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SOME ESTIMATIONS ON ENERGY 
IN THERMOELASTICITY OF MICROPOLAR BODIES 

1. Introduction 
Our purpose is to study the asymptotic partition of total energy for the 

solutions of the mixed initial boundary value problem within the context 
of the thermoelasticity of micropolar bodies. The asymptotic equipartition 
property is a familiar notion in the theory of differential equations. In short, 
this means that the kinetic and the potential energy of a classical solution 
with finite energy become asymptotically equal in mean as time tends to 
infinity. We find such a property in various papers for physical systems go-
verned by nondissipative hyperbolic partial differential equations or systems 
of such equations. Our purpose is to study the asymptotic partition of total 
energy for the solutions of the mixed initial boundary value problem within 
the context of the linear thermoelasticity of micropolar bodies. 

The system of equations governing this problem consists of hyperbolic 
equations with dissipation and, therefore, does not belong to one of the 
categories considered previously in literature on subject. By using the dissi-
pative mechanism of the system, we can prove that the equipartition occurs 
between the mean kinetic and strain energies. Instead of abstracted version 
of this question, we prefer to emphasize the technique itself on the thermoe-
lasticity of micropolar bodies. 

The plane of the paper is following one. We first write down the mixed 
initial boundary value problem within context of thermoelasticity of micro-
polar bodies. Then we establish some Lagrange type identities and also we 
introduce the Cesaro means of various parts of the total energy associated 
to the solutions. Finally, we establish, basing on previous estimations, the 
relations that describe the asymptotic behaviour of the mean energies. 

It should be noted that there are many papers which employ the various 
refinements of the Lagrange identity as Levine (1977), Rionero and Chirita 
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(1987), Marin (1994), Gurtin (1993). We find also many papers that use the 
Cesaro means, as Day (1980), Levine (1977) for instance. 

2. Basic equations 
Let B be an open set domain of three-dimensional Euclidean space occu-

pied by the reference configuration of a homogeneous micropolar body. We 
assume that B is regular and finite region with boundary dB and we denote 
the closure of B by B. We use a fixed system of rectangular Cartesian axes 
and adopt Cartesian tensor notation. Points in B are denoted by Xj and 
t 6 [0, oo) is temporal variable. Also, the spatial argument and the time ar-
gument of a function will be omitted when there is no likehood of confusion. 
In the absence of the body force, body couple force and heat supply fields, 
the field for linear thermoelasticity of micropolar bodies are, (see, [7]) 

(1 ) — Q^ii rriijj "I" £ijktjk = lijVi, 

(2) -qi,i = g0o»), (x,t) e B x [0,oo). 

The relations (1) are the motion equations and (2) is the energy equation. 
In (1), (2) we use the following notations: U{- components of displacement, 
(^¿-components of microrotatia, ¿¿^-components of stress, TT^j-components 
of couple stress, ^¿-components of the heat conduction vector, rj-the specific 
entropy, £-the constant reference density, #o-the constant reference temper-
ature, /¿¿-components of inertia and £{jk-the alternating symbol. 

A superposed dot denotes the differentiation with respect to time t, and 
a subscript preceded by a comma denotes the diferentiation with respect to 
the corresponding spatial variable. When the reference solid has a centre of 
symmetry at each point, but is otherwise non-isotropic, then the constitutive 
equations are 

tij = Aijmn£mn + BijmnJmn -f Dij (e + aO), 

TTl{j — Bmnij£mn n T V + O0), 

1i = —^oKijdj, 

grj = a + dO + hO — DijSij - E i j j i j , (x, t) € B x [0, oo) . 

In the above equations we use the following geometrical equations 

(4) £ij = ujti + £jik<Pk, l i j = <Pj,i-

The tensor coefficients in (3) are constants subject to the symmetry 
conditions 

(5) Aijmn — AmniJ, Cijmn — Cmnij, K%j — A 31' 
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The density g, the coefficients of inertia /¿j and temperature 9q are given 
constants which satisfy the conditions 

(6) Q > 0, B0 > 0, I{j > 0. 

From the entropy production inequality we obtain the following conditions 

( 7 ) d a - h > 0 , > 0 , V & . 

