 || |i,(6) + (do— W)*(E)]aV des.

toon
We are now in a position to state and proof the main result of our study.

THEOREM 5.1 We assume that the hypotheses from the Section 2 hold.
Then, for all choices of initial data

(“n‘f’:) € WI(B)’ (u?,CP?) € WO(B)’ 00 € WI(B)’ 0’0 € WO(B),
we have
(37) Jim Po(t) =0, lim Txc(t) =0.
Moreover, the following assertions hold
(i) if meas B3 # 0, then
(38) Jim To(t) = 0;
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(ii) if meas 0By = 0, then

[ 2(do" + hé*)av;
d

B

(iii) if meas 0By # 0 and meas 0B, # 0, then

1) fimKo®) = im Lot
(1) fim Sc(t)= £(0) -2 Jim Ko(t) = £(0) — 2 fim Lo(t)

MIH

(39) lim 7¢(t) =

t—o00

(iv) if meas B, = 0 and meas 9B, = 0, then

. 1 -
(42)  Jim Ko(t) = lim Lo(t)+ 5 Yleuta; + Lpi¢3lav,
B
) . 1 -
(43)  Jim Sc(t) = £(0) ~ 2 im Ko(t) + 5 Vleuaf + L@} ¢jlav
B

. 1 e
= 8(0) - 2}1{2050('0 - 5 S[Quz u; + 1_1(,0, Sp]]dv
B

P roof. We use the energy conservation law (22) and the hypotheses from
the Section 2 in order to prove the relations (37). Thus, by the hypotheses
(9), we have

(44) d6*(t) + ahb*(t) + 2h8(t)6(t)
= Yoty + o 2 P (do— h)g?
= 2(d0) + 80) + Sda- w0
2
- g(o(t) + ao'(t)) + %(da — B)6A(t) > 0.
Now, by (36) and (22), we get
(45) Tro(t) < %ha (da - h) £(0),

(46) Po(t) < ££(0).

Letting ¢t — oo into (45) and (46), we deduce the relations (37). )
(i) Suppose that meas 0Bs # 0. It is easy to prove that § € Wy(B).
Then by using the Poincare’s inequality (19) and the identity (22), we get

(47) || d6*(s)avds < d [0 § K:;0.:(5)0,5(s)dVds <
0B ™y B

“0
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From the relation (47) and by (36), we obtain the conclusion (38).
(i) We now suppose that meas B3 = 0. We use the decomposition (21)
and the fact that x € Wi(B) in order to obtain the following identity

48) |6*()av = 3(0* + Eé*)mv + § (H)dV
B
dt

—28 2(0* + 20*)0* exp(— %)dV+ S i (0*)2 exp( 2— 7 )dV.
B

In view of (48) and (36), we get

é

(d6” + h0*)2dV+ de (s)dVds
OB

auf =

(49) To(t) =

N =

[1 -~ exp(——t)] § —0*(d0"‘ + h8*)dV

3 .
s L o-omtcaf] B

From the Poincare’s inequality (19), the identity (22) and the fact that
x € Wi(B), we get

t t
1 ) d
(50) 5 S S dx (s)dVdS < —%728 S Kin,i(S)X,j('s)dVds
— L § S K;;0:(5)8 ;(s)dVds < LE(O)
C2tmy gt °= 2tmy

Letting ¢t — oo in (49) and taking into account (9*) and (50), we arrive to
(40). We now use the relation (44), the energy conservation law (22) and
the hypotheses from Section 2 in order to obtain the following estimates

(51) {62 (t)av < zadal_ ~£(0), " te(0,00),
B
(52) Vowi(t)i(?) + Lj@i()@;(1)]dV < 26(0), ¢ € [0, 00),
B
(53) § | Ki6:(r)0 5(r)dvdr < £(0), t€[0,00),
0B
(54) éé, 2(r)dV < <7 ha(O), t €[0,00).
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On the other hand, the identities (25) and (29) imply

S S[Quz(s)ui(s) + Lijpi(s)p5(s)
0B

Jmngz](s)gmn(s) 2B1]mn513(3)7mn(3) 1jmn7ij(s)’7mn(5)]dVd5

(55)

:» L\BIH

1
2|~
O Cmry

V[d6%(s) + 2h0(s)8(s) — ah®(s) — aK;60,i(s)6,:(s)ldVds
B

[oudu? + I;jp?¢01dV — — S(da — h)(6°)*dV

L?Iv—'

&Ir—‘

|
B
Hlo(udui(2t) + ufii(20)) + Lii(#0;(20) + #1;(20))]dV
B

R~

+ 2 {(a - on®)(B(s) + ab(s))aVids + le [(de ~ h)8°0(26)aV
0B B

2t

, 1
+ aK ;6" 3 0 ;(6)de + —
0

t
{{@—en®)io+3s)
4t 0B
—6(t—3s)+ a%(ﬂ(t +8) 4+ 0(t — s))]dVds.
In view of definitions (36) and the initial conditions (13), from (55) it results

(56) Kc(t) = Lo(t) = Zlg Vi(de = R)(6° + (e — on®)]6(2t) - 6°)aV
B

i
+ | aKi;6%0,;(s)dVds + % { | no(s)b(s)avds
B

0B

‘33|*—‘ Ll

[Quz uz + I’L](P1 (PJ]dV + 7}{C(t) — ’Pc(t)