In concordance with the conditions (7) we assume that Ai j m n , C i j m n , Ii'ij 
are positive definite tensors, i.e. 

Aijmn£ij£rnn ^ £ik£iki > 0, = , 

(8) Cijmn^ij^mn ^ k^iki kl ^ 0, — 

K i j t i t j > fatiZu k2 > o, 

Moreover, according to (Green, Lindsay, 1972), we can assume that 

(9) a > 0, h > 0, da - h > 0. 

Now, we admit the following precsribed boudary conditions 

Ui = 0 o n dBi x [0 , o o ) , t i j u j = 0 o n dB{ x [0 , o o ) , 

(10) (fii = 0 on dB2 x [0, oo), m ^ n , = 0 on dB% x [0, oo), 

9 = 0 on dBz x [0, oo), ^ n , = 0 on dBl x [0, oo), 
where dBi,dB2,dB3 and dB^dB^dB^ are subsets of dB and their com-
plements with respect to dB, and n,- are the components of the unit outward 
normal to dB. Introducing (3) in (1) and (2), we obtain the following system 

QUi — Aijmn£mTijj -(- -6jjm n 'ym n ) j -)- Dij{6 ^ -(- ot9j), 

( 1 1 ) h m — Bmnij£mn)j + Cijmnlmn,j 4" E^j + a 6 t j ) 

"f" Eijk(Ajkmn£mn "t" Bjkmn~imn "(" Djk(@ -)-

( 1 2 ) he = -de + DijEij + Eijiij + Kij9,ij, (x, t) e B x [0 , o o ) . 

Furthermore, we put the following initial conditions 

«¿(a;, 0) = u°{ ( x ) , iii(x, 0) = u°(x), <pi(x, 0) = <p°i(x), 
(13) 

<pi(x,0) = <p°i(x), e(x,o) = e°(x), e(x,0) = e°(x). 

By a solution of the mixed initial boundary value problem of the micro-
polar thermoelasticity in the cylinder QQ = B x [0, oo) we mean an ordered 
array («¿,<¿>¿,0) which satisfies the system (11), (12) for all (x,t) G iio> the 
boundary conditions (10) and the intial conditions (13). 



522 M. M a r i n 

We observe that if meas dB\ = 0 and meas dBi = 0, then there exists 
a family of rigid motions and null temperature which satisfy the equations 
(11), (12) and the boundary conditions (10). For this reason we decompose 
the initial data vff, tp ,̂ , <fi1, as follows 

(14) u° = < + t/°, v° = vl + ÙÎ, = + $ = # + 

where u*, <p*, ¿* , <p* are so determined that Uf, U*, satisfy 

S QUfdV = 0 , S eiSijkXjUZ + $°i)dV = 0 , 

(15) 
S QÛfdV = 0 , S QiEijkXjÙZ + *ï)dV = 0 . 

B B 

If meas dB\ — 0 and meas dBi ^ 0, then we have the restriction 

5 gUfdV = 0 , J eÙidV = 0 . 
B B 

Finally, if meas dB3 = 0, then there exists a family of constant temperatures 
and null motion, which satisfy the equations (11), (12) and the boundary 
conditions (10). Therefore, we decompose the initial data 6°, 8° as follows 

(16) 0° = e* + T°, è° = è* + t ° , 

where 6* and 6* are costants so determined that 

( 1 7 ) j T°dV = 0 , J T°dV = 0 . 

B B 

3. Specific notations 
We denote by C m(B) the class of scalar fields possessing derivatives up 

to the m-th order in B which are continuous on B. For / 6 C m(B) we define 
the norm 

m 

l|/||c™(B) = £ m | x l / , n - u l -
k=0 ii,¡2,•••,«* 

By C m(B) we denote the class of vector fields with six components. For 
w 6 C m(B) we define the norm 

6 

I M I c - ( B ) = S M c - t ® ) -
i=1 
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By Wm(B) we denote the Hilbert space obtained as the completion of 
Cm(B) by means of the norm ||-||iym(B) induced by the inner product 

m 
(f,ff)wm(B) = J2 \ lh...ikS,h...ikdV. 

k=0B 

By W m ( B ) we denote the completion of C m ( B ) by means of the norm 
II"IIwm(B) induced by the inner product 

6 

0,w)wm (B) = $^(«>i><«>0wm(B). 
1=1 

We will use as norm in Cartesian product of the normed spaces the sum of 
the norms of the factor spaces. Let us introduce the following notations 

C\B) = { x e C 1 ( 5 ) : x = 0on dB3 if meas dB3 = 0, then \B XdV = 0}; 
C \ B ) = {(Vi,i>i) € C x ( 5 ) : » ¡ = 0on dBu & = 0 on 0B2; 

if meas dB\ =meas dB2 = 0, then 

\ gvidV = 0, \ e(£ijkXjVk + ipi)dV = 0; 
B B 

if meas dB\ = 0 and meas dB2 / 0, then \ B gvidV = 0 } ; 

W\(B) = the completion of Cl(B) by means of H-llvv^s); 
W 1 ( 5 ) = the completion of C l ( B ) by means of ||-||wi(B)-
In these relations Wm(B) represents the familiar Sobolev space, [1], and 
W m ( B ) = \Wm{B)\6. We note that hypothesis (8) assures that the following 
Korn's inequality, [4], holds for all (v,ip) € W i ( 5 ) , 

(18) \ [Aijmn£ij(v, 1p)£mn(v, l/}) + 2 B i j m n £ i j ( v , %l))lmn{v, 

B 

+ Cijmnliji V, 1p)jmn{v, 1p)]dV 

> mi \{vivi + VijVij + ipitpi + i^ij-tpi^dV, 

B 

where m,\ > 0,mi = const, and £ij(v,ip) = Vjti + £jiki>k, lij(v,il>) — ipjj. 
Under the hypothesis (8), for all x G W\(B) the following Poincare's in-
equality holds 

(19) J KijX,iX,jdV > m2 \ X2dV, m2 > 0. 
B B 

If meas dB\ — 0 and meas dB2 = 0, then we shall find it is a convenient 
practice to decompose the solution («¿,<^¿,0) in the form 
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(20) = < + + <Pi = tf + t<P* + ipi, Q — Xi 

where ((v,, V'OjX) € W a (B)xWi(B) represents the solution of (1), (2), (10) 
with the initial conditions v̂  = Vi = Uf, (pi = <f>i = x = 
X = on B, at i = 0. 

Let us now consider that (9i?3 = 0. Then we use the relations (16), (17) 
and (2) in order to decompose the solution ((Ui,(pi),0) in the form 

(21) Ui = Vi, <pi = tl>i, 6 = 0* + ^[l-exp{-j)}8* + X, 

where ((t?<, V<)>x) € W i ( 5 ) x M ^ i ( 5 ) represents the solution of (1), (2), (10) 
with the initial conditions 

Vi = «?, Vi = ill i>i = i,i = ifi°i, x = T°, X = T°, on B, at t = 0. 

4. Some preliminary identities 

In this section we shall establish some evolutionary integral identities 
which are essentially in proving the relations that express the asymptotic 
partition of energy. The first theorem presents a conservation law of total 
energy. 

Theorem 4.1. Let ((ut-, <Pi),0) be a solution of the initial boundary value 
problem defined by (11), (12), (10) and (13). We assume that 

(«?,¥>?) € W 1(B),(ul<p°i) € Wo (B) ,6° G W^B),^ € W0(B). 

Then the following energy conservation law holds 

(22) E{t) = i j [eui(t)ui{t) + Iij<pi(t)<pj{t) + Aijmn£ij(t)£mn(t) 

+ Bijmn£ij(t)jmn(t) + Cijmnlij(t)^mn{t) + aKijOj WAt) 
+ dQ2{t) + ah62(t) + 2 h9(t)0(t) 

t 
+ 5 J l J i y W ' K i t o + ( d a - h)92{s)}dVds = E(s), 

OB 

fort e [0,oo). 