[Q(U ui(2t) + u; u,(2t)) + IzJ(% ©i(2t) + ¢; S"J(2t))]dv

W W Ot Y

m»a

t

+To(t) + % [ {(a— en)(0(t + ) + 6(s))avds.
0B

Now we shall use the Schwarz and Cauchy inequalities on the right-hand
side of the identity (56). We use the relations (45)—(47), (51)—(54) and thus
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we get

1 . .
67) |- o Joudis + Ty
B

IA

1 0. 0,
7 Ve(uiul +04d) + Lij(ie] + oV
B

3 Jlda B)O + ala - er?)0C20) - laV]
B

& Vll(da = R + afa — or) + 20671V +

B

o

2t(da - h)E(O)

IA

2t

2t 1
= 0 1 0 40 :
'@ (S) éaKij",ie.j(S)dVds < E( é gaKijB,;B,jdVds

1 1
2t 3 3

2 1 a i
X ( § gaKija,i(S)o,j(s)dVds) <3 (ﬂg(o) }3 aI‘ije?io?jdVds)

o~ | =

< % ( (s 133 h02(s)dVds) '

§ | no(s)d(s)dVds
0B

x%(i | héz(s)dVds)% < (?)%%g(o);

0B -

3 1e(afus(an) + is(20) + L(@s(20) + #Pps(20)1aV |
B

<

@]~

1
7 S[QU?U? + Iij@?‘P?]dV + :1—8(0)
B t

_ (iii) Assume that meas 0B; # 0 and meas 0B, # 0. Since (u;,p;) €
W1(B), from (6), (18), (22) it results for 7 € [0, c0)

(58)  Jlowi(r)uil(r) + Ljpi(T)es(T))dV < mil V[Aijmneii(T)emn(r)
B B

2k
+ 2Bijmn5ij(7-)7mn(7-) + Cijmn'Yij(T)'Ymn(T)]dV S m_lg(o),
and we obtain

(59) yw

L Jlo(afui(2t) + ufui(2t) + L (@2p5(20) + 05(20))1dV
B
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1
< -S—t S[guouo + IU‘P: ‘PJ]dV + —8(0)
If we suppose that meas B3 # 0, then we have

(60) < Te(t)

To(t) + % [ (@~ o8t +5) + 6(s)ldaVds
0B
+le (é ;(a — Qn0)2dvds) ’ (é }3[0(t +3)+ 0(3)]2dVds) ’

< To(0)+ (5 J(a - enPfav ) [To(20).
B

Letting ¢ — oo in (56) and taking into account the estimates (57), (59), (60)
and the relations (37), (38), we conclude that the relation (40) holds. Next
we suppose that meas B3 = 0. If we use the decompositions (16), (21), the
relations {17), (49) and the expresion of ° (from Theorem 4.2), we conclude
that the following identity holds

1
4t

i
L i (a4 2 oo (22) ]y

133 0*(d0* + hé*) [exp <— ﬂ) - 1] dv + ls)lx?dx?(s)dVds

61) T+ = | {(a—en®)6(t + ) + 8(s)]dV ds
B

o~ | =
&.'R"‘

+ 3 5

&=

t
+ S S[D,-je?j + Eij’y?j —dT° - hTO][X(t + 3) + x(s)]dVds.

0B

Now, by using the Schwarz and Cauchy inequalities in (61) and taking into
account the relation (51), we get

1

69 i {70+ 5

t
{{a—en®)lo(t+ )+ 0(3)]dVds} =0.

0B

It is easy to see that the use of relations (37), (57), (59), (62) in (56) implies
again the conclusion (40). Also, it is a simple matter to see that the relation
(41) is obtained from (22) by taking the Cesaro mean and by using the
relations (37), (38) and (40).
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(iv) If meas 3B; = 0 and meas 0B, = 0, then we use the decomposition
(20), the relations (14), (15) and the fact that (u;, p;) € W1(B) in order to
obtain

1 . .
(63) 4 Vloului(2t) + Iy s (2))av =
B

2| -

Vlousuy + Ljoi@31dv
B

[loU2vi(2t) + 1;;8%%;(20)]dV.
B

£l

Lo s -

t3 S[QUi 4 + Lijpip3ldV +
B
Also, since (v;,%;) € W;(B), the Korn inequality (18) leads to the relation
1 k - _
(64) 4 Vovi(r)vi(r) + Lija(r);()ldV < o [ Aijmngis (1)ema(T)
B B
+ 2Bijmn€ij(T)¥mn(T) + Cijmn¥ii(T)¥mn(7T)]dV

k
= o S[Aijmneij(T)Emn(T) + 2B jmn€ii (TYYmn(T)
B

2k
+ Cijmn’)’z'j('r)’)’mn('r)]dv S m—lg(o)a TE [07 w)’

where &;; = v;; + €jik ¥k, Vij = ¥j,i- Leting £ — oo in (56) and by means of
relations (37), (57), (60), (63) and (64) we arrive to the conclusion (42).

Finally, the relation (43) is proved on the basis of (22) by taking the
Cesaro mean and by using the relations (37), (38), (42), (57). The proof of
Theorem 5.1 is complete.

At last we remark that the relations (40) and (42), restricted to the class
of initial data for which 4] = ¢} = 0, prove the asymptotic equipartition in
mean of the kinetic and strain energies.
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