P r o o f . In view of equations (11) we get 

(23) + Iij<Pi<Pj] = + <Pimji),j ~ Ajimn£mn£ji 

~Bijmn('ymn£ji -j- 7mn£ji) ~ Cijmnlmniji ~ Dji{0 + Oc6^£ji — Eji[9 + OtO^ji. 
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On the other hand, by using the energy equation (12), we obtain 

( 2 4 ) DjiiO + a 0 ) i j i + E j i { 9 + a 0 ) ^ i = - [ K i j O ^ O + ttf)],* 

1 // 
+ - — [d02 + aKijdjOj + ahO2 + 200} + K^e^j + (da - h)02, 

it u6 

such that from (23) and (24), by integrating over B x (0, t) and by using the 
boundary conditions (10) and the initial conditions (13), we arrive at the 
desired result (22). 

THEOREM 4 .2 . Let ((u,,(pi),0) be a solution of the initial boundary value 
problem given by ( 1 0 ) - ( 1 3 ) . We assume that 

(«? ,¥>?) € W 1(B),(u0it<p0i) e W o ( B ) , 9 ° G W1(B),0° G W0(B). 

Then the following identity holds 

( 2 5 ) 2 J [eui(t)ui(t) + Iij<pi(t)<pj(t)] dV + 2\ [{da - h)02(t) 
B B 

+ Kij ( i 6,i(t)dt) ( j + 2 a A ' i j 0 , ( i ) ( \ 0j(t)dtj ]dV 

t 
= 2 J \ [eiti(s)ui(s) + Iij(pi(s)tpj(s) -- Aijmn£ij(s)emn(s) 

OB 

- 2Bijmn£ij(s)')mn(s) - Cijmnlij(s)imn(s) - d92(s) - 2h0(s)6(s) 

- ah02(s) - aI(ij0ii(s)9yj(s)]dVds + 2 \ + dV 
B 

t 
+ \(da - h)(0°)2(t)dV - 2 J j (a - e^Ms) + a0(s)}dVds, 

B OB 

where erf = a + d0° + h0° - D ^ - = < t + = 

P r o o f . First, by using the equations (11), we obtain 

^ T s + hiVWj] = ("i'i'i + fimji),j ~ Ajimnemneji 

~~ %Bjimnllmn£ji ~ CjtmnTmnTi« - Dji{0 + a0)eji 

- Eji(0 + a0)iji + QUiUi + Iijipupj. 
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On the other hand, by using the energy equation (12), we obtain 

(27) Dji(0 + aè)eji + Eji{9 + aèftji = aKij 

- aKijO^j + + aê:i) \ 6tJ{()dÇ - Ii'tJ(8 + a6) \ Otj(Qdt 

+ aK u + (da - h)99 

+ KijOyi \ 9tj({)d{ + d92 + ah92 + 2h99 + (a - grf)(9 + a9). 
o 

From (26) and (27) it results 

(28) ^[QUiUi + Iijtpi<pj] = (Uitji + <Pimji)tj 

Ajimn^-mnSji 2.0 jimnlmn^ ji Cjimnlmn'yji 

+ gùiùi + Iij<Pi<Pj + 1(^(9+ aè)\9tj(0dt 

- ( a - grf)(6 + a9) + a K ^ ^ j - aK t3 

- KijOj j 0,j({)dt - d92 - ah92 - 2h99 - (da - h)99. 
o 

An integration of the identity (28) over B x (0,i), followed by the use of 
the boundary conditions (10), the initial conditions (13) and the symmetry 
relations (5), lead to the identity (25) and the proof of Theorem 4.2 is 
complete. 

T H E O R E M 4 . 3 . Let ((Ui,ipi),9) be a solution of the initial boundary value 
problem defined by (10 )—(13) , corresponding to the initial data 

(«?,¥>?) 6 W 1(B),(u°i,v>°i) e W o ( B ) , 9 ° e Wi(5) ,0° € W0(B). 
Then the following identity holds 

(29) 2 j [e«i(i)«i(<) + IiW(t)<pj(t)]dV + J [(da - h)92(t) 

+ *,,-(£)#) ( i + 2 a K i j 0 X t ) ^ j ( O d ^ ] d V 
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= \ g ^ u ^ t ) + t i? t t i (2 i ) ] + Iij[<p0i<Pj&) + <P°i<PiWW 

21 

+ S [(da - h)P6(2t) + a K i t f i ( \ 

B ^ 0 ' 

+ | j (a - qt}°) (o{t + * ) - 0(t - s) + a[6(t + s) - 0(t - a)]^ dVds. 

P r o o f . Let f i ( x , s ) and f i ( x , s) be twice continuously differentiable func-
tions with respect to time variable s. It is easy to see that 

•^[Q^fi(s)gi(s) - fi(s)gi(s)j] = Q[fi(s)gi(s) - fi(s)gi(s)], 

such that, by integrating over B x (0 , i ) , it results 

t 

( 3 0 ) S e [ f i { t ) m - fi{t)gi{t)]dv = 5 5 e[fi{s)Us) - Hs)9i{s)]dVds 
B 0 B 

+ \ ¿>[¿(0)5,(0) - fi(0)gimdV. 

By setting f i ( x , r ) - Ui(x,t- T),gi(x,r) - Ui(x,t + r),r e [0 , i ] , i € (0,oo), 
the relation (30) becomes 

(31) 2 J gui(t)ùi(t)dV = \ 0[u?«i(2i) -I- tk?t*i(2i)]dVr 

B 
t 

+ j j g[ui(t + s)ui(t — s) — Ui(t — s)iii(t + s)]dVds, 

B B 
t 

0 B 

for t 6 (0, oo). Similarly, for t 6 (0, oo), we have 

( 3 2 ) 2 j I i j V i ( t ) ^ ( t ) d V = \ I i M w f r ) + <P°iVj(2t)]dV 

B 
t 

+ \ \ Iij[<pi(t + s)<Pj(t - s ) - <fii(t - s)ipj(t + s)]dVds. 
OB 

We now eliminate the inertial terms in the last integrals in (31) and (32). 
By (5), (11), we get 
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(33 ) g[ui(t + s)ili(t - a ) - Ui(t - s)ui(t + 5)] + Iij[<fi(t + s)<pj(t - a ) 

- <Pi(t - s)ipj(t + s)] = [iij(/ + s)tji(t - s) - Ui(t - s)tji(t + 5)]fi 

+ [<Pi(t + s)mji(t - s)~ <pi(t - s)rriji(t + s)] j 

+ [ D j i E j i i t - a) + E j i j j i ( t - 8)][0( t + s) + a9(t + 5)] 

- [DjiSjiit + a ) + Ejautt + s)][0(t - a) + a0(t - a)] . 

O n t h e o t h e r h a n d , in v iew of (12 ) , we o b t a i n 

(34) [DjiSjiit - s ) + Eji-rait - s)][0(t + s) + a0(t + a)] 

- [Dji£ji(t + a) + Ejiiait + a)] [0( i - a) + a0(t - a)] 

x (a - grj°)[0(t - a ) - 0(t + s) + a(0(t - a ) - 0(t + a) ) ] 

+ (da - h)[0(t - s)0(t + a ) - 0(t + s)0(t - a)] 

/t—s \ ,t+S \ 

• t-s 
+ a K i j [ è t i ( t + a ) ( ] ~ - s)0tj(t + a)] 

+ aKij&iit - , ) ( j BMW) ~ 9At + - s)] 

+ ( K i j W ~*) + <*Kt ~ *)] \ OAOdfyi 

- (Kij[e(t + s) + aè(t + s)] J Oj(Ç)d£),i. 

W e n o w s u b s t i t u t e (34) i n t o (33) a n d we use t h e b o u n d a r y c o n d i t i o n s (10) 
in o r d e r t o o b t a i n t h e fo l lowing i d e n t i t y 

( 35 ) 2 J[ett , -( i)«i(<) + Iij<Pi(t)<Pj(t)W = \ [ e ( t t?« i (21) + ^ « ¿ ( 2 0 ) 
B B 

t 
+ I i j ( < p ï < p j { 2 t ) + <$ipj(2t))]dV + J J (a - QV°)[0(t + a ) - 0{t - s) 

OB 

d 
+ a(9(t + s ) - 0(t - a ) ) ] d F d a + \ J [(da - h) — (9(t + s)0(t - a ) ) 

ds OB 
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t+s t — s \ t — s 
I K:. 

ds + j- \Kij J 9,i(t)dt J ^(O^j+aAV,,(* + *) J 9ti(t)dt 
0 0 / o 

<+» 

+ aKijOti(t - s) j 0tj{t)d(\dVd8. 
o 

Using the initial conditions (13) in (35), we arrive at the desired result (29) 
and Theorem 4.3 is proved. 

5. Asymptotic equipartition of energy 
In this section we shall use the identities (22), (25) and (29) and under 

the hypotheses made in Section 2 we establish the asymptotic partition 
of total energy. First, we introduce the Cesaro means of various energies 
contained in (22). Thus, we define 

1
 t 

£c(t) = ^ \ ^[^¿(s)ttj(s) + Iij<pi(s)<pj(s)]dVds, 
OB 

— J [Aijmn£ij{s>)£mn(s^ "I" 25jjTOn£,j(s)'ymn(s) 
OB 

! * 

(36) +C,jmn7i'j(5)7 77171 {s)]dVds,Vc{t) = - Si aKije^e^dVds, 
OB 

< t 
Tc(t) = - j 5 d02{s)dVds, rKC(t) = r - 5 S cth02(s)dVds, 

OB OB 

1 <S 

= 57 S S i ^ ' W O + (da - h)6\i)}dVdids. 
00 B 

We are now in a position to state and proof the main result of our study. 
T H E O R E M 5.1 We assume that the hypotheses from the Section 2 hold. 

Then, for all choices of initial data 

(«?,¥>?) € W i ( 5 ) , ( « ? , $ ) € W o ( B ) , ePew^B), 0°ewo(B), 
we have 

(37) lim P c ( t ) = 0, lim TKC(t) = 0. i—>00 t—>OG 
Moreover, the following assertions hold 

(i) if meas dBz i 0, then 

(38) Km T c ( i ) = 0; 
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(ii) if meas d¿?2 = 0, then 

( 3 9 ) l i m T c ( t ) = l \ j(d9* + h9*)dV; t—>00 B 

( i i i ) if meas dB\ ^ 0 and meas dBi 0, then 

( 4 0 ) l i m JCc(t) = l i m Cc(t), 
t-+oo 4—>oo 

( 4 1 ) l i m Sc(t) = 5 ( 0 ) - 2 l i m ¡Cc(t) = 5 ( 0 ) - 2 l i m Cc{t)\ 
t—* oo t—•OO t—t-OO 

(¿u) ¿/ meas = 0 and meas d¿?2 = 0, then 

( 4 2 ) l i m £ c ( f ) = l i m £ c ( í ) + i j [ q ü * ú * + Iiátf<p*W, 
t—nx> t—yoo ¿ •> J 

B 

( 4 3 ) l i m Sc(t) = 5 ( 0 ) - 2 l i m K c { t ) + \ \ [ q W + I i ^ ^ d V t—»-oo t—»-oo ¿ •* J 
B 

= 5 ( 0 ) - 2 H m Cc(t) - \ \[qú*ú* + I ^ ^ d V . t— oo w 2 
B 

P r o o f . We use the energy conservation law (22) and the hypotheses from 
the Section 2 in order to prove the relations (37). Thus, by the hypotheses 
(9), we have 

( 4 4 ) dO2 (t) + ahQ2 ( t ) + 2 h0(t)0(t) 

= ^ (d6{t) + h9(t)j h)è2(t) 

= £ (*(«) + + ^ ( d a - h ) 0 2 ( t ) > 0. 

Now, by (36) and (22), we get 

( 4 5 ) T K C ( t ) < ±ha(da - h^j 5 ( 0 ) , 

(46) Vc(t) < ^ 5 ( 0 ) . 

Letting t oo into (45) and (46), we deduce the relations (37). 
(i) Suppose that meas dB3 0. It is easy to prove that 9 € W\(B). 

Then by using the Poincare's inequality (19) and the identity (22), we get 

t , , 

(47) J J de2{s)dVds < — \t° \ Kije^s)B,j{s)dVds < — 5 ( 0 ) . 
OB 1712 0 B m2 
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From the relation (47) and by (36), we obtain the conclusion (38). 
(ii) We now suppose that meas dB3 = 0. We use the decomposition (21) 

and the fact that x G W\{B) in order to obtain the following identity 

( 4 8 ) J e2{t)dv = \{d* + \ h 2 d v + J X
2(t)dV 

B B B 

B B 

In view of (48) and (36), we get 
t 

(49) T c ( t ) = ì J + hè* f d V + ± - t \ \ d X \ s ) d V d s 
B OB 

- j[l - exp( -£*) ] J + hè*)dV 
B 

i 
+ 4Ï 

B 

From the Poincare's inequality (19), the identity (22) and the fact that 
X € Wi(B), w e g e t 

1 4 d 4 

( 5 0 ) - J J dX\s)dVds < — J J KijX,i(s)xAs)dVds 
2i H ~ 2im2 „ „ OB 0 B 

d I f d 
2 t m 2 \ \ K i M s ) 0 A s ) d V d s < — m . 

0 B 
Letting t —• oo in (49) and taking into account (9*) and (50), we arrive to 
(40). We now use the relation (44), the energy conservation law (22) and 
the hypotheses from Section 2 in order to obtain the following estimates 

(51) \ e 2 ( t ) d V < 2a—-i-r5(0), ' i € [ 0 , o o ) , 
£ da — n 

(52) 5 [gui(t)ui(t) + Iij<Pi(t)<Pj(t)]dV < 25(0), t G [0, oo), 
B 

t 

( 5 3 ) J S KH0,i(T)dAT)dVdT < S(0), t € [0, o o ) , 
OB 

t 

( 5 4 ) j J è\r)dV < - j ^ j - m , t € [0, o o ) . 
da — h o B 
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On the other hand, the identities (25) and (29) imply 

1 ' 
( 5 5 ) 2i S S + Iij<Pi(*)<Pi(*) 

0 B 
— Aijmn£ij(s^£mn(s} — 2Bijmn£{j(s)*]mn(s) — Cijmn'yij(^)Kmn(s)]dVds 
i * 

= — J $[d02(s) + 2h9(s)9(s) - ah02(s) - aK {j0 ¿(s)9 ¿(s)]d,V ds 
2t OB 

~ £ J + / y ^ J j d V - 1 -
£ B 

+ i 5 [ e ( « ? u i ( 2 0 + t i ? « < ( 2 i ) ) + i a i t f ' P j m + r f t p ^ m d v 

1 * i 
+ Yt S S(° - M°Ma) + ^9(s))dVds + - J(da- h)9°9(2t)dV 

OB 
11 1 t 

+ a K i t f i \ 0 j ( ( )d( + - J J (a - eV°Mt + s) 
0 B 

- 0(t - s) + a^{9(t + s) + 9(t - s))]dVds. 

In view of definitions (36) and the initial conditions (13), from (55) it results 

(56) ICc(t) - Cc(t) = J [(da - h)(9° + a(a - grf)}[9(2t) - 9°}dV 
U b 

21 t 
+ — 5 5 aKij&jiOjWdVds + - \ J h9(s)9(s)d,Vds 4 t J J .» jv ' • t OB OB 

- 1 2° + IiMv^dV + TKC(t) - Vc(t) 
11 B 

+ 1 j [g(u°iui( 2t) + u°iui(2t)) + In(<$Vj(2t) + <^(2 t))]dV 

i * 
+ Tc(t) + - J J (a - Qrf)[9(t + s) + 9(s)]dVds. 

4 i o B 

Now we shall use the Schwarz and Cauchy inequalities on the right-hand 
side of the identity (56). We use the relations (45)-(47), (51)-(54) and thus 
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we get 

(57) 
B 

< ¿ S [<KA? + A?) + + 
B 

i W(da - + a(a - ^°)P(2i) - 6°}dV 
B 

< ¡-t \ [[(da - h)(0° + a(a - Q r f ) f + 2(0°)2)dV + - £ - ^ £ ( 0 ) 

1 J J a K ^ M s W d s < U \ \ a K ^ d V d s ) ' 
OB ^ 0 B ' 

21 — 1 

x ( \ J a K i A i W A ' W d * ) 2 < \ S « K ^ - d V d s 

- S 5 h6{s)è{s)dVds < - ( \ 5 hff2(s)dVds \ * 
' n o ( Vnn / 

X 0 B 
(s)dFds < — 

/i 2a x 

t } da — h ¿ ( 0 ) ; 

i J [*>(«?«,-(2t) + » ^ ( 2 * ) ) + IiMvipt) + <p0i<pj(2t))]dv 
B 

(iii) Assume that meas dB\ / 0 and meas dB<i ^ 0. Since (ui,<pi) e 
Wi(B), from (6), (18), (22) it results for r 6 [0, oo) 

(58) \[em(T) 
B  m i B 

2k 
+ 2 5 j j m n £ , j ( r ) 7 m n ( r ) + Cijmniij{T)~jmn(T)]dV < — S ( 0 ) , 

m i 

and we obtain 

(59) S[e(A?«i(2i) + »^(2*)) + IiMviW) + <P°i<Pj(M))W 



534 M. M a r i n 

Atrn\ 

If we suppose that meas dB$ ^ 0, then we have 

(60) < Tc(t) T c ( t ) + 1 \ \(a - gr}°)[0(t + s) + 6(s)]dVds 
0 B 

+ 1 Q J ( a - g r f f d V d ^ * Q \ [0(t + s) + 0(s)]2dVds 

- T c { t ) + ( è S ( a ~ M°) 2 dV\ 2[T c(2i)] i . 

Letting i oo in (56) and taking into account the estimates (57), (59), (60) 
and the relations (37), (38), we conclude that the relation (40) holds. Next 
we suppose that meas dBz = 0. If we use the decompositions (16), (21), the 
relations (17), (49) and the expresion of if (from Theorem 4.2), we conclude 
that the following identity holds 

i * 

( 6 1 ) T c ( t ) + - \ \ ( a - e r f M t + s) + 6(s)]dVds 
OB 

At J d2 

B 

exp( - 1 dV 

+ 7 S + h h 
B 

exp [ - j ] - 1 
i * 

dV + - \ \ d X
2 ( s ) d V d s 

OB 

1 1 

+ 4 Ï S + - - h t \ x { t + s) + 
0 B 

Now, by using the Schwarz and Cauchy inequalities in (61) and taking into 
account the relation (51), we get 

(62) Hm |r c ( i ) + ^ \ \ ( a - grj°)[6{t + s) + = 0. 

It is easy to see that the use of relations (37), (57), (59), (62) in (56) implies 
again the conclusion (40). Also, it is a simple matter to see that the relation 
(41) is obtained from (22) by taking the Cesaro mean and by using the 
relations (37), (38) and (40). 
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(iv) If meas dB\ = 0 and meas dB2 = 0, then we use the decomposition 
(20), the relations (14), (15) and the fact that G W i ( B ) in order to 
obtain 

( 6 3 ) 1 5 i Q u ^ t ) + i i j d n m w = Tt S + tiiViVjW 
B 

+ \ \ [ev*u* 4- I i i t ì t f W + S [QÙSW + Ii^%(2t)]dV. 2 J ^ " 1 " ' 1 " J - r t r j i - - • A t 
B B 

Also, since (Vi,if>i) G Wi(2?), the Korn inequality (18) leads to the relation 

(64) -!- \ [pVi(r)vj(T) + I i j r p i i r ^ j i r ^ d V < ^ [ A i j m n £ t j ( r ) £ m n ( r ) 

B m i B 

mn (T)]dV 

m i J 
1 B 

2k 
+ Cijmn lij{T)lmn{T)]dV < £(0),T 6 [0, OO), 

where £ij = Vjj + Sj ik^kiï i j — ipj,i- Leting i —• oo in (56) and by means of 
relations (37), (57), (60), (63) and (64) we arrive to the conclusion (42). 

Finally, the relation (43) is proved on the basis of (22) by taking the 
Cesaro mean and by using the relations (37), (38), (42), (57). The proof of 
Theorem 5.1 is complete. 

At last we remark that the relations (40) and (42), restricted to the class 
of initial data for which ù* = ip* = 0, prove the asymptotic equipartition in 
mean of the kinetic and strain energies. 
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